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We introduce a method for the analysis of multilocus, multitrait genetic data that provides an intuitive and precise
characterization of genetic architecture. We show that it is possible to infer the magnitude and direction of causal
relationships among multiple correlated phenotypes and illustrate the technique using body composition and bone
density data from mouse intercross populations. Using these techniques we are able to distinguish genetic loci that
affect adiposity from those that affect overall body size and thus reveal a shortcoming of standardized measures such
as body mass index that are widely used in obesity research. The identification of causal networks sheds light on the
nature of genetic heterogeneity and pleiotropy in complex genetic systems.
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Introduction

The most common and pervasive human health problems,
including heart disease, osteoporosis, diabetes, and cancer,
result from the complex interaction of multiple genetic and
environmental factors. Disease states are often associated
with multiple, correlated traits, referred to as subphenotypes.
The ability to assay subphenotypes of a disease state presents
a unique opportunity to investigate the mechanisms under-
lying disease susceptibility and progression [1]. Observed
associations among these traits may be driven by common
genetic factors or may result from physiological interactions
[1,2]. For example, low- and high-density lipoprotein choles-
terol, triglycerides, blood pressure, plasma insulin levels, and
C-reactive proteins are all measurable phenotypes associated
with cardiovascular disease. We would like to know whether
these phenotypes share common genetic determinants, which
genetic factors are specific to different subphenotypes, and
the nature of the nongenetic interactions among these
phenotypes.

The genetic analysis of complex traits is facilitated by the
study of inbred line crosses using animal models, typically
rodents. The genetically varied progeny from a cross can be
reared in a controlled environment, and multiple quantita-
tive phenotypes that are relevant to a disease outcome can be
measured in individual animals [3]. Genetically randomized
experimental populations that segregate naturally occurring
allelic variants can provide a basis for the inference of
networks of causal associations among genetic loci, physio-
logical phenotypes, and disease states. The inbred cross
experimental design provides a setting in which the direction
of causality, from genes to phenotypes, can be inferred
unambiguously. The randomization of genetic variants that
occurs during meiosis provides a setting that is analogous to a
randomized experimental design and thus admits causal
inferences [4], consistent with our intuition that variation in
genetic factors causes phenotypic variation.

Multivariate analysis of quantitative traits can be used to

investigate the structure of a genetic system that includes
allelic variation at multiple loci, intermediate phenotypes,
and disease states [5]. Jiang and Zeng [6] proposed a method
for quantitative trait locus (QTL) detection based on a
multivariate normal model with unconstrained covariance
structure. Alternatively, dimension reduction techniques,
such as principal component analysis, can be applied to sets
of correlated traits [7]. Multivariate QTL analyses can provide
enhanced power and resolution in QTL mapping when traits
are highly correlated and share common genetic determi-
nants [8]. However, neither QTL analysis nor dimension
reduction techniques provide insight into the relationships
among the phenotypes or the differential effects of the
genetic loci. Mapping studies that investigate clusters of
related phenotypes often reveal a network of genetic effects,
in which each phenotype is influenced by multiple loci
(heterogeneity) and different phenotypes share one or more
loci in common (pleiotropy) [1,5]. The complexity of observed
QTL networks will vary depending on the traits and the
power of the study design. It is also likely that physiological
interactions independent of genetic factors may result in
correlated phenotypic responses [2]. For example, heart rate
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and blood pressure will covary when measured simultane-
ously on the same animal. The methods described here
represent a next step in the analysis of the genetic
architecture of multiple traits and QTLs that have been
detected using either univariate or multivariate genome
scans.

Structural equation models (SEMs), also known as path
models [9], are related to Bayesian networks [10–12]. In each
of these approaches, we can represent the model structure as
a directed graph in which measured variables are represented
as nodes and causal relationships are represented as directed
edges between the nodes. Multivariate probability distribu-
tions are defined by the conditional dependencies among
variables represented in the graphical model [12]. Bayesian
networks emphasize probabilistic relationships among dis-
crete variables, whereas SEMs emphasize the correlation
structure of continuously variable data. SEMs are an
extension of standard multiple regression techniques. They
impose structure on the expected correlation through a
system of linear equations that define the causal relationships
among measured variables in a system. Covariates—factors
such as sex, batch, or litter that are external to direct genetic
causality but introduce variations in phenotypes of interest—
can be incorporated into SEM analysis [13]. SEM is essentially
a hierarchical system of regression relationships in which any
given variable may be both a response and a predictor.

Herein, we propose a SEM approach to analyze complex
genetic systems using mouse inbred crosses. SEM method-
ology has been applied in several studies of human
inheritance with the aim of improving QTL detection [14–
19]. The approach presented here does not explicitly use
structural modeling for detection. Instead, we focus on SEM
as a descriptive and inferential tool to investigate the
simultaneous effects of QTLs on multiple phenotypes and
interactions among those phenotypes. The relationships
among QTLs and phenotypes can be tested and quantified
to establish the nature of genetic heterogeneity, pleiotropy,
and the role of physiological pathways in mediating genetic
effects [20,21]. We illustrate the approach with an analysis of
two phenotypes related to obesity: one, an SM/J 3 NZB/B1NJ
intercross [22], and two, bone phenotypes in a NZB/B1NJ 3

RF/J intercross [23]. For brevity, these strains will be denoted
SM, NZB, and RF.

Materials and Methods

Mouse Intercross Populations
The SM3NZB intercross population of 260 female and 253

male mice was raised on an atherogenic diet for 16 wk
starting at 8 wk of age. At 24 wk we obtained total body
weight and weights of the inguinal, gonadal, peritoneal, and
mesenteric fat pads. Lean body weight was computed by
subtracting the total of the fat pad weights from the body
weight. In the analyses described here, all traits were square-
root transformed to obtain the best linear relationships.
Additional information on husbandry, phenotyping, and
genotyping of this cross can be found in Stylianou et al. [22].
The NZB3RF intercross population consists of 661 female

mice raised on standard (4% fat) diet. At 10 wk of age, femurs
were isolated and their geometric properties were deter-
mined by peripheral quantitative computed tomography. We
consider body weight and two bone geometry traits, femur
length and the periosteal circumference of the femur (PCIR).
All traits were log transformed to obtain the best linear
relationships. Additional information on this cross can be
found in Wergedal et al. [23].
The Institutional Animal Care and Use Committee of The

Jackson Laboratory approved all experimental protocols. All
data used in this study are available at http://www.jax.org/staff/
churchill/labsite/datasets/qtl/qtlarchive.

