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Abstract
We examined whether the degree to which a feature is uniquely characteristic of a category

can affect categorization above and beyond the typicality of the feature. We developed a

multiple feature value category structure with different dimensions within which feature

uniqueness and typicality could be manipulated independently. Using eye tracking, we

found that the highest attentional weighting (operationalized as number of fixations, mean

fixation time, and the first fixation of the trial) was given to a dimension that included a fea-

ture that was both unique and highly typical of the category. Dimensions that included fea-

tures that were highly typical but not unique, or were unique but not highly typical, received

less attention. A dimension with neither a unique nor a highly typical feature received least

attention. On the basis of these results we hypothesized that subjects categorized via a rule

learning procedure in which they performed an ordered evaluation of dimensions, beginning

with unique and strongly typical dimensions, and in which earlier dimensions received

higher weighting in the decision. This hypothesis accounted for performance on transfer sti-

muli better than simple implementations of two other common theories of category learning,

exemplar models and prototype models, in which all dimensions were evaluated in parallel

and received equal weighting.

Introduction
Effective behavior in the human environment requires the ability to form categories of objects,
people, and events and to link these categories with appropriate responses. Category members
differ along many dimensions and on many specific features. This study focuses on the prop-
erty of feature uniqueness and argues that it may play a very important role in category repre-
sentation. A unique feature is a feature that appears in only one category; it can be but need not
be a typical feature of the category. For example, in comparing equines and raptors, if a zebra
and an owl happen to be exemplars of corresponding categories, the stripes of the zebra and
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the catlike head of the owl are unique, though not typical features of their corresponding
category.

Unique features have received relatively little attention, likely due to limitations of standard
task design. In a typical category learning task in which discrete features are manipulated,
exemplars are formed by choosing one of two (or more) possible features within each feature
dimension. For example, imagine a category structure with 4 dimensions, possibly simulated
extraterrestrial animals which can vary in terms of their head, feet, hand, and body shape. The
possible values within each dimension (e.g., the head) can be denoted as 1, 2, or 3 (e.g., 1 could
denote a triangular head, 2 could denote a square head, and 3 could denote a circular head).
Thus, the configuration A1 (2 1 3 1) might describe a particular exemplar with different feature
values across the four dimensions. The subject’s task is to decide the most appropriate category
membership for the stimulus. Many category learning tasks include categories with only two
feature values (e.g., round or triangular) in each dimension (e.g., head shape) and are therefore
unable to examine the effect of feature uniqueness on learning, because if there are only two
feature values, features can be unique only if they are also deterministic. Family resemblance
category structures (such as the classic Medin and Schaffer “5–4” category learning task) [1–5]
and linearly and nonlinearly separable categories [6–7] typically adopt two feature values
within each dimension. Markman and Maddox (2003) utilized multiple feature values within
dimensions, but did not examine the effects of having a unique feature [8].

This study used a category structure (see Table 1) with 4 dimensions, each of which
included 3 potential feature values. Dimensions 2 (D2) and 3 (D3) included a unique feature,
defined as one that appears in only one category, that when present could be used to categorize
an exemplar with perfect accuracy. For D2 and D3, the unique features were feature 1 for cate-
gory A, and feature 2 for category B. It is important to note that a unique feature is not always a
prototypical feature for the category; unique features can be relatively rare yet diagnostic, as in
D2: the unique feature only appears twice out of the five stimuli from each category. We also
distinguished between strong and weak prototypical features: a strong prototypical feature is
not only the most typical, but has a relatively high frequency providing substantial probabilistic
evidence of category membership (in our category structure, the strong prototypical features
occurred on 3 of the 5 category exemplars); a weak prototypical feature is still the most typical,
but the overall frequency is lower (in our category structure, the weak prototypical features
occurred in 2 of the 5 category exemplars). As shown in Table 1, values 1 and 2 for D3 are both
unique (characteristic of only one of the categories) and strongly prototypical (characteristic of
3/5 of the stimuli). D2 included a unique feature that was only weakly prototypical: feature 1 is
unique to category A, and feature 2 to category B, but both are characteristic of only 2/5 of the
stimuli. Dimension 1 (D1) included strong prototypical features, for example, feature 1 in cate-
gory A which occurred in 3/5 of the stimuli, but no feature was unique to either category.
Dimension 4 (D4) included neither unique features, nor strong prototypical features. In sum-
mary, we used four kinds of features across 4 dimensions: D3 included features that were both
unique and strongly prototypical; D1 included only strong prototypical features; D2 included
features that were unique and weakly prototypical; D4 included neither strongly prototypical
nor unique features.

