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1  |  INTRODUC TION

The prevalence of diabetes mellitus (DM) is increasing, particularly 
among the elderly population.1 As a consequence, diabetic ne-
phropathy (DN), a common complication of DM, is more frequently 
observed in aging patients with DM. A prospective observational 
cohort study reported that 63% of patients had an estimated glo-
merular filtration rate below 60 mL/min/1.73m2.2 Tubulointerstitial 
injury plays a critical role in the initiation and progression of DN.3 
High glucose, a risk factor for DN, can cause damage to renal tubular 

epithelial cells.4 It is widely acknowledged that high glucose can ac-
celerate the aging process of renal tubular epithelial cells, thereby 
leading to renal interstitial injury in DN.5 However, for frail older pa-
tients with DN, merely controlling glycemic levels provides limited 
benefits.6 Therefore, investigating the molecular mechanism under-
lying tubular cell injury induced by high glucose may facilitate the 
development of an effective therapeutic approach for DN.

Long noncoding RNAs (lncRNAs) have emerged as crucial 
players in the initiation and progression of DN and hold potential 
as biomarkers and therapeutic targets.7,8 Unlike kidney biopsies, 
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Abstract
Objective: To investigate the involvement of HOX transcript antisense RNA (HOTAIR) 
in the injury of renal tubular epithelial cells induced by high glucose.
Results: In high glucose- induced HK- 2 cells, the expression of HOTAIR was upregu-
lated, resulting in suppressed cell proliferation. Meanwhile, HOTAIR upregulates the 
expression of pro- apoptotic proteins Bax and cleaved caspase- 3, while downregulat-
ing the expression of the anti- apoptotic protein Bcl- 2. Luciferase reporter assays re-
vealed that HOTAIR could target miR- 126- 5p. Additionally, it was found that the PI3K/
Akt signaling pathway serves as a downstream target of miR- 126- 5p. Knockdown of 
HOTAIR relieved apoptosis, whereas further inhibition of miR- 126- 5p led to apoptosis 
in HK- 2 cells.
Conclusions: HOTAIR plays a regulatory role in mediating high glucose- induced inju-
ries in HK- 2 cells, specifically affecting apoptosis and cell viability, via the miR- 126- 5p/
PI3K/Akt signaling pathway.
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the noninvasive nature of lncRNAs makes them particularly valu-
able in elderly patients to assess DN progression. HOX transcript 
antisense RNA (HOTAIR) has been identified as a trans- acting 
intergenic lncRNA. Previous studies have revealed HOTAIR's piv-
otal regulatory role in cancer, influencing cell growth, migration, 
invasion, and apoptosis.8– 11 More recently, studies have uncov-
ered additional regulatory functions of HOTAIR in endometrial 
fibrosis12 and osteoarthritis.13 Abnormal expression of HOTAIR is 
associated with fat metabolism, vascular calcification, and other 
diabetes- related complications.14,15 Bioinformatic analysis has in-
dicated that miR- 126- 5p, a potential biomarker for DN,16– 18 may 
be targeted by HOTAIR and exhibits downregulated expression 
in DN- related mesangial cells,19 suggesting the involvement of 
HOTAIR in DN. However, the role of HOTAIR in regulating miR- 
126- 5p and its impact on renal tubular epithelial cell injury in DN 
remains to be elucidated.

In this study, our objective was to examine the involvement 
of HOTAIR in the injury of renal tubular epithelial cells induced 
by high glucose. To test this, we utilized HK- 2 cells to establish 
a model of hyperglycemic- induced renal tubular epithelial cell in-
jury. Subsequently, our study focused on elucidating the regula-
tory mechanism of HOTAIR and the involvement of miR- 126- 5p in 
the injury process. Additionally, we aimed to investigate whether 
miR- 126- 5p could mediate the PI3K/Akt signaling pathway and 
contribute to HK- 2 injury.

2  |  MATERIAL S AND METHODS

2.1  |  Materials

Human renal cortex proximal convoluted tubule epithelial cells HK- 2 
(Procell Life Science & Technology Co., Ltd.); DMEM- 12 medium 
(KGM12500S; KeyGen bioTECH); Lipofectamine Reagent 3000 
Transfection (L3000015; Invitrogen); Cell Counting Kit- 8 (KGA317; 
KAIJI Biotech); Reporter plasmid pmirGLO, Plasmid Extraction Kit 
(DP103- 02; TIANGEN Biotech); Annexin V- FITC/PI Apoptosis Kit 
(AP101- 100- kit; MULTI SCIENCES); internal reference antibody: 
rabbit anti- β- actin (AF7018, Affinity); target primary antibodies: 
anti- p- PI3K (rabbit, AF3241, Affinity), anti- p- AKT (rabbit, AF0832, 
Affinity), anti- Bax (rabbit, AF0120, Affinity), anti- Bcl- 2 (rabbit, 
AF6139, Affinity), and anti- Cleaved Caspase- 3 (rabbit, AF7022, 
Affinity).