Structural Equation Models
In structural equation modeling, variables are standardized

by centering on sample means. Thus the variances and
covariances are the parameters of interest. The key idea
behind SEM is that causal relationships among the variables
determine the expected pattern of correlations [24]. A SEM
represents causal relationships among measured and latent
variables both graphically and as a set of linear equations, the
structural equations, that define the interactions among the
variables. In the graphical representation of a SEM, a variable
with an arrow pointing to it is termed an endogenous variable,
which is similar to a response or dependent variable in regression
terminology. An endogenous variable is causally affected by
the state of at least one other variable in the model. A variable
without an arrow pointing to it is termed an exogenous
variable, which is similar to an independent variable or predictor
in regression terminology. Exogenous variables are upstream
of all causal effects in the model. Variables that are connected
through a single edge in the graphical model are said to have
direct path. An effect that is mediated through other measured
variables is represented by an indirect path with more than one
edge. Variables may be connected by more than one path.
The sign and magnitude of the direct effects in the graphical
model are represented by path coefficients in the structural
equations.
The endogenous variables in a SEM are assumed to follow a

multivariate normal distribution, while exogenous variables
can be either continuous or categorical. The maximized log
likelihood function takes the form [25,26]:

FðhÞ ¼ logjRj þ traceðSR�1Þ � logjSj � p ð1Þ

where h is a vector of model parameters that includes path
coefficients, variances of all exogenous variables, and cova-
riances for all pairs of exogenous variables; p is the number of
variables included in the model; R is the predicted covariance
matrix and is implicitly a function of the model parameters; S
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Synopsis

Disease states are often associated with multiple, correlated traits
that may result from shared genetic and nongenetic factors. Genetic
analysis of multiple traits can reveal a network of effects in which
each trait is influenced by more than one genetic locus (hetero-
geneity) and different traits share one or more loci in common
(pleiotropy). Physiological interactions independent of genetic
factors may also contribute to the observed correlations. Structural
equation modeling is proposed as a statistical method to character-
ize the architecture of multiple trait genetic systems. Application of
structural equation modeling to body size, adiposity, and bone
geometry traits illustrates how the effects of a genetic locus can be
decomposed along direct and indirect paths that may be mediated
through interactions with other traits. Using this technique the
authors identify adiposity loci that act independently of loci
affecting overall body size.



is the observed covariance matrix; and jXj denotes the
determinant of a matrix X. The number of unique elements
in a covariance matrix is p(pþ 1)/2 due to symmetry, and the
number of model parameters is denoted by q. Intuitively, the
parameter values are chosen to give a predicted covariance
matrix that is as similar as possible to the observed covariance
matrix, subject to the constraints imposed by the structural
equations. A critical quantity in determining our ability to fit
and assess a model is the residual degrees of freedom (df),
where df¼ p(pþ 1)/2� q. If the residual df are less than 1, the
model has as many or more parameters than data points and
thus the goodness-of-fit cannot be assessed.

Causal Inference
To illustrate causal inference in the context of QTL

mapping, consider the possible relationships between a
genetic locus, Q, and two correlated traits, A and B, as in
Figure 1. In each of the models M1–M9, there is a direct
causal connection between A and B that represents a
physiological interaction. In model M10 the correlation
between A and B is indirect—a result of the shared QTL.
Directed paths represent causal effects, and bidirectional
paths represent undirected associations. The latter may
indicate the presence of an unobserved factor that influences
both traits. The QTL may be pleiotropic, with direct effects
on both traits, as in models M1–M3 and M10. Alternatively,
the QTL may have a direct effect on only one trait.

Causal effects from a QTL to a phenotype have a defined
direction. The causal inference follows as a consequence of
meiotic randomization of genetic factors in the inbred line
cross. The causal inference can be extended to include the
relationships among phenotypes by considering both the
unadjusted and partial correlation relationships among the
variables. For example, in model M7, Q and A are uncondi-
tionally independent. However, conditioning on B will result
in a nonzero partial correlation. By contrast, in M8, Q and A
will be unconditionally correlated. Conditioning on B breaks
the causal chain from Q to A, and their partial correlation
will be zero. When all three variables are causally connected,
as in models M1–M3, the raw and partial correlations will all

be nonzero, but they will change in magnitude depending on
the signs of the path coefficients. The relationships among
the various raw and partial correlations are subject to
statistical fluctuations but they can be captured in the log
of odds ratio (LOD) scores, as described below, and these
form the basis for constructing multilocus SEMs.

Development of a Structural Equation Model
The process of developing a SEM for genetic mapping data

is described in five steps, below. Steps 1 and 2 involve QTL
detection and they employ standard QTL detection methods
and serve the purpose of identifying the variables that will be
used in the structural modeling. Once the QTL have been
identified, their genotypes are imputed [27] and the cova-
riance matrix of all traits and QTLs are computed by
averaging over imputations. This estimated covariance matrix
is analyzed in steps 3 through 5 to build, assess, and revise the
SEM. Some iteration among these steps may be required to
arrive at a suitable model. However, extensive model refine-
ment may lead to a model that fits the existing data but does
not generalize well (i.e., overfitting) and is not recommended.
Step 1. Identify QTLs for individual phenotypes. We use

genome scans to identify the genetic loci that will be included
in the SEM [27]. A single locus genome scan is based on the
linear model