In this paper we further considered how rule based learning might occur within a category
structure with discrete dimensions. We hypothesized that subjects would evaluate the dimen-
sions in order of utility, which would be learned during trial and error category learning, and
that this order of evaluation would be reflected in eyetracking measures, including overall
number of fixations, length of average fixation, and initial eye fixation within a trial. Meier and
Blair [9] showed that subjects showed a bias towards optimizing eye fixations for the most effi-
cient categorization strategy (fewest total number of movements) even at the cost of evaluating
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some features with lower overall probabilistic information about category membership. In the
context of our task, we hypothesized that unique and strongly typical features would receive
higher weighting than other features. Specifically, we predicted that D3 should be the highest
weighted dimension because the unique and strongly typical features (1 in Category A, 2 in

Table 1. The multiple-value-feature category structure in the experiment.

Learning phase stimuli Dimension

D1 D2 D3 D4
Mean cue validity .60 .70 .80 .53

Category A

A1 2 1 3 1

A2 1 3 3 1

A3 1 3 1 2

A4 1 3 1 3

A5 3 1 1 3

Category B

B1 1 3 2 2

B2 2 3 2 2

B3 2 2 3 3

B4 3 2 3 1

B5 2 3 2 3

Transfer phase stimuli

T1 1 2 1 2

T2 1 1 2 2

T3 2 2 1 3

T4 2 1 2 1

Note. A1~A5 are the exemplars of category A, and B1~B5 are the exemplars of category B. These

exemplars are obtained from two prototypes, A0 (1311) and B0 (2322). D1~D4 are assigned to head,

wings, tail and feet across subjects using a Latin Square. D3 is referred to as the unique plus prototypical

dimension: for category A the unique value is 1, and for category B the unique value is 2. Only category A

exemplars can have the value 1, and only B exemplars can have the value 2. However, it is also possible

for either category to have the neutral feature value 3, which is equally diagnostic of both categories. D3

has a feature that is both unique and strongly prototypical. D1 is includes a strongly prototypical feature,

with 1 the prototypical value for category A, and 2 the prototypical value for B. D2 is designed to be a

unique but only weakly prototypical dimension, with 1 the unique value for category A, and 2 the unique

value for B. Dimension 4 includes only weakly prototypical features. Cue validity for each dimension was

calculated as the average proportion of stimuli in which the feature present correctly indicate category

membership. In all cases, feature value 3 were .5; for unique features values were 1.0, and for prototypical

features values were based on relative frequency in each category; for example, in Dimension 1, feature 1

has a .75 validity for category A and a .25 validity for category B. There are four pairs of similar exemplar

between leaning and transfer items, T1 (1212) & A3 (1312), T2 (1122) & B1 (1322), T3 (2213) & B3 (2233),

and T4 (2121) & A1 (2131), each pair has three overlap features. Our dimensional search hypothesis

predicts that the four transfer items, T1, T2, T3, and T4, will be classified as A in a probability sequence as

T1>T3>T2>T4. At the same time, Prototype theory (PT) and Exemplar theory (ET) will give the others

predictions on these four items. Because T1 has two features overlap with the A0 (1,3,1,1) but one with B0

(2,3,2,2), T2 has two features overlap with the B0 but one with A0, and T3 and T4 each has only one

feature overlap with A0 and B0, PT predicts that the A probability sequence will be T1>T4 = T3>T2;

Because T1 and T4 are similar with one of the A category items, while T2 and T3 are similar with one of the

B category items, ET predict that the sequence will be T1 = T4>T2 = T3.

