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HIGHLIGHTS

� Uremic retention solutes

predominantly eliminate

through the kidneys largely

via specific efflux channels in

the proximal renal tubules.

� For the first time, we

demonstrated in vivo that

renal tubular excretion of

TMAO can be inhibited by

concomitant loop diuretic

administration via

competition at the level of

renal transporters.

� We further observed

accumulation of TMAO in the

renal parenchyma, which

implied differential

distributions of TMAO across

various tissues and/or

systems as a consequence of

efflux channel control.

� Poorer outcomes in patients

who receive long-term loop

diuretic agents may there-

fore be associated with

metabolic perturbations,

such as retention of metabo-

lites like TMAO, beyond

impaired glomerular

filtration.
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ABBR EV I A T I ON S

AND ACRONYMS

CI = confidence interval

HR = hazard ratio

IP = intraperitoneal

MACE = major adverse cardiac

event(s)

MI = myocardial infarction

TMAO = trimethylamine

N-oxide
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This study demonstrates, for the first time, that renal tubular excretion of trimethylamine N-oxide (TMAO) is

inhibited by concomitant loop diuretic administration. The observed marked accumulation in the renal paren-

chyma, and to lesser extent, plasma, implies differential distributions of TMAO across various tissues and/or

systems as a consequence of efflux channel control. A better understanding of TMAO renal clearance and its

potential interactions with current and future therapies in patients with heart failure are warranted.

(J Am Coll Cardiol Basic Trans Science 2021;6:103–15) © 2021 The Authors. Published by Elsevier on behalf of

the American College of Cardiology Foundation. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
T rimethylamine N-oxide (TMAO) is a gut
microbiota metabolite that has been impli-
cated, in recent years, as a marker for poor

prognosis in a growing list of diseases (1–4). Observa-
tional studies have linked elevated levels of TMAO to
adverse prognosis in patients with heart failure and
patients with chronic kidney disease (2,3). These as-
sociations are corroborated by experimental evidence
from animal models that have demonstrated that
increased plasma TMAO directly contributes to car-
diac dysfunction, tubular injury, and kidney fibrosis
(3,5,6). To date, studies have largely focused on how
alterations of gut microbiota, dietary differences,
and increased intestinal permeability in diseased
states can contribute to increased TMAO production
(7). However, despite being a predominant kidney
(>95%) excreted metabolite, few investigations have
been initiated toward understanding the mechanisms
of TMAO elimination (8,9).

Epidemiological studies have suggested that up to
40% to 50% of those with heart failure also have
comorbid chronic kidney disease. The presence of
dysfunction in either the heart or the kidney can
initiate or aggravate the accelerated failure of the
other. This cardiorenal pathology is linked to com-
mon pathways in altered hemodynamics, fluid sta-
tus, neurohormonal response, and metabolic
regulation (10–12). In the treatment of fluid overload,
the use of diuretics, especially loop diuretics, has
been a cornerstone of contemporary therapy (13).
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Although vital for symptomatic relief of vascular
congestion, it is believed that long-term
loop diuretic use results in worsening renal func-
tion and increased mortality (14–16). However, the
mechanisms that lead to these worse outcomes are
still unclear.

Large-scale genetic studies of TMAO accumulation
have thus far yielded few answers on specific mo-
lecular targets of TMAO, which are blurred by the
significant environmental factors that contribute to
TMAO variability, including a major role of the gut
microbiome (17). Therefore, alternative methods are
necessary to tackle this question. Because of the
dependence of TMAO excretion on an appropriately
functioning kidney, we reasoned that medications
such as loop diuretics, which significantly alter renal
physiology, could also influence TMAO elimination.
Furthermore, the mechanisms that mediate the
metabolic effects of loop diuretic agents are poorly
understood. Therefore, in this study, we examined
the treatment effect of loop diuretic agents on plasma
TMAO levels and their relationships to adverse car-
diovascular outcomes.

METHODS

HUMAN COHORT SELECTION. This was a single-
center prospective cohort study approved by the
Cleveland Clinic Institutional Review Board, and all
participants provided written informed consent. We
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enrolled sequential consenting patients who under-
went elective coronary angiographic evaluation at the
Cleveland Clinic between 2001 and 2007, as previ-
ously described (4). Major adverse cardiac events
(MACEs) were defined as death, nonfatal myocardial
infarction (MI), or stroke and were prospectively
tracked over 3 years for all participants through
medical chart review and adjudicated by follow-up
contact and the Social Security Death Index. Fasting
blood samples were obtained from all participants
before intravenous contrast dye administration dur-
ing elective diagnostic coronary angiography during
cardiac catheterization.