Y ¼ b0 þ b1Q þ e ð2Þ

where Y is a vector of trait values, b0 is the population mean,
Q is a vector of QTL genotypes, b1 is the QTL effect, and e is
the residual vector. The location of the QTL is scanned over
the entire genome and a LOD score (or equivalently,
likelihood ratio) is used to determine if a QTL is present. If
covariates, such as sex, are important predictors of the trait
values, these should be included in the linear model under-
lying the genome scans [13]. In addition, the traits may be
scanned using a pairwise genome scan to identify epistatic
QTLs [27].
Step 2. Identify pleiotropic QTLs. In this step we perform

conditional genome scans using one trait as a covariate in the
analysis of another trait. The choice of which trait(s) to use as
covariates may be dictated by the known biological relation-
ships among the traits, or it may be carried out systematically.
In this setting, factors that are believed to be upstream in
causal pathways should be employed as conditioning varia-
bles. The linear model used in the conditional genome scans
is

Y ¼ b0 þ b1Q þ b2X þ e ð3Þ

where X is the conditioning variable and b2 is the effect of X
on the response Y, adjusted for the Q effect.
Comparison of the unconditioned and conditioned scans

may reveal a substantial change in the LOD score at a locus. If
the change (DLOD) is large in absolute value, this suggests
that the variable X is causally connected to Q and to Y. We use
a critical value of 2.0 as a guideline, corresponding to a 0.05
type I error rate based on simulations in which the
conditioning variable is unrelated to the response. The
significance of these edges will be evaluated further in
subsequent steps.
The direction of change in the LOD score upon adjustment

for a covariate depends on the signs of QTL effects on the
trait and on the covariate, as well as the sign of the path
coefficient connecting the trait and the covariate. When both

Figure 1. Causal Relationships among a QTL and Two Phenotypes

Single-headed arrows indicate causal effects and doubled-headed arrows
indicate unresolved associations between the two phenotypes. Pheno-
types are indicated by A and B; QTL by Q.
DOI: 10.1371/journal.pgen.0020114.g001
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the direct and indirect paths share the same sign, the LOD
score in the conditional scan will be smaller than the
unconditional LOD score. When the direct path and the
indirect path have opposite effects, the conditional LOD
score will be greater than the unconditional LOD score. In
this case, the direct and indirect effects cancel one another
and the QTL effect is reduced in the unconditional scan. It
follows that changes in the LOD upon conditioning can be
used to infer the sign of QTL effects along different paths.

Step 3. Define an initial path model. In the graphical SEM,
each measured trait is represented as a node; QTLs identified
in steps 1 and 2 are also included as nodes. Edges should be
directed from the QTL nodes to the corresponding traits.
When a significant DLOD value is observed, edges should be
directed from the QTL to each of the traits, and an edge from
the conditioning trait to the response should also be added.
The significance and causal direction of these edges should be
examined in model refinement (step 5).

In many instances, a SEM that includes only measured
variables will be sufficient. However, latent variables [28]
representing unmeasured or hypothetical quantities that can
be inferred from other measured variables, may be incorpo-
rated in a SEM. Addition of a latent variable can effectively
reduce the dimensionality of the data when several highly
correlated variables are being influenced by an underlying
quantity that is not directly observed.

Step 4. Assessment of the model. This step involves a
comparison of the predicted and observed covariance
matrices, t-tests for individual path coefficients, and consid-
eration of other model diagnostics. The goodness-of-fit test
statistic is (N � 1)F(h), where N is the sample size and F(h) is
defined in Equation 1. It follows a v2 distribution with df p(pþ
1)/2� q. Significant values (p , 0.05) indicate that the model
does not provide a good fit to the data. Each path coefficient
should be individually significant (p , 0.05) using a t-test
(Wald’s test). The maximum standardized residual difference
between the observed and predicted covariance matrices
should be small. The root mean square error of approxima-
tion measures the lack of fit of the model to the theoretic
population covariance matrix and values of 0.05 or less
indicate an acceptable fit. A model that does not provide an
accurate prediction of the observed covariance should be
refined.

Step 5. Refine the model. Model refinement involves the
proposal and assessment of a new model. The procedures
used to suggest a new model include adding a new path to the
initial model, removing a path, or reversing the causal
direction of a path [9]. When a new path is added to an
existing model it should result in a significant change in the
goodness of fit statistic (. 3.84 for 1 df). This is the likelihood
ratio test. When an existing path is removed from the model,
the change in the goodness of fit statistic should be
nonsignificant. Particular attention should be paid to the
edges between phenotypes. Whereas the direction of causality
from QTL to a trait is clear, the direction of causal
connections between traits should be carefully examined by
exploring all possible alternatives, as illustrated below.

Additionally, one may consider model selection methods.
For example, Akaike’s information criterion (AIC) [29],
provides a penalized likelihood statistic for model compar-
ison. CAIC is an adjustment of AIC to correct for bias in small
samples and is recommended when the ratio of the sample

size to the number of estimable parameters is less than 40
[30]. In our examples this ratio is around 10. A model with the
smallest value of AIC or CAIC among several candidate
models is preferred. The expected value of the cross-
validation index (ECVI) estimates the overall error and
predictive validity of a model [31]. ECVI values may be
compared among several models. An interval estimate is
helpful to avoid paying too much attention to small differ-
ences.
Model refinement and assessment (steps 4 and 5) are often

carried out iteratively. A final model should meet several
standards [9]: (1) it should be identified or overidentified with
at least 1 residual df; (2) the p-value associated with the
goodness-of-fit test should be greater than 0.05; (3) the largest
standardized residual should not exceed 2.0 in absolute value;
(4) individual path coefficients should be significantly differ-
ent from zero based on the t-test; (5) standardized path
coefficients should not be trivial (absolute values exceed 0.05);
and (6) a substantial proportion of phenotypic variance of the
endogenous variables should be explained by the model. If all
of these standards are met, we may conclude that the model
provides a reasonable description of the data.

Modeling Genetic Effects
In the context of an intercross (F2) population, each QTL

has three possible genotypic states. We can assume intralocus
additivity by encoding genotypes as 0, 1, or 2, and treating
these scores as a continuous variable in the SEM. Alter-
natively, the genetic effect is represented as a pair of 0,1
(dummy) variables. The most widely used parameterization,
following Cockerham [32], partitions the genetic effects into
additive (A) and dominant (D) components. The A and D
components are orthogonal to one another and thus we can
fix their covariances in the SEM to be zero. In the model-
fitting and refinement steps, we always retain or drop both
components as a unit, even if only one component is
significant. Epistatic interactions for pairs of QTLs can be
partitioned into four components [32], additive 3 additive
(AA), additive 3 dominant (AD), dominant 3 additive (DA)
and dominant 3 dominant (DD). These are also orthogonal
and are treated as a single unit in the model. If an epistatic
term is included in the model, we retain the main effect
terms, regardless of their marginal significance, to ensure that
the model is interpretable. Although we considered epistatic
terms in the examples below, we found that the added
explanatory power was not sufficient to justify the additional
free parameters in the model. With larger sample sizes it may
become practical to include epistatic effects in a SEM.