doi:10.1371/journal.pone.0135729.t001
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Category B) provide substantial evidence for category membership; this feature alone can give
the correct category for 60% of the stimuli. At the other extreme, we predicted that D4 should
be the lowest weighted dimension because it has no unique features and only weakly typical
features. Dimensions 1 and 2 allow us to directly compare strongly prototypical but not unique
with unique but weakly prototypical features. We did not make strong predictions as to which
would be most important, since both possibilities are plausible. The strongly prototypical
dimension D1 could receive higher attention because useful information is available on a
higher proportion of stimuli (6 / 10, versus only 4 / 10 in D2). On the other hand, when the
unique feature is present in D2 it is more useful for categorization, as reflected in the higher
mean validity for D2 across stimuli (see Table 1 for cue validity calculations). All together, we
then predicted that the order of importance and hence evaluation would be [D3, D1 or D2,
D4]. In this study, we used eye tracking as well as accuracy as dependent measures of learning.
We take eye movement as a proxy for attention [5, 10]. Using eye tracking, we examined the
weighting of different dimensions in terms of total observation time and number of fixations.
We predicted that these measures would reveal highest attentional weighting for the dimen-
sions in the order stated above.

We furthermore examined whether other standard theories of categorization could account
for our results. There are three major theories or models of how categories are represented:
rule-based, prototype-based, and exemplar-based. Rule-based theories assume that category
learning is a process of discovering an explicit rule to maximize accuracy [11–13]. Dimensional
search is a type of rule-based theories, as examined in more depth in the discussion. Prototype-
based theories assume that stimuli are categorized on the basis of their similarity to category
prototypes stored in memory [14–16]. A category prototype is generally defined as the average
or most typical member of a category. Exemplar-based theories assume that the categorization
of a new exemplar is based on its similarity to the representations of all previously encountered
exemplars stored in memory [1, 2, 17]. A fundamental difference between dimensional sort
and prototype and exemplar theories is that the former can account for differential reliance on
a subset of dimensions or features, whereas both prototype and exemplar theories posit that all
features are evaluated and contribute to the final decision. We utilized transfer stimuli that dif-
fer in the predictions made by dimensional sort, exemplar theory and prototype theory.

Finally, for purposes of comparison with previous studies by Rehder and Hoffman [5], we
also fit two models to the eye-tracking learning data, the generalized context model (GCM)
and multiplicative prototype model (MPM), which are well-established models of exemplar
learning and prototype learning, respectively. Rehder and Hoffman [5] conducted an eye-
tracking study to test which model best fit attention allocation when learning the Medin and
Schaffer 5–4 category structure [1, 5]. They found that GCM better accounted for their results
than the MPM. This study adapted their eye-tracking and mathematical modeling methods to
examine whether GCM (ET) or MPM (PT) provides the best account of learning in our task.

Method

Subjects
The Institutional Review Board of South China Normal University approved this study. All
subjects provided their written and verbal consent to participate in this study. The subjects
were 42 undergraduate students at South China Normal University who were paid for their
participation. All had normal vision or better with corrective lenses. For the primary eye track-
ing analyses we removed data for two subjects because of an excessive number of eye-tracking
failures (greater than 10% of trials) in which the eye tracker could not locate the subjects’ pupil
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position (e.g., because of blinks). These subjects were retained for behavioral and individual
differences analyses.

Materials
Amultiple-value-feature category structure (see Table 1) was developed for this study. There
were two categories, A and B; A1~A5 are the trained exemplars of category A, and B1~B5 are
the exemplars of category B. Exemplars of each category were obtained from two prototypes,
A0 (1311) and B0 (2322), respectively. D1, D2, D3, and D4 are the four dimensions that each
could be assigned to the head, wings, tail, and feet. In addition, four new stimuli were presented
only in the transfer phase (T1, T2, T3, and T4), designed to allow us to discriminate between
exemplar, prototype, and dimension sort strategies.

The prototypical stimuli are shown in Fig 1 (similar to Rehder and Hoffman, [5]). The cen-
ter of each insect was a black rectangular body from where extended four black lines to four
body parts instantiating the four dimensions. Each dimension had three main values, as illus-
trated in Fig 1, the head: oval, pentagon, and diamond; wings: parachute, wing, and balloon;
tail: stinger, mallow, and maple; and feet: two, three, and five. A Latin square was used to assign
physical dimensions to abstract dimensions so that each physical dimension value (e.g., the 3
head shapes) and feature role (e.g., 1, 2, and 3 for each stimulus in Table 1) was paired equally
often across subjects. This balancing was essential, as subjects showed a tendency to look at
heads more often than other body parts, and that could have been confused with the desired
signal otherwise.

