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Herpes simplex virus type-1 (HSV-1) amplicon vectors are 

versatile and useful tools for transferring genes into cells 

that are capable of stimulating a specific immune response 

to their expressed antigens. In this work, two HSV-1-derived 

amplicon vectors were generated. One of these expressed the 

full-length glycoprotein D (gD) of bovine herpesvirus 1 while 

the second expressed the truncated form of gD (gDtr) which 

lacked the trans-membrane region. After evaluating gD 

expression in the infected cells, the ability of both vectors to 

induce a specific gD immune response was tested in BALB/c 

mice that were intramuscularly immunized. Specific serum 

antibody responses were detected in mice inoculated with 

both vectors, and the response against truncated gD was 

higher than the response against full-length gD. These 

results reinforce previous findings that HSV-1 amplicon 

vectors can potentially deliver antigens to animals and 

highlight the prospective use of these vectors for treating 

infectious bovine rhinotracheitis disease.
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Introduction

Herpes simplex virus type 1 (HSV-1)-based vectors have 
several features that make them a very useful tool for 
efficient gene delivery. These vectors have the capacity to 
package and deliver up to 150 kbp of foreign DNA to the 
nucleus of most proliferating and quiescent mammalian 
cells [6]. The viral genome contains more than 80 genes of 
which approximately half are nonessential for viral repli-
cation and can therefore be deleted without disturbing 

virus production in cultured cells [7]. Neurotropic HSV-1 
can naturally infect a large number of cell types. Two types 
of vectors can be derived from HSV-1: amplicon vectors 
(vAs) and recombinant vectors [6]. The present study 
focused only on amplicon vectors. HSV-1 amplicons are 
packaged bacterial plasmids containing two non-coding 
genetic elements from HSV-1, an origin of DNA 
replication, and a packaging/cleavage signal (a) which 
allow amplicon replication and packaging into HSV-1 
particles [6]. In the presence of a suitable helper virus, or a 
helper virus genome, the amplicon plasmid (pA) is 
replicated and packaged as a DNA concatemer into HSV-1 
virions [9,22]. Therefore, a variable number of copies of 
the transgene sequence will be packaged depending on the 
size of the amplicon plasmid. This could result in the 
delivery of multiple copies of the foreign gene to each 
individual cell that is infected by an amplicon particle, thus 
resulting in high expression levels [2,8].
Bovine herpesvirus 1 (BHV-1) is a pathogen of major 

economic importance in the cattle industry worldwide. 
BHV-1 is the causative agent of respiratory infection 
(infectious bovine rhinotracheitis, IBR), genital infection 
(infectious pustular vulvovaginitis), conjunctivitis, and 
systemic infection leading to abortion and fetal death [29]. 
IBR also facilitates superinfection of cattle by bacterial 
agents, resulting in cases of bronchitis and/or pneumonia 
that are frequently fatal if not treated [21]. Vaccination is an 
effective method for controlling IBR but current vaccines 
have not been completely successful. Modified live vac-
cines may cause abortions, immunosuppresion, and the 
establishment of latent infection [26,27] while killed 
vaccines do not provide complete protection even following 
the administration of two doses [19]. Efforts are being made 
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to use viral vectors for efficient antigen delivery to cattle [11]. 
These strategies usually focus on three major envelope 
glycoproteins: glycoprotein (g)B, gC, and gD. These 
glycoproteins play key roles in the early steps of infection 
and are major targets for both cellular and humoral im-
munity [20]. One of the three glycoproteins, gD, has been 
proposed as the principal vaccine candidate since it 
induces a more consistent and stronger cellular immune 
response than the others. Additionally, antibodies against 
gD have the highest neutralizing titers [5,9]. This protein is 
a typical transmembrane glycoprotein of 417 amino acids 
that includes a signal sequence of 18 amino acids [22] 
which is cleaved during processing to yield a mature 
protein of 399 amino acids with a molecular mass of 71 
kDa [25]. 
The purpose of this study was to clone and express the 

full-length of gD and truncated form of gD (gDtr) which 
lacks the trans-membrane region of BHV-1 using an 
HSV-1 amplicon vector system, and to assess the immune 
response generated by inoculating a murine model with 
these vectors.