Path Analysis
One important feature of SEM is that direct and indirect

effects of a QTL on a trait can be distinguished, and the
relative strengths of effects along different paths can be
calculated and compared [20,21]. The effect of a direct path
from a QTL to a trait is represented by the path coefficient.
Path coefficients are typically standardized relative to the
residual variance of the endogenous variable to which they
are directed. Thus all error terms in a standardized model
have variance 1, and path coefficients are expressed in
standard deviation units. In this way all path coefficients are
directly comparable and are independent of the original
measurement scale. The effect of an indirect path is the
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product of all the standardized path coefficients (includingþ
and� signs) along this path. The total effect of the QTL on a
trait is the sum of the effects along all the direct and indirect
paths connecting the two variables.

We note that the sign of a path coefficient from a QTL to a
trait is determined by the choice of the reference genotype
(encoded as zero). If the effect of an allelic substitution away
from the reference is to increase the mean trait value, the
sign of the path coefficient is positive. If allelic substitution
away from the reference causes the trait value to decrease, the
sign is negative. In the examples below, the homozygous NZB
genotype is our reference. The same interpretation applies to
path coefficients for categorical covariates such as sex. In the
models below we have used female as the reference.

Computing
Genome scans were carried out in the MATLAB software

environment (MathWorks, Natick, Massachusetts, United
States) using the pseudomarker package (v2.02) [27]. Scans
were conducted at 2 cM resolution using the imputation
method with 256 imputations. Significance of QTLs was
assessed using permutation analysis [33] with 1,000 permuta-
tions. Genome-wide significance is defined as the 95th
percentile of the maximum LOD score and suggestive QTLs
exceed the 37th percentile. Structural equation modeling
analysis was carried out using the PROC CALIS procedure in
the SAS software package (SAS, Cary, North Carolina, United
States) or in AMOS 6.0 (SPSS, Chicago, Illinois, United
States). QTLs were represented by the marker nearest to the
LOD peak, and missing genotypes (, 5%) were inferred from
flanking marker data.

Results

Measuring Adiposity
We first consider the problem of defining a measure of

adiposity. Fat pad weights and lean body weight are positively
correlated in the SM3NZB cross population. Fat pad weight
by itself is inadequate as a measure of obesity. Two animals
with similar fat pad weights may have different body size such
that one animal is considered obese and the other not. Thus it
is important to consider the fat pad weight relative to the size
of the animal. In our analysis we used the lean body weight as
surrogate for size. The lean body weight is computed by

subtracting the weights of the four major fat pads from the
total body weight and thus will include a small contribution
from other adipose tissues.
There are two common approaches to defining a relative

measure. First, one could compute an adiposity index as the
ratio of fat pad weight to lean body weight. Second, one could
regress fat pad weight on lean body weight and consider the
deviation from the regression line (the residual) as a measure
of adiposity. Although the regression approach is clearly
preferred, ratio standardization is still widely used [34,35]. To
see why this is so, consider the implications of using each
measure. The ratio standard assumes a proportional relation-
ship (y ¼ bx) between the variables, which implies that the
regression line relating these traits should pass through the
origin. One might argue that a hypothetical animal with zero
lean body mass should also have a fat pad mass of zero.
However, the argument is fallacious, as it extrapolates beyond
the range of the data over which the linear approximation is
valid. Regression standardization allows one additional df in
the form of an intercept term (y¼ aþ bx). The relationship of
mesenteric fat pad weight to lean body weight is shown
graphically in Figure 2. The regression line and the ratio line
meet at the mean of each trait but the two diverge away from
the mean point. The regression line fits the data well over its
entire range. For either standard, adiposity is measured as the
deviation from the fitted line. In this case, the ratio standard
is severely biased. An animal with higher than average lean
body weight and normal adiposity according to the regression
standard would be considered obese by the ratio standard.
The converse would be true for an animal with lower than
average lean body weight. Therefore we conclude that the
regression method provides a more appropriate adjustment
of fat pad weight for lean body weight and is to be preferred
as a measure of adiposity. SEMs generalize the regression
model and thus provide a regression standardization.

Body Size and Fat Pad QTL
A genome scan of the mesenteric fat pad weight (with sex as

an additive covariate) reveals significant QTLs on Chromo-
somes 1, 17, and 19 (Figure 3A). A second genome scan for
mesenteric fat pad weight, using both sex and lean body
weight as additive covariates, shows suggestive QTL peaks on
Chromosomes 2, 4, and 10 (Figure 3B). The differences
between these two scans are dramatic, with both upward and
downward changes in the LOD scores (Figure 3C). The peak
LOD score decreases after adjustment on Chromosomes 1, 17,
and 19, and it increases after adjustment on Chromosomes 2
and 10. A genome scan of the lean body weight (adjusted for
sex) reveals QTLs on Chromosomes 1, 2, 5, 6, 12, 15, 17, and
19 (Figure 3D). The substantial overlap with QTLs for fat pad
weight suggests that pleiotropic effects are an important
component of the genetic architecture. One goal of structural
equation modeling is to translate the observed changes in
LOD scores following adjustment for a covariate into an
interpretation of the nature of these pleiotropic effects.
We note here that a genome scan of the adiposity index

(unpublished data) reveals only two significant QTLs, one on
Chromosome 19 and the other on Chromosome 1, and there
are no suggestive QTLs. As indicated below, these two loci
primarily affect the overall body size and are not specifically
impacting adiposity. Genome scans for all four fat pad traits
are provided in Figure S1.