Procedure
The subjects were seated at a personal computer with a color screen. They were told that they
would see a series of drawings of bugs and asked to classify them into one of two mutually
exclusive categories. The experiment consisted of three phases: a learning phase, a filler phase,
and a transfer phase. In the learning phase, subjects learned the category via trial and error and
continued until they performed three consecutive blocks with a combined accuracy of at least
90% or until they completed a maximum of 28 blocks (280 trials). After achieving criterion, the
categorization task was terminated. In each block (10 trials), the order of stimulus presentation
was determined randomly. Each learning trial began with a drift correction in which the subject
fixated on a small cross at the center of the screen. The subjects classified the exemplar as
belonging to either the “A” or ‘‘B” category at their own pace by pressing the “F” and “J” keys
on the keyboard, respectively. The assignment of categories to the A or B labels was counterbal-
anced across subjects. After their response, the subjects were told whether they were correct,
and the correct category label and the feedback (correct or incorrect) remained on the screen
for 4 s. After the learning trials, there was a brief filler task in which they were asked to solve 10
simple arithmetic problems. Then all the subjects carried out the transfer task, in which they

Fig 1. Stimulus features used in the study. The leftmost stimulus illustrates one possible assignment for
the features (1111); the middle stimulus for the features (2222) and rightmost stimulus for the three remaining
features (3333). Assignment of specific features to abstract roles within each dimension was randomized and
counterbalanced across participants.

doi:10.1371/journal.pone.0135729.g001
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categorized four new stimuli (see Table 1). The task was programmed using the E-Prime soft-
ware (Psychology Software Tools, Pittsburgh, Pennsylvania), version 1.2.

Eye-tracking dependent variables
We recorded from a single eye with the Eyelink 1000 (Canada) eye-tracking system. The visual
angle in width and in height of the entire stimulus was approximately 15°. Four areas of interest
(AOIs) were defined as polygons encompassing the physical location of each of the four fea-
tures on the computer screen; each was approximately 6° in width and height. All fixations out-
side of those AOIs were removed, as were any fixations that occurred after the subjects made
their response. Several dependent variables were derived from the eyetracking data. The num-
ber of fixations is the average number of times a dimension is fixated on during a trial. The fixa-
tion time is the total number of milliseconds that a dimension is fixated on during a trial.Mean
fixation duration is the average number of milliseconds that the dimension was fixated across
all fixations within the trial. We also calculated the relative proportion of fixations for each
dimension, and the probability that each dimension was fixated at least once during a trial.
Finally, we identified the first fixation of each trial and calculated the relative frequency of first
fixation for each dimension.

Results
On average, subjects required 12 blocks (Mean = 11.67, SD = 6.67, range 3–28) to reach
criterion.

Our first eyetracking analyses examined fixations overall for each stimulus dimension across
training in order to establish if subjects preferentially viewed any of the dimensions, and if so,
whether the patterns of fixations were consistent with our predictions. Table 2 shows the mean
total fixation time, number of fixations, and mean fixation duration for each dimension across
all training trials and subjects. A test of within-subjects effects showed that the total fixation
time and number of fixations on the four dimensions were significantly different [F (3,37) =
17.78, p<.001; F (3,37) = 50.25, p< .001, respectively]; [mean fixation duration: not signifi-
cantly different, F(3,37) = 1.62, p>.05]; pairwise comparisons showed that the up-to-down
sequences of dimensions were D3>D1 = D2>D4 for fixation time and number of fixations.
These results indicated that the most attention was devoted to D3, and least to D4, with D2
and D1 intermediate. It should be noted that fixation number and fixation time are not inde-
pendent; the greatest predictor of fixation time is the number of fixations [18]. As shown in
Table 2, when mean fixation duration was calculated (as total fixation time divided by number
of fixations) individual fixation lengths did not differ significantly. Therefore, in subsequent
analyses we focused on measures based on number of fixation and order of fixation.