Materials and Methods

Cells
Vero-7b (Vero-derived cell line expressing ICP4/ICP27) 

[12], Gli36 (glioblastoma cell line) [10], and Madin-Darby 
bovine kidney (MDBK) cells were cultured in Dulbecco’s 
minimum essential medium (DMEM; Invitrogen, USA) 
supplemented with 10% fetal bovine serum (FBS; Invitrogen, 
USA), and 1% antibiotic-antimycotic solution (Invitrogen, 
USA) composed by 100 units/mL of penicillin G, 100 μg/mL 
of streptomycin, and 0.25 μg/mL of amphotericin B. 
Vero-7b cells were selected with 1 mg/mL of Geneticin 
(Invitrogen, USA) every three passages. Escherichia coli 
DH5α cells (New England Biolabs, USA) were used for 
cloning experiments and plasmid propagation. Bacterial 
strains were routinely grown at 37oC in Luria-Bertani broth 
(Difco, USA) or on agar containing medium and supple-
mented with 100 μg/mL ampicillin (MP Biomedicals, France).

Viruses
A defective cre-loxP based helper virus (HSV-1 LaLΔJ) 

was previously constructed in Alberto Epstein’s Laboratory 
[29]. This is a defective HSV-1 virus used as helper to 
produce amplicon vectors that was propagated and titrated 
in Vero-7b cells. Virus stock was produced in roller bottles 
containing 1 × 108 Vero-7b cells infected at multiplicity of 
infection (MOI) of 0.1 plaque forming unit (PFU)/cell in 
Medium 199 (Invitrogen, USA) supplemented with 1% 
FBS (M199 1% FBS). When a complete cytophatic effect 
(CPE; round cells forming grape-like clusters) was 
observed (48∼72 h post-infection), the virus was 
harvested and concentrated using the following technique. 

A first round of centrifugation at 1,000 × g for 10 min at 4oC 
was done to remove the cells. The pellet was diluted in 400 
μL of M199 1% FBS and frozen/thawed three times to 
break down the infected cells and facilitate the viral 
particles release .The pellet solution was clarified at 1,000 
× g for 10 min at 4oC and we kept the supernatant (named 
solution A). The supernatant from the first round 
containing viral particles was centrifuged at 18,000 × g for 
1 h at 4oC and the pellet obtained was resuspended with 
solution A. This final solution was aliquoted and stored at 80oC until use The titer of HSV-1 LaLΔJ stock was 
determined by a plaque assay [29]. Vero-7b cells were 
infected with serial dilutions of viral stock and incubated 
with M199 1% FBS and 1% carboxymethylcellulose 
(Sigma, USA). The HSV-1 LaLΔJ titer was calculated by 
counting plaques formed in the monolayer at 3 days post 
infection.
The BHV-1 strain (provided by Santa Elena Laboratory, 

Uruguay) used for an enzyme-linked immunosorbent 
assay (ELISA) and neutralization assays was propagated in 
MDBK cells. Confluent MDBK monolayers were inoculated 
with BHV-1 at a MOI of 0.05 PFU/cell and the cells were 
allowed to adsorb the virus for 1 h at 37oC before the 
addition of DMEM 1% FBS. Once a complete CPE was 
observed (48∼72 h post-infection), we proceeded to 
harvest and concentrate the BHV-1 virus stock as described 
above. In a second stage, BHV-1 production was filtered 
through 0.45 μm sterile filter and the virions were con-
centrated by centrifugation through a 25% sucrose cushion. 
Viral pellet was resuspended in PBS and titrated in MDBK 
cells by plaque assay [13].