ANIMAL STUDY. To test the effects of furosemide
treatment on TMAO renal excretion in vivo, we tested
the rate of stable isotope d9-TMAO (Cambridge Isotope
Lab, Tewksbury, Massachusetts) excretion after intra-
peritoneal (IP) injection. Female C57BL/6J mice (16 to
20 weeks old) were purchased from the Division of
Laboratory Animal Medicine of the University of Cali-
fornia Los Angeles facilities. Baseline plasma by
saphenous vein draw and first urine voidwere collected
after a 3-h fast in the morning. To collect urine, the
mouse was grasped by the scruff and immediately held
over a cellophane membrane to prevent loss of urine;
bladder massage was applied, and urine collected into
microcentrifuge tubes. After first void, mice were
placed into individual cages with hydrophobic sand
bedding (Braintree Scientific, Braintree, Massachu-
setts) to avoid urine loss between time points. Thirty
min after baseline collection, a single dose of 25 mg/kg
furosemide (prototypic loop diuretic) diluted in normal
saline was injected IP; for control mice, the same vol-
ume of normal saline was used. Furosemide dosing was
extrapolated based on Food and Drug Administration
guidance documents for conversion of animal dose to a
human equivalent dose based on normalization to body
surface area (18). We used the equation: human equiv-
alent dose mg/kg ¼ (animal dose mg/kg) � (weight an-
imal [kg]/weight human [kg])(1–0.67). The exponent for
body surface area (0.67) was a pre-determined
constant to account for differences in metabolic rates
when converting doses between animals and
humans. Therefore, using average mice and human
weights, this equated to 25 mg/kg � (0.025 kg/
70 kg)(0.33) ¼ approximately 1.8 mg/kg of furosemide.
Therefore, for an average 70-kg individual, our mice
dose was equal to 130 mg of furosemide, which was at
the upper end of typical dosing for this medication. One
hour after baseline collection, 70 mmol/kg d9-TMAO
diluted in normal saline was injected IP. This d9-
TMAO dose was chosen to generate blood levels of
TMAO previously reported to be at approximately the
highest unbound plasma level in patients with CKD or
patients with end-stage renal disease (19). Subse-
quently, paired plasma and urine collection, as previ-
ously described, was performed at 30 min and at 1 and 2
h. To adjust for the rapid change in plasma TMAO and
obtain a best estimate of fractional excretion, the urine
from the 30-min and 1-h collection was combined, and
the plasma measured at 30 min and 1 h was averaged.
This procedure was developed based on laboratory
preliminary data after multiple TMAO doses in mice.
Samples were immediately stored on ice after collec-
tion, spun down, and acidified to a concentration of
0.1% formic acid before (to also permit trimethylamine
[TMA] analysis) storage at�80 �C in gas-tight cryovials.
Animal experimental protocols were approved by the
Division of Laboratory Animal Medicine of the
University of California Los Angeles.

PREPARATION OF KIDNEY TISSUE HOMOGENATES.

At the end of the furosemide treatment study (2 h post-
stable isotope d9-TMAO injection), mice were anes-
thetized and euthanized via cervical dislocation. Mice
were then immediatelyperfusedvia the left ventriclewith
50-ml phosphate-buffered saline. The kidneys were then
dissected, the capsule removed, and frozen in liquid ni-
trogen before storage at �80 �C. Tissue homogenization
was performed using a tissue grinder and diluted in a 1:10
ratio with ice cold 10-mM HEPES, pH 7.4. Samples were
spundown, andaliquotswere taken fromthe supernatant
solution. d9-TMAO concentrations were measured via
stable isotope dilution liquid chromatography/mass
spectrometry/mass spectrometry using electrospray
ionization in positive-ion mode with [13C3]TMAO (Iso-
Sciences, Ambler, Pennsylvania) used as internal stan-
dard. d9-TMAO and [13C3]TMAO were monitored
using multiple reaction monitoring of precursor and
characteristic product ions: m/z 85/66 and 79/61,
separately. Protein concentration was determined via
bicinchoninic acid (BCA) assay (Thermo Fisher Wal-
tham, Massachusetts).