We then calculated the proportion of total fixations and total viewing time devoted to each
dimension. As shown in Fig 2a and 2b, this analysis revealed a similar pattern as in Table 2,

Table 2. Fixation time and fixations of a trial on different dimensions.

Total Fixationtime
(ms)

Number of Fixations Mean Fixation
duration (ms)

Mean SD Mean SD Mean SD

D1 408 446 1.39 1.16 253 196

D2 366 340 1.53 1.09 227 121

D3 742 675 2.79 1.61 264 161

D4 138 172 0.569 0.69 229 135

doi:10.1371/journal.pone.0135729.t002
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with D3 receiving almost half the fixations and fixation time, and D4 less than 10%, with D1
and D2 intermediate.

Having established that the fixation weightings reflected our predictions in the task overall,
we examined how these weightings developed across training. Fig 3 shows the number of fixa-
tions, and fixation probability on each trial for each dimension across blocks of 10 trials. To
construct Fig 3, we plotted performance through the 12th block, which was the mean number
of blocks required by the subjects to meet the criterion. Subjects who reached criterion earlier
than the 12th block do not contribute to the mean data on subsequent blocks. Fig 3 indicates

Fig 2. Eyetracking measures by dimensions, during Training (top, a-c) and Transfer (bottom, d-f). Proportion of fixations (a: Training phase; d:
Transfer phase) is the proportion that the dimension was fixated across all fixations, regardless of trial. Proportion of fixation time (b: Training phase; e:
Transfer phase) is the proportion of the total fixation time that the dimension was fixated, regardless of trial. Proportion of first fixation (c: data shown for
Training only) is the proportion of all the first fixations of each trial that the dimension was fixated. Fixation probability (f: data is shown here for Transfer only;
see Fig 3 for Training data) is the likelihood that the dimension was fixated at least once during each trial.

doi:10.1371/journal.pone.0135729.g002

Fig 3. Fixations to each dimension across blocks. (a) Fixation probability: the likelihood that the dimension was fixated at least once during each trial. (b)
Average total fixations per trial, including multiple fixations within a trial.

doi:10.1371/journal.pone.0135729.g003
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that during the first block all four dimensions were fixated on approximately equally often and
were equally likely to be fixated on each trial. Differences between dimensions were apparent
beginning in the second block. Fixation on D3 increased above the level devoted to the other
dimensions beginning in the second block, both in terms of total fixations, and probability of
being fixated at least once on each trial. During blocks 2 and 3, fixation of D1, D2, and D4 were
similar, but beginning in block 4 the total number of fixations on D4 began to drop below the
level of D2 and D1; beginning on blocks 5 and 6, the probability that D4 was fixated at all dur-
ing a trial began to drop. D1 and D2 received similar number of total fixations across all blocks,
but differed in terms of probability of at least one fixation on each trial, with D2 being more
likely than D1.

Transfer task data analyses
We calculated the proportion of A responses for each transfer item across subjects, as shown in
Fig 4, observed data. Overall, T1 was usually categorized as A, T2 and T4 as B, and T3 approxi-
mately equally often as each category. AWilcoxon signed ranks test was conducted to compare
pairs of the transfer items: T1 and T3 (z = 2.53, p< .05); T3 and T2 (t = 1.46, p>.05); and T2
and T4 (t = 2.33, p< .05). Fig 4 illustrates these observed results alongside the predicted results
from the exemplar theory (ET bars), prototype theory (PT bars), and dimensional sort (DS
bars).