Plasmids
Construction of pAgD BHV-1: Amplicon plasmid pAEUA2 

[1] containing one HSV-1 replication origin and one HSV-1 
package signal (a) was used to derive the amplicon plasmid 
pAgD BHV-1 expressing full-length gD (Fig. 1). In addition, 
pAEUA2 expressed enhanced green fluorescent protein 
(EGFP) under the control of the HSV-1 immediate- early 
promoter IE4/5, which was used to titrate the vectors and as 
reporter gene to identify infected cells. The construct also 
contained a multiple cloning site (MCS) surrounded by 
the human immediate-early cytomegalovirus (HCMV) 
promoter and SV40 polyadenylation site where the open 
reading frame (ORF) of interest was cloned. First, 
pAEUA2 was linearized and the blunt ends were ligated 
into the XbaI site at the MCS. The gD BHV-1 gene, obtained 
by digestion with EcoRI and HindIII from pCS133 (kindly 
provided by Dr. Cornell Fraefel, University of Zurich, 
Switzerland), was cloned into the XbaI site at the MCS of 
pAEUA2, thus producing the pAgD BHV-1 amplicon plasmid.
Construction of pAgDtr BHV-1: gDtr was amplified from 

pCS133 using the forward primer 5´-CTAGGCTA-
GCAGCTTATGCAAGGGCCGACAT-3  ́(modified from the 
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Fig. 1. Amplicon plasmids constructs. (A) Amplicon plasmid pAEUA2 contained sequences required for amplicon replication (Ori-S) 
and packaging (a). The multiple cloning site (MCS) located between the human cytomegalovirus promoter (HCMV) and a 
polyadenylation signal of simian virus 40 (pASV40) contained unique NotI, XbaI, and NheI restriction sites. The enhanced green 
fluorescent protein (EGFP) reporter gene was placed between the herpes simplex virus type 1 (HSV-1) immediate-early promoter 
(PIE4/5) and bovine growth hormone polyadenylation signal (pABGH). Amp R: ampicillin resistance, colE1: plasmid origin of replication.
(B) Schematic diagram of glycoprotein D (gD) of bovine herpesvirus 1 showing the signal peptide, ectodomain, and transmembrane 
region. (C) Schematic diagram of truncated form of gD.

primer dgDFRw [23] containing the gene start codon) 
and the reverse primer 5´-CTAGTCTAGATCAGTCGG-
GGGCCGCGGGCGTAG-3´ (modified from the primer 
1161RgD [3] containing one ectopic stop codon to delete 
the transmembrane region). This fragment was subcloned 
into the geneJET vector (Fermentas, USA) and finally 
cloned into pAEUA2 digested with NheI at the MCS. 
Plasmid constructions were confirmed by DNA restriction 
assays and sequence analysis.

Amplicon vectors 
Amplicon vector stocks were produced as previously 

described [29]. Briefly, 60∼70% confluent Vero-7b cells 
seeded in F75 flasks (Nunc, Denmark) were transfected 
with the amplicon plasmids using Lipofectamine and Plus 
Reagent (Invitrogen, USA) according to the manufacturer’s 
protocol. At 24 h, cells were superinfected with HSV-1 
LaLΔJ at a MOI of 0.3 PFU/cell and incubated in M199 1% 
FBS until a 100% CPE was observed. This stock (named 
P0) was harvested as described for HSV-1 LaLΔJ. To 
amplify the amplicon vector stocks, P0 was used to infect 
Vero-7b cells seeded in F175 flasks at a MOI 0.3 PFU/cell, 
thus generating P1 progeny. P1 was amplified further by 
infecting Vero-7b cells grown in roller bottles to generate a 
high-titer P2 amplicon vector stock. After each production, 
amplicon virus titers expressed as transducing units per mL 
(TU/mL) were determined by counting EGFP-expressing 
Gli36 cells while helper virus titers were determined by 
plaque assay in Vero-7b cells and expressed as PFU/mL.