Figure 2. Relationship of Mesenteric Fat Pad Weight to Lean Body

Weight for Female and Male Animals

Both phenotypes are square root transformed. The dotted line indicates
the ratio standard of constant adiposity index. The solid line is the
regression of mesenteric fat pad weight on lean body weight.
DOI: 10.1371/journal.pgen.0020114.g002
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A SEM of Mesenteric Fat Pad Weight
As a starting point for the development of a SEM we

consider all of the QTLs that are significant (p , 0.05,
genome-wide adjusted) in at least one of the genome scans
and any suggestive QTLs that have significant DLOD values.
Directed edges from each QTL to the corresponding trait are
included in the graphical SEM. QTLs with a DLOD exceeding
2 in absolute value are connected with directed edge to both
traits. In addition, a directed edge is tentatively connected
from lean body weight to the fat pad weight. We used an
additive model of the genetic effects. This initial model is
assessed and refined, using the steps described in Materials
and Methods, to arrive at the model shown in Figure 4. In this
case, no refinements were made to the initial model. The path
coefficients are all significantly different from zero (Table 1),
the proportion of variance explained by the model is 46.5%
for mesenteric fat pad mass and 54.4% for lean body weight,
and the maximized standard residual is 0.93. Several good-
ness-of-fit statistics for model M1 are shown in Table 2. These
measures all indicate that fit of the model is acceptable.

In order to assess the direction of causality between lean
body weight and mesenteric fat pad weight, we consider the
models listed in Table 2. These models are derived from the
initial model by varying the direction of the causal relation-
ship between the traits. In general it may be necessary to
allow for model refinement but none was required here.
Goodness-of-fit statistics indicate that the model, M2, in
which mesenteric fat weight is upstream does not fit. The
overall fit of the bidirectional model, M3, is acceptable, but a

t-test (t ¼ 1.48) indicates that the path coefficient from
mesenteric fat pad weight to lean body weight is non-
significant. M1 also has the smallest CAIC value (Table 2) and
is preferred over the other models. We conclude that lean
body weight is causal to fat pad weight. This is consistent with
our intuition that a mouse with a larger body size will tend to
have larger fat pads. Caution is recommended in this
interpretation, because both traits represent a composite of
multiple causal effects, some of which are mediated by
unobserved factors. The SEM indicates that the net effect is
unidirectional.
A unique feature of SEMs is the ability to resolve the sign

and magnitude of effects along multiple direct and indirect
paths. Path analysis provides a detailed description of the
pleiotropic effects in the system that takes into account
multiple genetic and nongenetic sources of variation. For

Figure 3. Genome-Wide Scans for Mesenteric Fat Pad Weight at 2 cM

Resolution

Genome scans shown are (A) mesenteric fat pad weight with sex as an
additive covariate; (B) mesenteric fat pad weight with sex and lean body
weight as additive covariates; (C) difference in LOD scores between scans
in (A) and (B); and (D) lean body weight with sex as an additive covariate.
LBWT, lean body weight; MES, mesenteric fat pad weight.
DOI: 10.1371/journal.pgen.0020114.g003

Figure 4. Graphical Representation of the SEM for Mesenteric Fat Pad

Weight

Genetic loci are indicated by Q followed by the chromosome number,
and @ followed by the cM position of the LOD peak. Single-headed
arrows indicate causal paths, and the thickness of each arrow is
proportion to the effect size (path coefficient). A negative sign from a
QTL to a trait indicates that the NZB allele is associated with high trait
values. E1 and E2 denote unobserved residual error.
DOI: 10.1371/journal.pgen.0020114.g004

Table 1. Structural Equations of the Mesenteric Fat Pad Model

Variable Predictor Path

Coefficient

t-Statistic

MES LBWT 0.73 15.0

Q19@52 �0.09 �2.6

Q17@28 �0.07 �2.1

Q2@2 0.12 3.6

Q1@62 �0.09 �2.7

Q10@52 0.13 3.6

Sex �0.17 �3.7

LBWT Q19@52 �0.13 �4.0

Q17@28 �0.14 �4.4

Q2@2 �0.07 �2.1

Q1@62 �0.11 �3.5

Q10@52 �0.07 �2.1

Q12@54 �0.12 �3.9

Q6@62 �0.14 �4.5

Q5@46 �0.09 �2.8

Sex 0.63 19.8

Path coefficients are standardized and therefore represent relative effect sizes. Negative
path coefficients indicate that the NZB allele (QTL, ‘‘Predictor’’ column) or the female mice
(Sex) are associated with higher trait values. Genetic loci are denoted by Q followed by
the chromosome number and @ followed by cM position. A t-statistic of � 1.96 in
absolute value suggests significance at 0.05 level. The values given here correspond to
the graphical model in Figure 4.
LBWT, lean body weight; MES, mesenteric fat pad weight.
DOI: 10.1371/journal.pgen.0020114.t001
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those QTLs that are associated with both mesenteric fat pad
weight and lean body weight, path analysis establishes the
relative contributions of the direct and indirect effects.
Decomposition of QTL effects along direct and indirect paths
is illustrated in Table 3, using two QTLs as examples (see
Tables S1–S4 for a complete set). The locus Q19@52 shows
negative effects on mesenteric fat pad weight along both the
direct and indirect paths, indicating that this locus affects
mesenteric fat pad weight in the same direction through two
physiological pathways. The peak LOD score in an unadjusted
genome scan is a reflection of the net effect over all paths.
The contribution from an indirect path can be blocked by
conditioning on the intermediate variable. In this case, the
result is a downward change in LOD score in the conditional
scan. In contrast, the Q10@52 shows opposite effects on
mesenteric fat pad weight along direct and indirect paths.
Conditioning on lean body weight blocks the indirect path,
resulting in an increased LOD score. In this way, changes in
LOD score upon conditioning provide information about the
signs of path coefficients in the SEM.