The rationale for the predicted results from the exemplar, prototype and dimensional sort
strategies was derived as follows. Exemplar theory states that stimuli are categorized based on
similarity to specific learned exemplars. Transfer items T2 and T3 are highly similar (match on
3 out of 4 dimensions) to individual members of category B (T2 is similar to B1, and T3 is simi-
lar to B3), but they are not similar to any of the members of category A. As a consequence, T2
and T3 should be classified into category B. Similarly, exemplar theory implies that T1 and T4
should be classified into category A (T1 is similar to A3, and T4 is similar to A1). In prototype
theory, categorization is based on similarity to the prototype of each category. Two of the trans-
fer items (T3 and T4) are equally similar to both the A and B prototypes. As a consequence,
subjects should categorize these two items as category A or B equally often. T1 (1212) shares
two features with the A prototype (1311), but only one with the B prototype (2322), so subjects

Fig 4. Observed data and prediction of PT, ET, and DS for likelihood of classifying the item as
category “A” for each of the four transfer items. See Table 1 and Fig 1 for a description of each transfer
item.

doi:10.1371/journal.pone.0135729.g004
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should categorize it as A more often than as B; transfer item T2 (1122) shares two features as
the B prototype but only one with the A prototype, so subjects should categorize it as B more
often than A. Both simple exemplar and prototype theories assume that all features will be eval-
uated and contribute to the categorization decision. In contrast, dimensional sort proposes that
subjects will evaluate the dimensions of each category in order of utility, based on the unique-
ness and prototype strength of the features within each dimension: [D3, D1 or D2, D4]. As a
result, we assessed overall match of the stimulus to the learned exemplars with greater weight
for the earlier dimensions in the sequence. For example, dimensional sort categorizes T1 into
category A because it matches the unique and prototypical feature in D3 within category A on
D3, and the highly prototypical feature in D1 within category A.

Mathematical model fit analyses
To enhance comparability of the current study with previous research, we used the methods
developed by Rehder and Hoffman [5] to explore whether the prototype or exemplar model
provides a better account of categorization during learning. We fit a five-parameter version of
the GCM and the MPM to each subject’s learning data following the equations detailed in
Rehder and Hoffman [5]. The only change from their method was that we used a genetic algo-
rithm approach using matlab code developed in our laboratory to determine the degree of fit of
each model for each subject. We used the sum of squared deviations (SSD) as our goodness-of-
fit measure, in which smaller values indicate a better fit. Overall, the GCM was quantitatively
superior to the MPM. The average SSD for the MPM was statistically worse (M = .96, SD = .50)
than for the GCM [(M = .91, SD = .51), t (41) = 2.286, p< .05]. Of the 42 subjects, the majority
(27, or 64%) was better fit by the GCM, and only 1 (3, or 2%) was better fit by the MPM. For
the remaining subjects both models fit equally well.

Table 3 shows the attention weights based on the GCM and MPMmodels for each of the
four dimensions. A test of within-subjects effects performed separately on the GCM and MPM
dimension weights indicated a significant difference [F (37,3) = 7.652, p< .001] for the GCM
weights and for the MPM weights [F(37,3) = 25.576, p< .001]; pairwise comparisons showed
that the sequences of highest to lowest weighs for the dimensions were D3>D2 = D1>D4 for
GCM [t(36) = 2.294, p< .05; t(36) = .033, p>.05; t(36) = 1.918, p = 0.63] and D2>D1 = D3 =
D4 for MPM [t(36) = 5.933, p< .001; t(36) = .434, p>.05; t(36) = .486, p>.05]. Qualitatively,
the weights from the GCMmatch the eyetracking results better than the weights from the
MPM: both eyetracking and GCM attribute highest weight / most attention to D3, and least to
D4, whereas MPM predicts that D2 should have the highest attentional weighting, yet eyetrack-
ing results showed D2 was fixated less than D3. Rehder and Hoffman [5] also found that atten-
tion weights measured by the eye tracker were similar to the weights derived in the exemplar-
based GCM but not the prototype-based MPM.

Fixation order and individual differences analyses
We hypothesized that subjects will not only weight some dimensions more highly than others,
but that subjects will evaluate dimensions in order of utility. We argued that D3 would be

Table 3. Attention weight based on GCM and MPMmodel averaged across the fits to the observed
individual subject data.

Dimensions (D k) D1 D2 D3 D4

GCM (W k) 0.196 0.226 0.507 0.071

MPM (W k) 0.142 0.659 0.113 0.082

doi:10.1371/journal.pone.0135729.t003
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evaluated first because it had both a unique and highly typical feature. To examine fixation
order, we identified for each trial the first dimension that received a fixation. As shown in
Fig 2f, across subjects and trials, D3 was fixated first more than half the time, and D4 was
almost never fixated first.