Detection of BHV-1 gD expressed in Gli36 cells
An immunofluoresence assay was done to visualize the 

expression of gD from both plasmids. Gli-36 cells seeded 
in 8-well Lab-Tek chamber slides (Nunc, Denmark) were 
transfected with Lipofectamine and Plus reagent (Invitrogen, 
USA) either with pAEUA2 (control), pAgD BHV-1, or 
pAgDtr BHV-1 according to the manufacturer’s recom-
mendations. After 24 h, the cells were washed twice with 
PBS and fixed with 3% paraformaldehyde in PBS for 20 min 
at room temperature. The cells were then permeabilized 
with 1% Triton X-100 in PBS for 5 min. The slides were 
incubated for 2 h at room temperature with blocking buffer 
[1% bovine serum albumin (BSA) and 0.5% Tween 20 in 
PBS] containing 3% FBS, and then for 1 h with the 
monoclonal antibody 1106 diluted 1 : 10 [17] (kindly 
provided by Dr. Cornel Fraefel, University of Zurich, 
Switzerland) in blocking buffer plus 1% FBS. Goat 
anti-mouse IgG H+L Alexa Fluor 555 (Invitrogen, USA) 
was used as the secondary antibody. The slides were 
incubated with the secondary antibody diluted 1 : 2,000 in 
the same solution as the primary antibody for 45 min. 
Subsequently, the slides were washed three times with PBS 
containing 10 mM glycine and mounted in glycerol 
containing 1,4-diazabicyclo [2.2.2] octane (Sigma, USA) 
and 4´, 6-diamidino-2-phenylindole (Sigma, USA) to stain 
nuclei.

Analysis of immune response in mice infected with 
vAgD-BHV-1 and vAgDtr-BHV-1 amplicon vectors
Six 8-week-old BALB/c female mice were bred and 

maintained under standard conditions in the specific 
pathogen-free animal facilities of the Institut Pasteur of 
Montevideo, Uruguay. Four groups of three mice were 
injected intramuscularly with 5 × 105 TU/mL of amplicon 
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Fig. 2. Glycoprotein D (gD) and truncated form of gD (gDtr) 
expression in Gli36 cells. The upper panels show Gli36 cells 
transfected with pAgD BHV-1 (A), pAgDtr BHV-1 (B), and 
pAEUA2 (C). The lower panels show Gli36 cells infected with 
vAgD BHV-1 (D), vAgDtr BHV-1 (E), and vAEUA2 (F). gD 
glycoprotein was detected by immunofluorescence using the 
monoclonal antibody 1106 and secondary antibody anti-mouse 
IgG H+L Alexa Fluor 555 (red). EGFP expression was observed 
and appeared green. Scale bar = 50 μm.

vector. The different groups received (a) PBS; (b) the 
control amplicon vector pAEUA2 which expressed no gD; 
(c) amplicon vector pAgD BHV-1 expressing full-length 
gD; and (d) amplicon vector pAgDtr BHV-1 expressing 
gDtr. All groups were boosted at 21 days post-vaccination.
Mice blood was collected on days 0, 21, 36 and 43 

post-vaccination by a submandibular route and the sera 
were stored at 20oC until use. BHV-1-specific antibody 
titers were determined by an ELISA using BHV-1 virus 
particles as the antigen. Ninety-six-well immunoplates 
(Dynex Technologies, USA) were coated with 50 μL 
(corresponding to 2 × 104 PFU/well) of the virus diluted in 
PBS or a control preparation in PBS for 16 h at 4oC. A 
saturation step was performed by adding 200 μL/well of 
PBS-1% BSA and incubating the plates for 90 min at room 
temperature. The plates were washed three times with 
PBS-0.05% Tween 20. Mice sera (50 μL/well) were 
serially diluted two-fold in PBS-0.05% Tween 20-0.1% 
BSA. Serum from mice injected with PBS and pAEUA2 
vector were used as controls. The positive control was 
ascitic fluid from monoclonal antibody 4∼214 (diluted 
1 : 3,000) developed against IBR gD (kindly provided by 
Dr. Cristina Seki from CEVAN-CONICET, Argentina).
After 1 h of incubation at 37oC, the plate was washed 