LABORATORY TESTING IN HUMAN AND MOUSE

SAMPLES. Methodology for human sample acquisi-
tion and mass spectrometry was previously described
(4). Briefly, fasting blood samples were collected at
the time of cardiac catheterization before adminis-
tration of medications. An aliquot of 24-h urine was
also obtained. Sample processing was performed at
0�C to 4�C and stored at �80�C. Measurements of
human metabolite creatinine, TMAO, trimethyl-
amine, choline, betaine, and their d9-isotopologues
(as internal standards) were quantified using a sta-
ble isotope dilution assay and high-performance
liquid chromatography with online electrospray
ionization tandem mass spectrometry on an AB SCIEX
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QTRAP 5500 mass spectrometer (AB SCIEX, Fra-
mingham, Massachusetts) using electrospray ioniza-
tion in positive-ion mode, as previously described (4).
Furthermore, additional assays for brain natriuretic
peptide, high-sensitivity C-reactive protein, cystatin
C, fasting lipid panel, insulin, glucose, and serum
creatinine were measured using the Architect ci8200
platform (Abbott Laboratories, Abbott Park, Illinois).

For murine experiments, d9-TMAO, rather than the
natural abundance TMAO, was measured. Therefore,
internal standards in these experiments consisted of
d3-creatinine (Cambridge Isotope Lab, Tewksbury
Massachusetts), [13C3]TMAO, and d4-choline (Cam-
bridge Isotope Lab). TMAO, d9-TMAO, choline, d9-
choline, betaine, and d9-betaine were monitored us-
ing multiple reaction monitoring of precursor and
characteristic product ions: m/z 76/58 for TMAO; m/z
85/66 for d9-TMAO; m/z 104/60 for choline; m/z
113/69 for d9-choline; m/z 118/59 for betaine; m/z
127/68 for d9-betaine; m/z 114/44 for creatinine; m/z
117/47 for d3-creatinine; m/z 108/60 for d4-choline;
and m/z 79/61 for [13C3]TMAO.

STATISTICAL ANALYSIS. Descriptive statistics were
used to characterize the population as a whole: data
were reported as mean � SD and as frequencies
(percentages) for categorical variables. For the hu-
man study, we used a propensity score matching
model to match patients based on their propensity
to receive loop diuretic treatment (20). We calcu-
lated the probability (propensity) of the patient
being on loop diuretic treatment at their entry into
the propensity cohort using multivariate logistic
regression. This regression analysis included cova-
riates (Table 1) for demographics, history of comor-
bidities, baseline laboratory measures, and baseline
medications. These covariates consisted of tradi-
tional cardiovascular disease risk factors, as well as
literature-supported covariates suggested to affect
plasma TMAO (14,15,21). The estimated glomerular
filtration rate was calculated according to the
Chronic Kidney Disease Epidemiology Collaboration
creatinine and cystatin C formula (22). Missing data
were addressed by 10-fold imputation, with the
highest percentage of missing data being cystatin C
at 8.4% (missing data are reported in Supplemental
Table S1). After calculation of the log-odds (logit)
from the propensity regression analysis, patient
matching was performed by R package MatchIt 3.0.1
(R Foundation, Vienna, Austria) using 1-to-1
nearest-neighbor matching without replacement.
We used a caliper width of 0.2 of the SD of the logit
of the propensity score, which was shown to be
optimal in a range of settings (23). By this strategy,
678 matched pairs were successfully created from
the 844 patients (80%) reported to be on loop
diuretic agents at baseline. The 2 matched cohorts
could then be compared based on loop diuretic us-
age in the adjusted analysis.

The efficacy of propensity score models is best
assessed by estimating between-group post-match
absolute standardized differences of baseline char-
acteristics (23). Absolute standardized differences
directly quantify bias in the means (or proportions) of
covariates across the 2 treatments or exposure
groups. A difference of 0% indicates no residual bias,
and values <10% are considered inconsequential.
Therefore, we assessed the effectiveness of our pro-
pensity score model by estimating absolute stan-
dardized differences, visually presented as a love
plot. The association between the use of loop diuretic
agents and outcomes was illustrated using Kaplan–
Meier curves in the unmatched and matched pop-
ulations. Differences in survival for the unmatched
cohort was assessed by a log-rank test, whereas the
matched cohort was assessed using robust variance
estimators as described by Austin et al. (23). Subse-
quent Cox proportional hazard regression analysis
took into account the matching of paired subjects
with similar propensity scores and was reported as a
hazard ratio (HR) with 95% confidence intervals (CIs).
Plasma TMAO level differences in the unmatched
cohort were analyzed by unpaired Student’s t-test,
whereas the matched cohort was compared by paired
Student’s t-test (23). Comparison of goodness of fit
between statistical models was assessed by likelihood
ratio tests. Normality was assessed by visualization of
data before analysis, with the median and quartiles of
continuous data reported in Supplemental Table S1.
Sensitivity analyses was performed using Rosenbaum
bounds to address the impact of an unknown covar-
iate that would be necessary to make our hypothesis
unlikely (24).