Although overall subjects fixated on D3 first, there was variability across subjects. Of the 42
subjects, 23 fixated D3 first on at least 60% of the trials. However, 9 subjects fixated on D1 first
on more than 60% of the trials, and 9 subjects did not fixate first on any single dimension on
more than 60% of the trials. We examined whether these differences in initial fixation choice
were related to other measures of learning, including number of blocks to criterion, and how
well the subject’s individual data was fit by the GCM and MPMmodels, indicating a stronger
reliance on exemplar and prototype strategies, respectively. We found that the three groups did
not differ in blocks to criterion, indicating that all three patterns of initial fixation may be
equally compatible with successful learning. There was a significant effect of group on GCM
and trend toward a significant effect on MPMmodel fits, F (42, 2) = 3.443, p<0.05 and F (42,
2) = 2.784, p = 0.074, respectively. In both cases, post hoc tests showed that subjects who fixated
D1 first were fit better. Subjects who view D1 first may be less likely to use a rule-based strategy
focusing on individual dimensions, and more likely to evaluate stimuli via strategies in which
the stimulus is evaluated as a whole, as is the case for both exemplar and prototype strategies.

Discussion
How do people learn a new category and categorize new stimuli? In this research, we adopted a
multiple-value-feature category structure and used eye-tracking technology to assess dimen-
sion weighting during category learning. There are two primary findings supporting our argu-
ment that feature uniqueness affects dimension weighting beyond the degree of typicality.
First, D3, a unique and strongly typical dimension, received more fixations and longer observa-
tion times than strongly typical dimension D1, although both were equated for typicality. Sec-
ond, performance on the transfer items was also consistent with strong differential weighting
of D3 with respect to D1 and D2. This differential weighting of D3 can be explained rule based
strategies but not by basic exemplar or prototype theories. However, a more sophisticated
computational implementation of an exemplar-based theory, the GCM, provided a better fit
for the behavior and eye-tracking data than a computational model of prototype theories, the
MPM.

Weighting dimensions: Typicality and uniqueness
This study used both eyetracking and mathematical modeling methods and indicated that a
feature’s typicality and uniqueness were two major factors that determined the weight of each
dimension. D3 and D1 were equated for typicality, but differed in uniqueness; the stronger
weighting of D3 indicates an additional role for uniqueness beyond typicality alone. However,
it is less clear how subjects trade off between typicality and uniqueness. D1 was strongly proto-
typical but not unique, whereas D2 had a unique feature that was only weakly prototypical. If
unique cues are valued regardless of prototype strength, we would predict more attention to
D2, whereas if probabilistic strength of the stimuli is valued then we would predict more atten-
tion to D1. We found overall that the two were fixated equally often, and had similar mean fix-
ation times. Intriguingly, we found that although D1 and D2 received the same number of total
fixations, D2 was more likely to be fixated at least once on every trial in a block than D1. This
pattern of results indicates that subjects were more consistent about fixating D2 regularly
across trials. In contrast, D1 was ignored on a higher proportion of trials, but on trials that it
was fixated it received a higher number of multiple fixations. This pattern may indicate that
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the information in D1 received more attention on trials where it was potentially relevant, and
ignored on trials where it was not relevant.

Unique features are similar to what Chin-Parker and Ross [7] termed diagnostic features,
defined as features that are useful for determining category membership. They manipulated
diagnosticity on the basis of overlap of the prototypes used; features common to both proto-
types are highly typical of both categories, but not diagnostic of either category, whereas fea-
tures that differed across prototypes are diagnostic regardless of degree of typicality across
studied exemplars. However in their study diagnosticity was probabilistic and not determin-
istic; a single diagnostic feature did not on its own give sufficient information for categoriza-
tion. In our study, unique features when present gave deterministic information about the
correct category membership for the item.