2.2  |  Cell culture and cell transfection

HK- 2 cells were divided into five groups as follows: the normal 
control (control group), the c (HG 60 mmol/L group), the model 
with small- interfering RNA (siRNA)- NC treatment group (HG 
60 mmol/L + NC group), the model with HOTAIR siRNA treat-
ment group (HG 60 mmol/L + siRNA group), and the model with 
HOTAIR siRNA and miR- 126- 5p inhibitor treatment group (HG 

60 mmol/L + siRNA + inhibitor group). Hk- 2 cells were cultured using 
the medium containing the treatments mentioned above.

In the progression of siRNA transfection, HK- 2 cells were initially 
cultured with a serum- free medium. Two mixtures later, 125 μL Opti- 
MEM + 5 μL Lipofectamine 3000 and 125 μL Opti- MEM + 0.25 nmol 
siRNA, were added respectively in two tubes and incubated for 
5 minutes. Then, they were mixed with the two reagents, we waited 
for another 15 minutes, and added them to the medium. Four to 
6 hours later, 1 mL 20% serum- supplemented culture medium was 
added to the medium.

2.3  |  Cell Counting Kit- 8

Cell Counting Kit- 8 (CCK- 8; KGA317; KAIJI Biotech) was used to test 
cell viability. HK- 2 cells (3 × 103 cells/well) were seeded in a 96- well 
plate. When HK- 2 cells adhered to the dish, 100 μL/well high- glucose 
mediums of different concentrations (30, 45, 60, 75, and 90 mc) were 
added to the medium. Seventy- two hours later, 10 μL CCK- 8 reagent 
was added to each well for another 1 hour of incubation. Finally, de-
tecting the optical density values at 450 nm with a microplate reader.

2.4  |  Flow cytometry

HK- 2 cells (1 × 106) were resuspended by 300 μL Binding Buffer, pre-
pared by diluting 5 × Binding Buffer with double distilled water. Sub-
sequently, 5 μL Annexin V- FITC and 10 μL PI were added into wells 
and incubated for 10 minutes at room temperature, and protected 
from light exposure. Finally, 200 μL pre- cooled 1 × Binding Buffer was 
added and the mixed sample was processed for flow cytometry assay.

2.5  |  Real- time quantitative polymerase chain 
reaction analysis

RNA isolation was performed using a DNA/RNA Extraction Kit 
(DNA/RNA Extraction Kit). A TaqMan RNA Reverse Transcription 
Kit (Thermo Fisher) was used for the RNA reverse transcription of 
cDNA. Quantitative polymerase chain reaction was performed on a 
7500 Real- Time PCR System. β- actin served as the internal control. 
The relative expression of the target gene was calculated with the 
2−∆∆Ct method. The primers are listed in Table 1.

2.6  |  Western blot

Scraping the HK- 2 cells with a cell scraper into a marked tube by 
a pipette and then removing the deposit at 2000 rpm for 10 min-
utes. Total proteins were collected from the supernatant and the 
protein concentration was determined by a BCA Protein Assay Kit. 
The proteins were denatured, loaded, and subjected to sodium do-
decyl sulfate- polyacrylamide gel electrophoresis for 2 hours. Then, 
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transferring the separated proteins to a polyvinylidene difluoride 
(PVDF) membrane at 300 mA for 80 minutes, and then incubat-
ing with antibody at 4°C overnight, followed by hybridization with 
the secondary antibodies for 2 hours. The PVDF membrane was 
exposed to electrochemiluminescence reagents and protein bands 
were detected on the Gel Imaging System. Gray values of the bands 
were measured by Image- J software.

2.7  |  Luciferase reporter assay

HOTAIR and mutant HOTAIR 3'- UTR reporter vectors were pur-
chased from BoYuan. Luciferase reporter vectors were delivered 
into 1 × 106 HK- 2 cells at 70% confluence, along with the treatment 
of five groups. After 2 days, the cells were collected to analyze the 
luciferase signals using a dual- luciferase assay system (Promega).