three times with 0.05% Tween 20 in PBS and the plate was 
incubated with biotinylated goat anti-mouse IgG (GE 
Healthcare, UK) diluted 1 : 5,000 for 1 h at 37oC. The plate 
was then washed three times with 0.01% Tween 20 in PBS 
followed by a 30-min incubation in the dark with 
streptavidin-HRP (GE Healthcare, UK) diluted 1 : 500 in 
0.1% BSA in PBS. After five washes with PBS, the 
reaction was developed using o-phenylenediamine-H2O2 
(Sigma, USA) in citrate-phosphate buffer (pH 5) during 20 
min at room temperature. The reaction was stopped by 
addition of 50 μL 3N H2SO4 and the absorbance was 
measured at 492 nm in a Varioskan Flash microplate reader 
(Thermo Scientific, USA). Antibody titer was expressed as 
the reciprocal of the highest dilution resulting in a reading 
of two standard deviations above the control value. 
BHV-1 glycoprotein D-specific antibody responses were 

evaluated by a Western immunoblot using semi-purified 
BHV-1 as antigen. Briefly, the antigen was incubated in 
sample buffer (63 mM Tris-HCl, 2% SDS, 10% glycerol, 
0.01% bromophenol blue, and 0.1M β-mercaptoethanol) 
and boiled for 5 min. The proteins were separated on a 12% 
acrylamide SDS-polyacrylamide electrophoresis gel. The 
proteins were then transferred to a mixed ester nitrocellulose 
membrane (Hybond-C; GE Healthcare, UK) and subjected 
to Western blotting in order to detect BHV-1 gD. A pool of 
mouse sera diluted 1 : 20 was used as the primary antibody 
which was detected with a peroxidase-conjugated secondary 
anti-mouse antibody (Santa Cruz Biotechnology, USA). 
Both primary and secondary antibodies were diluted in 
BSA 3% Tween 20 0.3% in PBS and incubated for 1 h at 

room temperature. Finally, the bands were visualized using 
SuperSignal West Pico chemiluminescent (Pierce, USA) 
substrate after exposure to radiographic film (GE Healthcare, 
UK).
The neutralizing activity of mouse serum antibodies was 

analyzed by a plaque reduction assay in MDBK cells. The 
cells were seeded in 48-well plates at a density of 1 × 105 
cells/well in DMEM supplemented with 10% FBS. The 
following day, 25 μL of mouse sera were incubated with 25 μL (20 PFU) of BHV-1 for 1 h at 37oC. Positive (guinea pig 
hyperimmune serum against BHV-1) and negative (guinea 
pig non immune serum) controls were included. The 
MDBK cells were washed with PBS and incubated with 
50  μL of mouse sera incubated with BHV-1 for 1 h at 37oC. 
After this, fresh M199 1% FBS and 1% carboximethil-
cellulose were added. Two days later, the plates were fixed 
with 4% formaldehyde in 0.15 M NaCl and stained with 
crystal violet. Plaques in the plates were counted. The 
neutralization antibody titers were expressed as the highest 
dilution of serum that reduced the number of plaques by 
50% relative to the virus control.
For statistical analysis, Student’s t-test was performed using 

Stata/SE 10.0 (Stata Corporation, USA). A p value ＜0.05 
was considered significant.

Results

Generation of amplicon plasmids expressing gD and 
gDtr BHV-1
Two different amplicon plasmids expressing two forms of 