Ordered search across dimensions
We hypothesized that in a multidimensional task subjects may determine category member-
ship by sequentially evaluating feature dimensions rather than assessing all dimensions on the
basis of similarity to a prototype or previously studied exemplars. For the task we used, we
argued that subjects would first evaluate D3, which contained a unique and prototypical feature
that could be used to determine category membership for 6 / 10 stimuli, then would evaluate
D1 and D2, and would finally evaluate D4. Our eyetracking measures were consistent with
these predictions, with D3 fixated first by most subjects on most trials, and receiving the high-
est number of fixations overall. Our transfer task results were also consistent with this ordering
and weighting, with subjects overall categorizing the stimuli primarily but not exclusively in
accordance with match on D3, and to a lesser degree on the basis of match with D1 and D2.
Our results are consistent with work by Blair, Chen, and colleagues [18,19] who found that
over time subjects primarily fixated on relevant features and did not fixate on irrelevant fea-
tures. These previous studies also found differences in order of fixation, with highly relevant
features fixated earlier in the trial, consistent with our finding of D3 being fixated first by a
high proportion of subjects.

Another question is whether subjects always evaluated all dimensions, or whether subjects
evaluated only as many dimensions as are necessary for determining category membership.
Our results support the latter. D3 was fixated on almost every trial, but the other dimensions
were fixated much less reliably. Late in learning the likelihood of viewing D4 drops to 10%, and
D1 and D2 are only viewed on half the trials. This pattern argues against exhaustive search and
supports the idea that subjects terminate evaluation as soon as possible. These results are con-
sistent with Meier and Blair [9] who found that subjects maximized efficiency of eye move-
ments, even to the extent of choosing as an initial fixation a feature that began an efficient
search path rather than choosing the most informative feature overall.

We argued that dimensions would be evaluated and weighted in order. This can be seen as a
rule-based theory consisting of a series of rules for each dimension that together result in deter-
mining category membership. The general idea that people may use rules as a basis for classifi-
cation is supported by a number of studies [11–13, 20–23]. For example, Fific, Little, and
colleagues have developed a logical rule model [24–26] to predict response-time (RT) data
from subjects trained to classify integral-dimension color stimuli into rule-based categories.
This model suggests that people make independent decisions about the locations of stimuli
along a set of component dimensions.

We hypothesized that dimensions would be evaluated in order of utility. This is similar to
strategies developed to account for decision making, sometimes termed lexicographic strategies
or heuristics. One such heuristic is called the “Take The Best” (TTB) heuristic [27, 28]; it
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proposes that cues are ranked in terms of utility or validity, and the decision maker evaluates
cues in order, stopping as soon as a cue is found that can be used to discriminate between the
options. It has its roots in the classic studies of Tversky [29], who proposed that intransitivity
during decision making could be due to use of a similar strategy. TTB does not require that the
subject assess and integrate across all cue values, and thus will fail if a combination of less valid
cues would in fact result in a more optimal decision. However, it has been shown to outperform
strategies that do integrate, particularly in situation where there are insufficient resources for
the more demanding integrative strategies [30]. Several recent studies have argued that subjects
may be able to flexibly switch between non-integrative and integrative strategies depending on
contextual factors [31,32]. In the domain of categorization, Juslin [33] found that subjects will
use an integrative strategy if it significantly improves accuracy, but will fall back on the simpler
strategy if accuracy levels are similar. In our study, subjects primarily weighted D3, but did not
solely rely on it, indicating some level of integration.

An open question about dimensional search and similar decision making tasks is whether
the same type of explicit or implicit representation underlies all stages of the decision process.
Explicit rules are those that typically can be verbalized by subjects, and recruit neural systems
underlying working memory and declarative memory [11, 34]. One possibility is that subjects
develop a complete series of verbalizable rules for all dimensions. However, as the number of
dimensions increases, the working memory load is likely to increase past the typical capacity of
subjects. At the other extreme, it is possible that categorization in this task is implicit in the
sense that subjects would not be able to verbally describe the strategy used for categorization.
Finally, an intermediate possibility would be that subjects gain verbalizable knowledge of one
or two dimensions, and after evaluating these dimension use non-verbalizable evaluation strat-
egies on the remaining dimensions.

Supporting Information
S1 Data. Three files zip to a file of rar format; rawall.xls is a raw data of eyetracking; fixa-
tion.sav is a SPSS data file made from rawall.xls; beh.sav is a behavor data file.
(RAR)
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