For animal experiments, 2-way analysis of variance
with repeated measures was performed to assess the
furosemide treatment effect over time. Student’s t-
test was used to determine significant differences of
variables between mice at relevant time points or for
tissue TMAO level comparisons. A 2-tailed p
value <0.05 was considered significant. All analyses
were performed using Prism (Graphpad, La Jolla,
California) or R (version 3.2.3, R Foundation).

RESULTS

BASELINE CHARACTERISTICS. Loop diuretic use
data were available in the entire cohort of 4,007 pa-
tients with measured plasma TMAO levels. Of the

https://doi.org/10.1016/j.jacbts.2020.11.010
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TABLE 1 GeneBank Patients Stratified on Loop Diuretic Use Before and After Matching

Unmatched Matched

No Loop Diuretic (N ¼ 3,163) Loop Diuretic (n ¼ 844) SMD No Loop Diuretic (n ¼ 678) Loop Diuretic (n ¼ 678) SMD

Demographics

Age at blood draw (yrs) 61.94 � 10.83 66.68 � 10.46 0.445 65.58 � 10.31 66.14 � 10.56 0.054

Male 2,149 (67.9) 433 (51.3) 0.344 377 (55.6) 367 (54.1) 0.030

BMI 29.24 � 5.73 31.17 � 7.38 0.291 30.81 � 7.09 30.95 � 6.99 0.020

Father: White 3,021 (95.8) 777 (92.1) 0.158 627 (92.9) 627 (92.5) 0.016

Father: Black 104 (3.3) 58 (6.9) 0.163 39 (5.8) 42 (6.2) 0.018

Father: American Indian 12 (0.4) 8 (0.9) 0.070 8 (1.2) 8 (1.2) <0.001

Mother: White 3,027 (95.9) 782 (92.7) 0.139 634 (93.6) 632 (93.2) 0.017

Mother: Black 103 (3.3) 58 (6.9) 0.165 39 (5.8) 42 (6.2) 0.018

Mother: American Indian 12 (0.4) 3 (0.4) 0.004 4 (0.6) 3 (0.4) 0.021

History of comorbidities

CAD 2,281 (72.6) 623 (74.1) 0.033 495 (74.1) 501 (74.1) <0.001

Canadian angina class 0.203 0.058

0 64 (2.1) 12 (1.5) 14 (2.2) 10 (1.5)

I 814 (27.2) 289 (35.5) 211 (32.6) 223 (34.3)

II 803 (26.8) 170 (20.9) 140 (21.6) 138 (21.2)

III 411 (13.7) 115 (14.1) 91 (14.0) 92 (14.2)

IV 905 (30.2) 229 (28.1) 192 (29.6) 187 (28.8)

CHF 296 (9.6) 424 (51.5) 1.021 247 (37.1) 274 (41.3) 0.087

Arrhythmia 829 (27.4) 272 (33.1) 0.124 194 (29.7) 216 (32.9) 0.069

Hypertension 2,154 (69.1) 676 (81.2) 0.284 527 (79.4) 535 (80.1) 0.018

Stroke 168 (5.5) 81 (9.9) 0.164 60 (9.3) 58 (8.8) 0.019

Diabetes mellitus 550 (17.5) 283 (33.8) 0.380 198 (29.4) 209 (31.1) 0.038

Current dialysis 26 (0.8) 10 (1.2) 0.037 11 (1.6) 9 (1.3) 0.024

Smoking 2,058 (65.1) 551 (65.3) 0.005 440 (64.9) 454 (67.0) 0.044

Cancer 522 (18.0) 170 (21.6) 0.089 132 (21.9) 137 (21.6) 0.007

Clinical measures

Systolic BP 134.42 � 20.82 133.02 � 22.11 0.065 134.49 � 21.00 133.84 � 22.16 0.030

Diastolic BP 75.52 � 11.49 71.66 � 12.86 0.317 72.98 � 11.79 72.33 � 12.48 0.053

Cholesterol 167.20 � 38.85 165.32 � 42.90 0.046 166.45 � 42.26 164.59 � 41.51 0.044