BHV-1 gD were generated using the plasmid pAEUA2 [1] 
as described in Materials and Methods. Briefly, the whole 
or the truncated ORF of each form of gD were cloned 
downstream of the constitutive promoter HCMV of 
pAEUA2 to generate the plasmids pAgD BHV-1 and 
pAgDtr BHV-1, respectively (Fig. 1). pAgD BHV-1 
expressed the entire coding region of BHV-1 gD, allowing 
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Fig. 3. Antibody response against BHV-1 gD in immunized 
BALB/c mice. Six 8-week old mice were vaccinated twice at 
21-day intervals with vAEUA2, vAgD BHV-1, and vAgDtr 
BHV-1. Groups of three mice were injected intramuscularly with
5 × 105 TU/mL of amplicon vector. In panel A, the bars represent 
the antibody titers for mice treated with (a) the control amplicon
vector vAEUA2 expressing no gD, (b) amplicon vector vAgD 
BHV-1 expressing full-length gD, and (c) amplicon vector 
vAgDtr BHV-1 expressing gDtr. Data represent the mean ± SD 
for two independent experiments. *p ＜ 0.05 and **p ＜ 0.01 
(determined by Student’s t-test relative to the control). In panel B,
the reactivity of mice sera was tested by Western blotting. Serum
pool (day 36 p.i.) of mice immunized with vAgDtr BHV-1 (Lane 
a), vAgD BHV-1 (Lane b), or vAEUA2 (Lane c) were evaluated.
A pool of pre-immune mouse serum (Lane d) was used as a 
negative control. Positions of molecular weight markers are 
indicated on the left of the image.

the glycoprotein to be expressed as a membrane anchored 
protein. The gD form expressed by pAgDtr BHV-1 lacked 
the trans-membrane region and should have therefore been 
secreted from the vector-infected cells.
To assess whether these plasmids behaved as expected, 

Gli36 cells were transfected with each plasmid and gD 
expression was evaluated by indirect immunofluorescence 
(Fig. 2). pAgD BHV-1 led to the efficient expression of gD 
in Gli36 cells at 24 h post-transfection. The expressed 
protein was localized in the cytoplasm around the nucleous 
and at the plasma membrane as expected (Fig. 2A). In 
contrast, gDtr, the truncated form of gD expressed by 
pAgDtr BHV-1, was present in the cytoplasm and formed 
aggregates that are characteristic of secreted proteins (Fig. 
2B). Since gDtr was not detected in the plasma membrane, 
we concluded that it was being secreted out of the cell. We 
were not able to perform a Western blot analysis as our 
monoclonal antibodies did not work for this assay. No gD 
was observed in cells transfected with the control pAEUA2 
plasmid (Fig. 2C). In all cases, cells expressing gD also 
expressed the reporter protein EGFP.

Generation of amplicon vectors expressing gD and 
gDtr BHV-1
The amplicon plasmids described above were used to 

generate two amplicon vectors, vAgD BHV-1 and vAgDtr 
BHV-1. The backbone plasmid pAEUA2 was used to 
generate a control vector that expressed EGFP but not gD. 
The reporter gene EGFP, expressed by the three vectors, 
permitted us to titrate the amplicon vector stocks by 
counting green fluorescent cells with a fluorescence 
microscope. EGFP expression also allowed us to identify 
the infected cells. All the vector stocks produced had titers 
between 107∼108 transducing units/mL.
Gli36 cells were infected at a MOI of 1 PFU/cell with the 

vectors. As shown in Figs. 2D and E, vectors encoding gD 
expressed the expected forms of the glycoprotein in a 
pattern identical to that observed in cells transfected with 
the corresponding amplicon plasmids. No gD was observed 
in cells infected with the control vAEUA2 vector (Fig. 2F). 
The same results were obtained with MDBK cells (data not 
shown). Taken together, these results show that the 
amplicon vectors can be used to efficiently express the 
desired antigenic forms of BHV-1 gD.

Immune response in mice inoculated with amplicon 
vectors expressing gD
The ability of exogenously expressed gD and gDtr to elicit 

antibody responses following intramuscular inoculation of 
mice was evaluated by an ELISA. As shown in Fig. 3A, 
both gD and gDtr amplicon vectors induced gD-specific 
IgG responses. At 21 days post-infection (dpi), the levels of 
anti-BHV-1 antibodies were very similar between mice 
inoculated with gD or gDtr. Following administration of a 

boost at day 21, the antibody response increased significantly 
compared to that of the control and was much higher for mice 
that received gDtr than ones given gD (36 and 43 dpi, and 15 
and 21 days after the second dose administration, res-
pectively).
Additionally, specific anti-BHV-1 gD antibodies were 

detected in the sera from mice immunized with vAgD 
BHV-1 and vAgDtr BHV-1. As show in Fig. 3B, the pool 
sera from day 36 p.i. recognized a band with a size expected 
for glycoprotein D (71 kDa). The herpes amplicon vector 
containing the gDtr (vAgDtr BHV-1) produced the highest 
level of antibody response in correlation with the antibody 
titer determined by an ELISA. The neutralizing activity 
measured by reduction plaque assay showed that mice sera 
were unable to protect against BHV-1 infection. 