2.8  |  Statistical analysis

The data were presented as mean value ± SD . One- way analysis of 
variance and unpaired t test were adopted for multiple- group com-
parisons, with P < 0.05 considered to be statistically significant. 
Data processing of the study was performed using Graph Prism 
version 9.0.

3  |  RESULTS

3.1  |  LncRNA HOTAIR exhibits upregulated in 
hyperglycemic- induced HK2 cells injury

To establish the high- glucose model, we set a concentration gradi-
ent of glucose and found that 60 mmol/L glucose could inhibit the 
proliferation of HK2 cells, depicted in Figure 1A. Under 60 mmol/L 
glucose, the level of lncRNA HOTAIR significantly increased, as pre-
sented in Figure 1B.

3.2  |  Hyperglycemic- induced HK2 cells injury 
depends on HOTAIR

To identify whether hyperglycemic- induced injury depended on 
HOTAIR, we knocked down HOTAIR in HK2 cells. The efficiency of 
siRNA- mediated interference was presented in Figure 2A. CCK- 8 
assay showed that inhibition of lncRNA HOTAIR rescued the pro-
liferation of HK2 cells, as illustrated in Figure 2B. Furthermore, the 
apoptosis rate of HK2 cells significantly increased with inhibiting 
LncRNA HOTAIR, displayed in Figure 2C,D. Simultaneously, West-
ern blotting showed that silencing of HOTAIR led to a reduction in 
Bax and Cleaved Caspase- 3 proteins while elevating the levels of 
Bcl- 2 proteins, as revealed in Figure 3B.

Forward primer Reversed primer

β- Actin TGGCA CCC AGC ACA ATGAA CTAAG TCA TAG TCC GCC TAG AAGCA

HOTAIR ATAGG CAA ATG TCA GAG GGTT ATTCT TAA ATT GGG CTG GGTC

Bax GGATG CGT CCA CCA AGAA AAAGT AGA AAA GGG CGA CAAC

Bcl- 2 GAGGA TTG TGG CCT TCTTTG GCCGG TTC AGG TAC TCAGTC

Caspase- 3 AGCGA ATC AAT GGA CTCTGG GACTT CTA CAA CGA TCC CCTCT

U6 CTCGC TTC GGC AGC ACA AACGC TTC ACG AAT TTGCGT

miR- 126- 5p GCGCG CAT TAT TAC TTTTGG AGTGC AGG GTC CGA GGTATT

Note: U6 snRNA and β- actin were set as controls for miRNA qPCR and qPCR, respectively.
HOTAIR, HOX transcript antisense RNA; miRNA, microRNA; qPCR, quantitative polymerase chain 
reaction; snRNA, small nuclear RNA.

TA B L E  1  The sequences of primers.

F I G U R E  1  The expression level of HOTAIR increased in renal cell injury induced by high glucose. (A) CCK8 assay was used to determine 
the optimal concentration of the high glucose- induced injury model; (B) HOTAIR mRNA expression was upregulation under high glucose. 
*P < 0.05, **P < 0.01. CCK- 8, Cell Counting Kit- 8; Control, normal saline culture; HG 30 mmol/L, high glucose 30 mmol/L glucose culture; HG 
60 mmol/L, high glucose 60 mmol/L glucose culture; HOTAIR, HOX transcript antisense RNA; mRNA, messenger RNA; ns, not significant.
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F I G U R E  2  The injury of HK- 2 cells induced by high glucose is lncRNA HOTAIR- independent. (A) The interference efficiency of 
lncRNA HOTAIR siRNAs. (B) The cell relative viability of HK- 2 under control, HG 60 mmol/L, HG 60 mmol/L + siRNA NC, and HG 
60 mmol/L + siRNA- 3 group. (C, D) The apoptosis rate of HK- 2 under control, HG 60 mmol/L, HG 60 mmol/L + siRNA NC, and HG 
60 mmol/L + siRNA- 3 group. (C) Is the statistic of (D). *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001. Control, normal saline culture; HG 
30 mmol/L, high glucose 30 mmol/L glucose culture; HG 60 mmol/L, high glucose 60 mmol/L glucose culture; HOTAIR, HOX transcript 
antisense RNA; lncRNA, long noncoding RNA; siRNA, small- interfering RNA.