In the SEM for mesenteric fat pad weight (Figure 4 and
Table 1) we can identify three distinct classes of QTL effects.
The QTLs on Chromosomes 5, 6, and 12 have direct effects on
lean body weight and only indirect effects on the fat pad
weight. The QTLs on Chromosomes 1, 17, and 19 have
pleiotropic ‘‘body size’’ effects. NZB alleles at these loci are
associated with increased lean body weight and increased fat
pad weight. The QTLs on Chromosomes 2 and 10 may be
interpreted as ‘‘adiposity’’ loci. At these loci, SM alleles are
associated with smaller lean body weight and larger fat pad
weights. The largest influence on mesenteric fat pad weight is
through its positive correlation with lean body weight.
Females have relatively larger fat pad weights. The largest

genetics effects are on Chromosomes 2 and 10, where SM
alleles contribute to increased adiposity. The largest single
effect on lean body weight is sex, but the total effect of
multiple genetic loci (with all high alleles contributed by
NZB) is greater still.

Modeling Adiposity and Body Weight
Univariate and multivariate genome scans [6] were per-

formed for the four fat pad traits. The multivariate scan
(Figure 5A) detected all of the QTLs that were detected by
scanning each fat pad trait one at a time (Figure S1), and a
new QTL was detected on Chromosome 14. The QTLs on
Chromosomes 1, 2, 5, 6, 12, 17, and 19 show significant
changes in LOD scores (DLOD . 2), when conditioning on
lean body weight (Figure 5C). In our initial SEM, we included
all QTLs that were significant in any of the genome scans and
all suggestive QTLs that showed a significant (. 2) change in
LOD score between these two multivariate genome scans.
Correlations among the fat pad weights were all about 0.7,

thus multicollinearity is a concern for developing a SEM. To
address this, we introduced a latent variable to capture the

Table 2. Model Comparison for Mesenteric Fat Pad Mass and Lean Body Weight

Model Direction v2 df p-Value RMSEA (90% CI) ECVI (90% CI) AIC CAIC

M1 LBWT ! MES 1.95 3 0.58 0 (0–0.07) 0.13 (0–0.22) �4.05 �19.42

M2 LBWT  MES 7.30 3 0.06 0.06 (0–0.11) 0.14 (0–0.25) 1.30 �14.07

M3 LBWT $ MES 0.20 2 0.91 0 (0–0.04) 0.13 (0–0.22) �3.80 �14.05

v2 goodness-of-fit is based on the likelihood function (Equation 1). RMSEA is the root mean square error of approximation [31], and ECVI is the expected value of the cross-validation
index [31].
DOI: 10.1371/journal.pgen.0020114.t002

Table 3. Path Analysis of QTL Effects

Path Net Effect

Q19@52 ! MES �0.09

Q19@52 ! LBWT ! MES �0.09

Total �0.18

Q10@52 ! MES 0.13

Q10@52 ! LBWT ! MES �0.05

Total 0.08

The effect of a direct path is the standardized path coefficient and that of an indirect path
is the product of the path coefficients (including the sign) along that path. Standardized
path coefficients for the mesenteric fat pad model are listed in Table 1. Abbreviations are
defined in Table 1. The values given here correspond to the graphical model in Figure 4.
DOI: 10.1371/journal.pgen.0020114.t003

Figure 5. Genome-Wide Scans for Multiple Fat Pad Traits at 2 cM

Resolution

Genome scans shown are (A) the four fat pad traits (inguinal, gonadal,
peritoneal, and mesenteric fat pad weight) with sex as an additive
covariate; (B) the four fat pad traits with sex and lean body weight as
additive covariates; and (C) the difference in LOD scores between scans
in (A) and (B). FP, the four fat pad traits; LBWT, lean body weight.
DOI: 10.1371/journal.pgen.0020114.g005
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shared variation among the fat pad weights and refer to this
latent variable as ‘‘adiposity.’’ Variance in any of the fat pad
traits that is unrelated to adiposity is captured by the residual
error variances. We formulated an initial model using only
main effect terms and additive genetic effects as described in
Materials and Methods. The population size of 531 limits the
size of the models that we can consider. A final model,
obtained after a few iterations of model refinement, is shown
in Figure 6. The model selection and goodness of fit statistics
are summarized in Table 4.

Several conclusions are available from inspection of the
graphical model in Figure 6. For example, we see that female
mice have lower body weight, higher adiposity, larger gonadal
fat pads, and smaller peritoneal fat pads compared to males.
SM alleles on Chromosomes 17 and 19 are associated with
lower adiposity and lower body weight compared to NZB
alleles. The Chromosome 2 QTL is associated with higher
adiposity and lower lean body weight. QTLs specific to
adiposity or fat pad traits include Q4@46, Q5@24, Q12@14,
and Q14@4. QTLs specific to lean body weight include Q5@
46 and Q12@54. Each QTL contributes to overall body
composition with a unique pattern of effects.

Modeling Bone Geometry and Body Weight
Body weight and bone geometry phenotypes are known to

be associated but the causal relationships among them are
largely unknown [35]. Here we look at bone geometry data
from a NZB3RF intercross population [23] and consider the
relationships among femur length, midshaft PCIR, and body
weight. QTLs associated with these traits have been described
previously [23]. We employed an additive genetic model in
the SEM because all QTL effects showed intralocus additivity.
We developed an initial SEM (Figure 7 and Table 5) following
the steps of model formulation, assessment, and refinement
described in Materials and Methods. In order to resolve the

causal relationships among the three phenotypes, we exam-
ined the complete set of 11 models listed in Figure 8. Models
M1, M9, M10, and M11 each provide a close fit to the data, but
t-tests for the extra path coefficients in models M9, M10, and
M11 that are not found in model M1 are all nonsignificant (t¼
1.68, �0.43, and 0.65, respectively). In addition, M1 has the
smallest CAIC value relative to other models. We conclude
that model M1 provides the best description of these data.
The graphical SEM is shown in Figure 7. Path coefficients

and t-statistics are summarized in Table 5. The model
explains 67.3% of the variance in PCIR, 29.5% of the
variance in body weight, and 11.9% of the variance in femur
length. The QTLs in group Q1 are specific to PCIR. The
contributions are balanced in that Q5@84 and Q11@68
contribute high alleles from NZB, and Q7@50 and Q4@66
contribute low alleles from NZB. The QTLs in group Q2
affect both PCIR and body weight. Path coefficients indicate
that Q12@2 and Q19@50 are primarily body weight QTLs.
Other members of Q2 (Q2@66, Q3@30, and Q8@0) show
opposing effects on body weight and PCIR. Causal connec-
tions among the traits are consistent with our prior expect-
ations for this study. Muscle mass, a major determinant of
body weight, is associated with the length of the femur, and a
mouse with greater body weight will tend to have thicker
bones. Again, we should use caution in these interpretations
as there is certainly some cross-talk among these traits as well
as unobserved factors that could influence the relationships
among the measured variables. The SEM describes the net
effects of many factors.