Creatinine 0.92 � 0.55 1.10 � 0.76 0.274 1.05 � 0.75 1.07 � 0.80 0.027

eGFR 84.39 � 19.85 69.13 � 22.57 0.718 73.75 � 21.29 71.92 � 22.38 0.084

Sodium 139.74 � 2.68 139.26 � 3.37 0.158 139.25 � 3.04 139.28 � 3.39 0.007

BNP 185.60 � 415.56 485.54 � 916.12 0.422 372.05 � 777.78 414.23 � 593.14 0.061

CRP 6.11 � 14.88 9.71 � 18.05 0.217 8.32 � 19.80 9.05 � 16.36 0.040

Cystatin C 0.98 � 0.46 1.14 � 0.57 0.307 1.08 � 0.58 1.11 � 0.52 0.057

Choline 10.04 � 3.60 12.10 � 4.44 0.508 11.44 � 4.47 11.89 � 4.49 0.099

Betaine 42.60 � 15.36 45.52 � 18.52 0.171 43.96 � 16.61 45.68 � 19.10 0.097

Insulin glucose ratio 0.09 � 0.12 0.12 � 0.22 0.149 0.11 � 0.22 0.11 � 0.17 0.013

Medications

ACEi or ARB 1,445 (45.7) 563 (66.7) 0.434 422 (62.2) 431 (63.6) 0.027

CCB 591 (18.7) 197 (23.3) 0.114 150 (22.1) 160 (23.6) 0.035

Beta blocker 1,958 (61.9) 574 (68.0) 0.128 462 (68.1) 454 (67.0) 0.025

Thiazide diuretic 412 (13.0) 89 (10.5) 0.077 74 (10.9) 80 (11.8) 0.028

Nitrate 931 (29.4) 356 (42.2) 0.268 270 (39.8) 278 (41.0) 0.024

Statin 1,916 (60.6) 499 (59.1) 0.030 405 (59.7) 395 (58.3) 0.030

Other cholesterol lowering 404 (12.8) 118 (14.0) 0.036 97 (14.3) 90 (13.3) 0.030

Aspirin 2,412 (76.3) 547 (64.8) 0.253 460 (67.8) 451 (66.5) 0.028

Oral diabetic medication 358 (11.3) 178 (21.1) 0.268 124 (18.3) 134 (19.8) 0.038

Insulin medication 154 (4.9) 124 (14.7) 0.335 81 (11.9) 92 (13.6) 0.049

Values are mean � SD or n (%).

ACEi ¼ angiotensin converting enzyme inhibitor; ARB ¼ angiotensin receptor blocker; BMI ¼ body mass index; BNP ¼ brain natriuretic peptide; BP ¼ blood pressure; CAD ¼ coronary artery
disease; CCB ¼ calcium channel blocker; CHF ¼ congestive heart failure; CRP ¼ C-reactive protein; eGFR ¼ estimated glomerular filtration rate.
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FIGURE 1 Propensity Score Matching Metrics

(A) Love plot showing standardized mean differences (SMD) before and after matching reveals equal matching with all matching covariates having SMD <0.1. (B)

Distribution of propensity scores before and after matching shows that an even distribution of cases (loop diuretic use) were selected. ACEi/ARB ¼ angiotensin-

converting enzyme inhibitor/angiotensin receptor blocker; BMI ¼ body mass index; BNP ¼ brain natriuretic peptide; BP ¼ blood pressure; Ca ¼ calcium; CAD ¼ coronary

artery disease; CHF ¼ coronary heart failure; CRP ¼ C-reactive protein; eGFR ¼ estimated glomerular filtration rate; Hx ¼ history of.
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total cohort at baseline, 844 patients were using a
loop diuretic. Baseline statistics showed that those
taking loop diuretic agents had a worsened cardio-
vascular disease profile, with an increased history of
congestive heart failure, elevated brain natriuretic
peptide, and a decreased estimated glomerular
filtration rate more frequently with other medical
comorbidities and greater use of medications, such as
nitrates, angiotensin-converting enzyme inhibitor or
angiotensin receptor blocker, and diabetic medica-
tions (Figure 1A).

To control for confounding by indication, we used
a propensity score model to adjust for important
variables that might have affected both mortality and
plasma TMAO levels. Propensity score matching on
loop diuretic use resulted in 678 of the 844 loop
diuretic�treated subjects to be matched to an un-
treated individual with a similar propensity score.
Approximately 20% of unmatched subjects were
excluded because no appropriate untreated control
subjects could be identified within the specified
caliper width. All variables applied to generate the
propensity score demonstrated standardized mean
differences of <0.1 after matching on loop diuretic
use and visualization of propensity score distribution,
which showed equal matching across a complete
spectrum of cases (Figure 1B). Table 1 shows the
descriptive statistics of subjects stratified on loop
diuretic use before and after matching.