Discussion

In the present study we constructed HSV-1 amplicon 
vectors expressing either BHV-1 gD or gDtr proteins and 
evaluated the immunogenicity induced by these constructs 
in mice. We cloned the entire gD gene of BHV-1 into the 
pAEUA2 amplicon genome. In parallel, we cloned a gDtr 
lacking the transmembrane anchor which would allow 
secretion of gD into the extracellular environment.
Both forms of the gD proteins were detected in cells 

transfected with the amplicon plasmids and cells infected 
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with the amplicons vectors. Furthermore, the distribution 
patterns for each form of gD, resulting from transfection of 
plasmids or infection with the vectors, greatly differed. 
The ELISA results showed that vectors vAgD BHV-1 and 
vAgDtr BHV-1 induced the production of statistically 
significant levels of anti-BHV-1 antibodies in BALB/c 
mice. This response was against BHV-1 gD as confirmed 
by Western blotting. This result was expected since gD 
dominant epitopes are maintained in the gDtr protein [25]. 
In particular, antibody levels generated by vAgDtr BHV-1 
were higher than those generated by vAgD BHV-1 after the 
second dose. This response could indicate that the truncated 
form of gD was properly secreted into the extracellular 
medium and became more easily detectable by the immune 
system, resulting in an enhanced humoral response. 
Moreover, we cannot discard the possibility that the 
different level of antibody response in the mice was the 
result of higher protein expression from vAgDtr BHV-1 
compared to vAgD BHV-1. It is also important to note that 
we observed unspecific low reactivity with other proteins 
in all sera. This can be explained by the partial purification 
of BHV-1 antigen carrying cell proteins that reacted with 
the serum from mice.
Consistent with our results, previous studies have shown 

that plasmid DNA encoding gDtr elicits a greater immune 
response than the same plasmid vector encoding gD in 
mice and cattle immunized via an intradermal route 
[1,16-18,27]. However, the response against gD and gDtr 
was similar in both mice and cattle when the animals were 
immunized by an intramuscular route [14-16,24]. Using 
recombinant viral vectors expressing BHV-1 gD, several 
reports have demonstrated an effective immune response 
against BHV-1 [5,6,13]. However, there are no studies 
using viral amplicon vectors, which have the advantage of 
expressing no viral proteins other than the desired antigens. 
Furthermore, recombinant bovine adenovirus type 3 used to 
express gD and gDtr in cotton rats immunized intranasally 
was found to induce a lower humoral immune response to 
gD than to gDtr [28]. Yet, intradermal immunization of 
cotton rats with recombinant human adenovirus type 
5 (HAV-5) elicits a lower humoral immune response to gDtr 
than gD [18]. Therefore, as suggested by previous research, 
the ability of gD or gDtr to induce an effective immune 
response seems to depend on the route of immunization and 
the type of vector.
Antibodies produced by immunization with the vectors 

showed no neutralizing activity. This is in agreement with 
a recent study in which rabbits were immunized with a 
bovine herpesvirus 4 vector expressing BHV-1 gD ectodomain 
and bovine viral diarrhoea virus (BVDV) glycoprotein E2 
ectodomain [4]. The rabbits in this investigation produced 
neutralizing antibodies against BVDV but not BHV-1 [4]. 
This response may also be related to the route of immu-
nization.

In summary, our results suggest that HSV-1-based amplicons 
could be good candidates for vector vaccines against IBR. 
However, further studies are needed to identify the best 
routes of immunization with these vectors. It would also be 
interesting to evaluate the dose required and cellular 
responses produced both in mice and cattle, the natural hosts 
of IBR.
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