Discussion

In experimental crosses, meiosis serves as a randomization
mechanism that distributes naturally occurring genetic
variation in a combinatorial fashion among a set of cross

Figure 6. Structural Equation Model for Adiposity and Lean Body weight

The four fat pad traits are gonadal (GON); inguinal (ING); mesenteric (MES); and peritoneal (PERI). Single-headed arrows indicate causal paths, and the
thickness of each arrow is proportional to the effect sizes. Doubled-headed arrows denote unresolved covariance. The boxes indicate measured traits or
QTL and the oval denotes a latent variable. E1, E2, E3, E4, and E5 denote unobserved residual error. The negative sign from a QTL to a trait indicates that
the NZB allele is associated with high trait values.
DOI: 10.1371/journal.pgen.0020114.g006
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progeny. Genetically randomized populations share the
properties of statistically designed experiments that provide
a basis for causal inference. This is consistent with the notion
that causation flows from genes to phenotypes. We propose
that the inference of causal direction can be extended to
include relationships among phenotypes and demonstrate
that causal hypotheses can be tested. When models are nested,
likelihood ratio tests can be applied. For non-nested sets of
models, penalized likelihood methods such as AIC or CAIC
can be used to identify good models. However, the credibility
of any causal hypothesis must be judged by biological
standards and not solely on statistical evidence. From this
perspective, we view SEM as a device for generating causal
hypotheses to be tested by subsequent experimentation.

As descriptive models, SEMs are useful for identifying the
nature of pleiotropic QTL effects. The phenotypes that we
choose to measure and the QTLs that we detect will rarely, if
ever, occur in one-to-one correspondence. Allelic variation at
a locus will often impact multiple traits, and these effects may

be mediated through multiple physiological pathways. SEMs
provide a quantitative description of the entire system of
QTLs and phenotypes. In our analysis of the SM 3 NZB fat
pad data we identified distinct classes of QTLs that affect

Table 4. Model Assessment and Path Coefficients for the
Adiposity SEM

Variable Predictor Path

Coefficient

t-Statistic

LBWT Q19@52 �0.13 �3.95

Q17@28 �0.15 �4.56

Q12@54 �0.13 �3.86

Q1@62 �0.11 �3.27

Q2@2 �0.08 �2.32

Q5@46 �0.09 �2.73

Q6@46 �0.11 �3.44

SEX 0.65 19.70

Q8@0 �0.07 �2.18

Adiposity LBWT 1.00 14.96

Q19@52 �0.17 �3.59

Q17@28 �0.16 �3.38

Q12@14 0.17 3.76

Q2@2 0.17 3.73

Q4@46 0.14 2.98

Q8@0 �0.13 �2.71

SEX �0.24 �3.80

Q6@46 0.16 3.46

ING adiposity 0.67 21.10

GON adiposity 0.70 21.67

SEX �0.35 �12.35

Q4@46 �0.11 �4.29

Q5@24 �0.09 �3.77

Q1@62 �0.06 �2.53

PERI adiposity 0.58 17.17

SEX 0.10 3.25

Q8@0 0.07 2.50

Q14@4 �0.08 �3.05

MES adiposity 0.66 21.17

Q1@62 �0.09 �3.42

Q6@46 �0.08 �3.04

Q8@0 0.07 2.67

Q14@4 0.06 2.48

v2¼ 121.2, 113 DF and p¼ 0.28. RMSEA¼ 0.01 (90% CI 0–0.03) and ECVI¼ 0.52 (90% CI
0.51–0.60). The values here correspond to the graphical model in Figure 6. See Table 2
and text for model assessment statistics.
GON, gonadal fat pad weight; ING, inguinal fat pad weight; LBWT, lean body weight; MES,
mesenteric fat pad weight. PERI, peritoneal fat pad weight. See the legend of Table 1 for
path coefficients.
DOI: 10.1371/journal.pgen.0020114.t004

Figure 7. Structural Equation Model for Bone Geometry

Genetic effects have been grouped. Sign and magnitude of path
coefficients can be found in Table 5. Group Q1 includes loci with effects
that are specific to PCIR (Q4@66, Q5@84, Q6@32, Q7@50, and Q11@68).
Group Q2 includes loci have pleiotropic effects on PCIR and BWT (Q19@
50, Q1@20, and Q8@0). Group Q3 includes loci with pleiotropic effects on
PCIR and FLEN (Q10@64, Q5@52, Q15@10, and Q12@56). Group Q4 loci
are pleiotropic loci that affect all three traits (Q12@2, Q2@66, and Q3@
30). E1, E2, and E3 denote N(0,1) residual error.
DOI: 10.1371/journal.pgen.0020114.g007