LOOP DIURETIC USE IS ASSOCIATED WITH

INCREASED MACEs. During follow-up over 3 years
(mean follow-up: 30 months; median: 3 years), 269
patients experienced our composite endpoint for
MACEs. In the unmatched cohort model, patients
who received loop diuretic agents had a significantly
greater incidence of the primary endpoint compared
with those without loop diuretic use (Figure 2A). After
propensity score match, the greater incidence of
MACEs remained in the patients who used loop
diuretic agents (Figure 2B). Cox proportional hazards
analysis of the matched cohort showed that loop
diuretic use was associated with MACEs (HR: 1.44;
95% CI: 1.13 to 1.83; p ¼ 0.002). This association
remained after adjusting for TMAO in model 2 (HR:
1.36; 95% CI: 1.06 to 1.73; p ¼ 0.012). Moreover, within
model 2, TMAO was observed to be independently
and significantly associated with MACEs (HR: 1.47;
95% CI: 1.29 to 1.64; p < 0.001). The TMAO-adjusted
model showed improved fit compared with stratifi-
cation by loop diuretic alone, as demonstrated by a
comparison through a likelihood ratio test (model 2
vs. model 1: p < 0.001). These lines of evidence were
consistent with previous findings of both loop
diuretic use and elevated TMAO being prognostic for
worsened clinical outcomes (1,4,15,16).

TMAO WAS ELEVATED IN PATIENTS USING LOOP

DIURETICS. Because the finding that TMAO was
independently prognostic for MACEs in patients on
loop diuretics, we sought to understand the rela-
tionship between TMAO and loop diuretic use. We
examined the difference in baseline plasma TMAO
between subjects who used loop diuretics. Before
matching, mean plasma TMAO was significantly
increased in the loop diuretic cohort (5.5 mM vs.
3.7 mM; p < 0.001) (Figure 3A). After propensity
matching that included dietary precursors, this dif-
ference remained significant (5.2 mM vs. 4.5 mM;
p ¼ 0.001) (Figure 3B).

SENSITIVITY ANALYSIS. A propensity score�matched
study is an excellent method to match the cova-
riates used. However, this method was unable to ac-
count for any unobserved covariates. To address the
sensitivity of our clinical model, we used Rosenbaum
bounds, as previously described, to assess the neces-
sary impact of an unknown covariate to alter our out-
comes (23). In the survival analysis, an unobserved
covariate would need to increase the odds of receiving
loop diuretic agents by 22% and be strongly associated
with MACEs to render the clinical outcomes between
treatment groups insignificant. In the plasma TMAO
analysis, an unobserved covariate would need to in-
crease the odds of receiving loop diuretic agents by 17%
and be strongly associated with TMAO to render the
plasma differences as insignificant.

LOOP DIURETIC ADMINISTRATION ABOLISHES

TUBULAR TMAO SECRETION AND RESULTS IN

PLASMA AND KIDNEY TMAO ACCUMULATION. We
inferred that TMAO, a kidney excreted metabolite,
was likely subject to alterations by medications that
affect the function of the kidney. To clarify the as-
sociations between TMAO accumulation and loop
diuretic use from our propensity-matched cohort, we
examined the in vivo accumulation of TMAO after
IP injection.

After delivery of d9-TMAO to furosemide-treated
mice, the fractional excretion (at 1 h: 89 � 34% vs.
182 � 51%; treatment effect; p ¼ 0.004) (Figure 4A)
was significantly lower in the furosemide-treated
group (n ¼ 13) compared with control mice that
received saline (n ¼ 11), whereas a corresponding in-
crease was observed in in TMAO/creatine ratios (d9-
TMAO/creatinine ratio at 1 h: 3.7 � 0.51 vs. 2.7 �
0.45; treatment effect: p < 0.001) (Figure 4B) at 1 h
post�d9-TMAO injection. Our measurements of d9-
TMAO showed, for the first time in a mammalian
model, that TMAO was secreted and that this



FIGURE 2 Kaplan-Meier Curves Showing Freedom From MACE

(A) Before (p < 0.001) and (B) after propensity score matching (p ¼ 0.003) for loop diuretic use with the shaded areas representing a 95% confidence interval. Loop

diuretic use remained associated with worse survival after matching for known covariates suggesting effects beyond confounding by indication. MACE ¼major adverse

cardiac event(s).
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secretion was strongly attenuated after furosemide
treatment.