F I G U R E  3  LncRNA HOTAIR regulates the injury of HK- 2 cells through miR- 126- 5p/PI3K/AKT axis. (A) The interference efficiency of 
lncRNA HOTAIR siRNAs. (B) The result of p- PI3K, p- AKT, Bax, Bcl- 2, and cleaved caspase- 3 with the treatment of normal saline culture, HG 
60 mmol/L, HG 60 mmol/L + siRNA NC, HG 60 mmol/L + siRNA- 3, and HG 60 mmol/L + siRNA- 3 + miR- 126- 5p inhibitor. (C, D) Is the statistic 
of (B). *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001. Control, normal saline culture; HG 30 mmol/L, high glucose 30 mmol/L glucose 
culture; HG 60 mmol/L, high glucose 60 mmol/L glucose culture; HOTAIR, HOX transcript antisense RNA; lncRNA, long noncoding RNA; 
siRNA, small- interfering RNA
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3.3  |  LncRNA HOTAIR promotes apoptosis in HK2 
cells by inhibiting miR- 126- 5p

Given that lncRNA HOTAIR could act as a “molecular sponge” to re-
duce the number of miRNAs, we used bioinformatic tools to iden-
tify its target miRNA. A dual luciferase reporter assay depicted that 
luciferase activity significantly decreased in the HOTAIR- WT + miR- 
126- 5p mimic group compared to HOTAIR- WT + mimic NC group 
(P = 0.016). However, there was no significant difference between 
HOTAIR- mut + mimic NC and HOTAIR- mut + miR- 126- 5p mimic 
groups, illustrated in Figure 4A,B. These results proved that miR- 
126- 5p was a target of HOTAIR. Furthermore, upon inhibition of 
HOTAIR activity, miR- 126- 5p was significantly upregulated, as dis-
played in Figure 4C. Notably, the simultaneous inhibition of both 
HOTAIR and miR- 126- 5p resulted in increased expression of Bax 
and cleaved caspase- 3, along with decreased expression of Bcl- 2, as 
shown in Figure 3B.

3.4  |  LncRNA HOTAIR regulates the injury of HK- 2 
cells through miR- 126- 5p/PI3K/AKT axis

Previous studies20 reported that PI3K/Akt was involved in high 
glucose- induced progenitor cell injury. Our result showed that high 
glucose could induce the activation of the PI3K/Akt signaling path-
way, via phosphorylating PI3K and Akt. Then, the knockdown of 
HOTAIR led to a downregulation of the PI3K/Akt signaling pathway 
and two pro- apoptosis markers, Bax and cleaved caspases- 3, as dis-
played in Figure 3B. Additionally, to investigate whether miR- 126- 5p 

could regulate the activation of the PI3K/Akt signaling pathway, we 
inhibited both miR- 126- 5p and HOTAIR. The efficiency of the miR- 
126- 5p inhibitor is illustrated in Figure 3A. We found that compared 
with the knockdown of HOTAIR, inhibition of miR- 126- 5p could res-
cue the PI3K/Akt signaling pathway and the expression levels of Bax 
and cleaved caspases- 3, suggesting that HOTAIR regulated PI3K/
Akt pathway through miR- 126- 5p.

4  |  DISCUSSION

With a growing elderly population, the incidence of senile DN is 
increasing yearly.21 Although glycemic control is the major treat-
ment for DN, merely controlling blood glucose gives little benefit 
to senile DN.6,22 Consequently, elucidating the mechanism underly-
ing glucose- induced renal injury is crucial to enhancing DN's thera-
peutic efficacy in elderly patients. we found that the levels of Bax 
and cleaved caspase- 3 increased in the HG model, whereas the anti- 
apoptotic factor Bcl- 2 was inhibited by high glucose. These findings 
replicate previous studies demonstrating that high glucose inhibits 
proliferation and induces apoptosis in HK2 cells.23,24 At the same 
time, we first found that lncRNA HOTAIR was induced by high glu-
cose in a dose- dependent manner, and could regulate the apoptosis 
of HK2 cells. Abnormal activation of apoptosis is implicated in glo-
merular injury in diabetic kidneys, contributing to the development 
of DN.25,26 Podocyte apoptosis reduces podocyte numbers and sub-
sequently results in proteinuria.27,28 Renal tubular apoptosis would 
cause tubular atrophy and the loss of renal function.29,30 Therefore, 
HOTAIR would be a potential target to inhibit apoptosis in renal 