Table 5. Structural Equations for the Bone Geometry Model

Variable Predictor Path

Coefficient

t-Statistic

PCIR BWT 0.43 16.1

FLEN 0.36 13.7

Q5@84 �0.08 �3.4

Q11@68 �0.27 �11.9

Q10@64 0.06 2.7

Q12@2 �0.07 �2.8

Q2@66 �0.09 �3.9

Q19@50 0.07 3.2

Q3@30 �0.10 �4.2

Q5@52 �0.08 �3.3

Q15@10 0.08 3.4

Q12@56 0.16 6.9

Q7@50 0.22 10.0

Q1@20 0.07 2.9

Q4@66 0.10 4.5

Q6@32 0.07 3.3

Q8@0 0.06 2.8

BWT FLEN 0.41 12.4

Q12@2 �0.23 �7.0

Q2@66 0.09 2.8

Q19@50 �0.17 �5.2

Q3@30 0.11 3.3

Q1@20 0.10 3.0

Q8@0 �0.12 �3.7

FLEN Q10@64 0.08 2.2

Q12@2 �0.08 �2.1

Q2@66 �0.08 �2.1

Q3@30 �0.10 �2.7

Q5@52 �0.21 �5.6

Q15@10 �0.15 �4.0

Q12@56 �0.18 �4.9

Standardized path coefficients represent the relative effect sizes that predictors have on a
response variable. The negative sign (�) of path coefficients indicates that higher trait
values are associated with the NZB allele. The values here correspond to the graphical
model in Figure 7.
BWT, body weight; FLEN, femur length; PCIR, midshaft periosteal circumference
DOI: 10.1371/journal.pgen.0020114.t005
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body size and adiposity. The SEM analysis reveals a short-
coming of standardized variables, such body mass index and
adiposity index, that are widely used in obesity research. This
suggests that a reexamination of obesity QTLs in the
literature may be worthwhile. The SEM is able to distinguish
QTLs that affect adiposity from those that affect body size,
whereas standardized measures could confound these two
distinct types of effects.

Specification of a good initial model is perhaps the most
important step in structural equation modeling of genetic
data. We have developed a strategy to specify the initial
model based on genome-wide QTL scans with conditioning
on intermediate phenotypes. For the data examined here,
these initial models fit reasonably well and final models were
obtained with minor or no refinements. Our model develop-
ment strategy incorporates elements of both exploratory and
confirmatory SEM, because the initial model structure has
been shaped by considering the same data that are used to
assess and refine the SEM. Goodness-of-fit criteria are most
informative regarding a lack of fit, and are subject to the
error of overfitting. In the models presented here, most of the
residual df derive from the known structure of linkage among
QTLs. We used additive genetic models, but also described
approaches to include dominance and epistasis (Figure S2).
Although these are important features of realistic genetic
models, they may artificially inflate the df and further

degrade the utility of an overall goodness of fit statistic.
Therefore, model selection statistics and likelihood ratio tests
are the most appropriate methods for assessing the structure
of the phenotype component of the model [30].
Sample size is an important consideration for both QTL

mapping and for structural modeling. We recommend using at
least 200mice in an intercrossmappingdesign to ensure that all
large tomoderate effectQTLaredetected. Structuralmodeling
relies on estimated variances and covariances and sample size
will determine the precision of these estimates. Guidelines
developed for SEM suggest that the sample size should be at
least five, and preferably ten times the number of variables in
themodel [4]. Realistic sample sizes can impose tight limitations
on the number of variables that can be studied simultaneously
using SEM methods. We have applied SEM methods to small
numbers of phenotypes and thus we were able to consider all
possible structures for the trait component of the SEM. This
may not be possible when larger sets of phenotypes are
considered. Extensions of this method to high dimensional
data, such as gene expression microarrays, may present
additional challenges. However, the same principles should
apply, which suggests that applications of causal inference in
high dimensional data [36] deserve careful consideration.
Awareness of the limitations of any model is essential to its

proper interpretation. Genetic mapping in line crosses
provides only coarse resolution, and any apparently singular

Figure 8. Model Comparison for the Bone Geometry Data

Model comparisons for the bone geometry data were derived from the model in Figure 7 by varying the relationships among body weight, femur
length, and periostial circumference.
DOI: 10.1371/journal.pgen.0020114.g008
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QTL may represent the composite effects of several tightly
linked polymorphic loci. Tight linkage may be misinterpreted
as pleiotropy. Important QTLs or epistatic interactions may
not be detected and critical physiological parameters may not
have been measured. When important components of a
system are missing, correlations or spurious effects may be
induced that would otherwise not be inferred. For example,
significant covariances among residual errors for all of the fat
pad traits suggest that nongenetic factors may be involved.
Food intake is a plausible source of the correlated variation.
Latent variables are useful when multiple traits are highly
correlated and are presumed to share a common causal factor
that is not directly measured, or one that is not measurable.

Structural equation modeling provides a powerful descrip-
tive approach to the genetic analysis of multiple traits. SEMs
allow characterization of pleiotropic and heterogeneous
genetic effects of multiple loci on multiple traits as well as
the physiological interactions among traits. With both
graphical and algebraic representations, SEMs provide an
intuitive and precise description of the genetic architecture
of a complex system.

Supporting Information

Figure S1. Genome Scans for Each of the Fat Pad Weights

Genome-wide scans for inguinal (A), gonadal (B), peritoneal (C), and
mesenteric (D) fat pad traits, based on a single QTL model. Through
(A) to (D), the top scan is unconditioned for lean body weight; the
middle scan is conditioned for lean body weight; and the bottom scan
is the difference in LOD scores between conditioning and uncon-
ditioning. ING, inguinal fat pad weight; GON, gonadal fat pad weight;

LBWT, lean body weight; MES, mesenteric fat pad weight and PERI,
peritoneal fat pad weight. Phenotypes are square root transformed.

Found at DOI: 10.1371/journal.pgen.0020114.sg001 (585 KB PDF).

Figure S2. Structural Equation Models for Individual Fat Pad traits

Structural equation models for inguinal (A), gonadal (B), peritoneal
(C), and mesenteric (D) fat pad traits. See Figure 4 legend for details.
For QTL-dominant effect, a positive sign (þ) is assigned when the
effect of heterozygous genotype is not different from that of
homozygous SM allele relative to homozygous NZB allele. Genetic
loci are parameterized using the Cockerham model.

Found at DOI: 10.1371/journal.pgen.0020114.sg002 (521 KB PDF).

Table S1. Path Analysis of the Inguinal Fat Pad Model

Found at DOI: 10.1371/journal.pgen.0020114.st001 (29 KB DOC).

Table S2. Path Analysis of the Gonadal Fat Pad Model

Found at DOI: 10.1371/journal.pgen.0020114.st002 (28 KB DOC).

Table S3. Path Analysis of the Peritoneal Fat Pad Model

Found at DOI: 10.1371/journal.pgen.0020114.st003 (28 KB DOC).

Table S4. Path Analysis of the Mesenteric Fat Pad Model

Found at DOI: 10.1371/journal.pgen.0020114.st004 (29 KB DOC).
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