Because TMAO secretion was impaired, we wanted
to assess if this impairment occurred as a result of
altered TMAO uptake or as efflux by the kidney.
Kidneys were harvested from d9-TMAO�injected
mice, thoroughly perfused, homogenized, and the
concentration of remaining d9-TMAO within the pa-
renchyma measured. We observed that, compared
with saline-injected control subjects, furosemide-
treated mice had an approximately 25-fold increased
intra-renal accumulation of d9-TMAO after adjusting
for total kidney protein levels (0.23 � 0.009 mg d9-
TMAO/mg protein vs. 0.009 � 0.008 mg d9-TMAO/
mg protein; p < 0.001) (Figure 4C). These data sug-
gested that furosemide ultimately blocked the secre-
tion of TMAO into renal tubules, which resulted in the
accumulation of TMAO in both the kidney and
plasma.

DISCUSSION

Historically, the action of loop diuretic agents is
believed to primarily target the sodium, potassium,
and chloride symporters in the thick ascending limb
after transporter-mediated delivery to the tubules to
induce diuresis. However, our experimental evidence
showed differences in fractional excretion, as well as
plasma TMAO to creatinine ratios, which suggested
that the increased levels of TMAO observed go beyond
simply diuresis and hemoconcentration. We observed
a clear relationship between loop diuretic use,
elevated TMAO levels, and adverse clinical outcomes
(myocardial infarction, stroke, and death). We then
tested the causality of this observation and observed
that administration of furosemide abolished fractional
excretion of TMAO and incited an immediate rise in
plasma TMAO levels even after adjusting for plasma
creatinine. We also observed that furosemide admin-
istration directly caused accumulation of TMAO in the
parenchymal tissue of the kidney. The observation of
plasma and intrarenal accumulation of d9-TMAO
suggested that furosemide impaired the efflux of
TMAO at the level of the kidney. Through these ob-
servations, we described a mechanistic characteriza-
tion of the loop diuretic medication as a novel
mediator of TMAO plasma variability and proposed
TMAO accumulation to be a modifiable contributor
toward the detrimental effects of long-term loop
diuretic use. These observations highlighted the need
to further investigate the interactions between acute
or long-term use of loop diuretic drugs (commonly in
the setting of heart failure) with accumulation of
circulating and tissue content of uremic toxins, as well
as their clinical implications.

There continues to be a conundrum in the decision
to use loop diuretics, because despite the immediate
symptomatic relief attained for volume overload, the
long-term clinical outcomes of these medications are
not well understood. Retrospective studies on loop
diuretic use have been inconclusive due to the po-
tential for confounding by indication. However, pre-
vious propensity score�matched studies, which
targeted this issue, suggested that the effect of long-
term loop diuretic use on outcomes might be drug
specific, beyond the fact that sick patients wee more
likely to be on loop diuretic agents (14,15,21). Similar to
previous findings, the hazard reported in our study in



FIGURE 3 Difference in Baseline Plasma TMAO Levels Between Loop Diuretic Use Groups

(A) Unmatched and (B) matched cohorts shows that loop diuretic agents are associated with increased plasma trimethylamine N-oxide

(TMAO) levels. CI ¼ confidence interval.
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the loop diuretic cohort was closely related to that
published by previous studies (14,15). However, our
observations of TMAO accumulation through loop
diuretic use suggested a novel modifiable mechanism
that contributed to the observed adverse patient out-
comes. This added to processes (e.g., worsened renal
function or neurohormonal activation) previously
suggested to mediate the detrimental effects of long-
term loop diuretic use (15,16). It also suggested that
use of a microbial choline TMA lyase inhibitor, which
suppresses TMA (and hence, TMAO) generation, and in
animal models, attenuates atherosclerosis and
thrombosis, might be of interest as a companion agent
to pair with loop diuretic use (25,26).

TMAO is a metabolite that is generated from a
meta-organismal pathway initiated through nutri-
tional precursors (e.g., phosphatidylcholine and
carnitine) and is dependent on gut microbiota
metabolism (1,27). Transient increases of TMAO can
be observed when individuals ingest foods high in
TMAO, such as certain fish or precursors that
generate TMAO (9), which suggests that renal
excretion of TMAO is a major regulator of TMAO
levels (4). Recent studies demonstrated that admin-
istration of TMAO in heart failure models worsened
cardiac function, whereas removal or inhibition of
TMAO production resulted in improved cardiac
function (5,6). In addition, we previously demon-
strated that long-term TMAO feeding in mice resul-
ted in cystatin C elevation, increased tubulin, and
accompanied increases in renal fibrosis (3). Similarly,
several human clinical studies supported the asso-
ciation between high levels of TMAO and incident
accelerated decline in renal function (28–32). In this
study, we used a stable isotope to track the move-
ment of TMAO after injection, which eliminated
concerns of intraindividual variability due to differ-
ences in microbiota production of TMAO. As
demonstrated by the fractional excretion observed in
mice injected with d9-TMAO, a strong secretory
component was required to control the excretion of
TMAO in the presence of supraphysiological con-
centrations. This suggested that, with appropriate
kidney function, transient increases of TMAO might
not have a clear negative impact on health. TMAO
accumulation due to chronically impaired renal
clearance could potentially contribute to a feed-
forward cycle of injury.