F I G U R E  4  LncRNA HOTAIR regulates the level of miRNA- 126- 5p in the high glucose injury HK2 model. (A) The binding sites of lncRNA 
HOTAIR and miR- 126- 5p. (B) The results of dual luciferase reporter assay of lncRNA HOTAIR and miR- 126- 5p. (C) The relative expression 
of miR- 126- 5p under control, HG 60 mmol/L, HG 60 mmol/L + siRNA NC, and HG 60 mmol/L + siRNA- 3 group. *P < 0.05, **P < 0.01, 
***P < 0.001, ****P < 0.0001. Control, normal saline culture; HG 30 mmol/L, high glucose 30 mmol/L glucose culture; HG 60 mmol/L, high 
glucose 60 mmol/L glucose culture; HOTAIR, HOX transcript antisense RNA; lncRNA, long noncoding RNA; miRNA, microRNA.
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tubular cells, thereby mitigating the progression of renal damage in 
DN.

The association between lncRNA and elderly patients with DN 
remains poorly understood. As a classical lncRNA, HOTAIR is more 
commonly reported to play a regulatory role in developing various 
malignant tumors, but evidence of its effect on DN is scarce.10,31,32 
Our findings revealed that HOTAIR is upregulated in HK- 2 cells 
under conditions of high- glucose injury, suggesting its involvement 
in DN development. In tumor cells, HOTAIR can interact with epi-
genetic modifiers, such as PRC2 and LSD1, which act as chroma-
tin modifiers.33,34 Additionally, it can also act as an RNA sponge to 
inhibit miRNAs and facilitate ubiquitin- mediated proteolysis.35,36 
Our study found that HOTAIR exerted detrimental effects on HK- 2 
cells by acting as a sponge for miRNA- 126- 5p. Interestingly, unlike 
in tumor cells, HOTAIR promoted apoptosis in HK- 2 cells.37,38 How-
ever, the upstream mechanism of HOTAIR is unclear and further re-
search is required to clarify this.

A previous study, which included 80% of patients with DN, 
demonstrated a potential association between angiogenic miRNAs 
and cognitive decline in older individuals with DN.39 However, the 
specific miRNAs that are specifically related to kidney injury in DN 
are yet to be determined. A previous investigation revealed de-
creased expression of miR- 126- 5p in the peripheral blood of patients 
with DN, suggesting an increased risk in these individuals.19 More-
over, miR- 126 negatively correlates with kidney function in patients 
with DN and exerts anti- apoptosis and anti- inflammation in DN in 
vitro through the PI3K/AKT pathway.19,40 Our observations con-
firmed the downregulation of miR- 126- 5p in response to high glu-
cose exposure, further supporting its role in DN. Notably, a previous 
study had identified miR- 126- 5p as a potential target site for HO-
TAIR.16 Moreover, HOTAIR can decrease the levels of miR- 126- 5p. 
Therefore, miR- 126- 5p exhibits a protective effect in DN and may 
serve as a potential marker for assessing tubulointerstitial injury in 
elderly patients with DN.

PI3K/Akt signaling pathway is involved in regulating cell prolif-
eration, growth, and viability.41,42 It consists of the catalytic sub-
unit p110 and the regulatory subunit p85, which work together to 
activate Akt by recruiting it to the plasma membrane through the 
binding of the PH domain.43 Aberrant activation of the PI3K/Akt 
pathway has been observed, in which it regulates inflammation, 
apoptosis, and cell cycle.25,44 Meanwhile, some evidence identi-
fies that high glucose is a risk factor for promoting the activation 
of the PI3K/Akt signaling pathway.45,46 Previous studies showed 
that miR- 126 could target PI3K/Akt signaling pathway.20,40 Con-
sistently, our result also suggested that PI3K/Akt was downstream 
of miR- 126- 5p under high- glucose injury. However, both inhibition 
of HOTAIR and miR- 126- 5p, HK- 2 cells still promote AKT activa-
tion and suppress Bcl- 2 expression under high glucose stimulation, 
shown in Figure 3B– D. Activated PI3K/Akt induces ECM deposi-
tion in the glomerulus and is involved in the process of renal tubule 
injury.47– 49 Taken together, we concluded that HOTAIR causes 
high glucose- induced tubule cell injury through PI3K/Akt via tar-
geting miR- 126- 5p.

This study reveals that HOTAIR exerts a pro- apoptotic influence 
by sponging miR- 126- 5p, thereby leading to heightened PI3K/Akt 
signaling activity. Whereas the precise mechanism governing the 
regulation of PI3K/Akt by HOTAIR necessitates further exploration, 
this discovery paves the way for novel therapeutic avenues in the 
management of DN and the identification of potential biomarkers 
for elderly patients with DN.
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