Our findings might help explain the poorer out-
comes observed with long-term loop diuretic use—a
finding that could never be explained because of the
lack of definitive data showing renal damage in acute
aggressive diuresis with loop diuretics. Studies also
further supported the conclusion that TMAO serves as
a mediator of deleterious mechanisms. Ahmad et al.
(33) demonstrated that aggressive diuresis in patients
with acute heart failure did not result in increased
tubular injury markers (33). In previous observational
studies of TMAO, the highest levels of TMAO were
observed in patients with elevated cystatin C and/or
end-stage renal disease, which suggested a mecha-
nistic relationship between TMAO and worsening
renal function (3). Furthermore, it was clear from our
animal experiments that acute aggressive diuresis
would immediately raise plasma TMAO levels.
Because TMAO was also suggested to be prognostic



FIGURE 4 Comparison of d9-TMAO Excretion and Accumulation Between Furosemide (n ¼ 13) and Saline-Treated Mice (n ¼ 11)

(A) Fractional excretion of d9-TMAO is impaired in furosemide-treated mice; repeated measures analysis of variance treatment effect

(p ¼ 0.004). (B) Plasma TMAO level normalized to plasma creatinine is increased after furosemide treatment; repeated measures analysis of

variance treatment effect (p < 0.001). (C) d9-TMAO is significantly increased in the renal tissue of furosemide treated mice; Student’s t-test

(p < 0.001). **p # 0.01; and ***p # 0.001. Cr ¼ creatine; other abbreviations as in Figure 3.
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for poor outcomes in patients with acute heart failure,
these findings together suggested that TMAO could
serve as an early marker for the harmful effects of
diuresis (34).
WHICH TRANSPORTERS MEDIATE TMAO EXCRETION? A
recent clinical trial for AST-120 adsorption of uremic
toxins in chronic kidney disease showed no signifi-
cant difference in the outcome (35). However, it has
since been observed that AST-120, despite decreasing
a range of uremic toxin levels, also increases toxins
such as plasma TMAO levels in 5/6 nephrectomized
mice compared with control mice, perhaps counter-
acting the decrease of other uremic toxins (36).
Because of the importance of renal excretion for
TMAO clearance from the body, it is important to
better understand the transporters involved in this
process and the potential drug�metabolite in-
teractions in this complex patient disease cohort.

Because of our finding that furosemide was capable
of inhibiting TMAO secretion, this served as a
reasonable starting point to work backwards and to
identify transporters that might mediate this process.
Secretion and reabsorption mechanisms for TMAO
were reported in fish, whereas TMAO was also
believed to be passively secreted in chicken (37,38).
Our data added to these findings and suggested that
an active renal secretory mechanism for TMAO elim-
ination exists in mammals. A recent study identified
OAT3, incidentally a major apical uptake transporter
of furosemide, as a potential contributor to TMAO
renal excretion (39). In this study, both OAT3
knockout, as well as a “chemical” double knockout by
introducing OAT1/3 inhibitor probenecid, resulted in
increased levels of plasma TMAO. Similarly, efflux
transporters for furosemide, such as ABCG2, ABCC2,
and ABCC4, were also identified as candidates for
TMAO transport (40). Our in vivo experiments with
furosemide provided further evidence for this set of
uptake and efflux transporters in an excretion model
and directly quantified the impact of this inhibition on
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TMAO renal excretion in a mammalian system. We
also provided direct evidence from isotope-labeled
TMAO administration regarding the accumulation of
TMAO levels in the renal parenchyma with concomi-
tant loop diuretic administration. It is therefore
conceivable that other uremic toxins may share
similar interactions with loop diuretic agents at the
level of renal clearance. With recent validation of the
prognostic value of TMAO by the BIOSTAT-CHF (A
systems BIOlogy Study to TAilored Treatment in
Chronic Heart Failure) cohort, which might be inde-
pendent of guideline-based pharmacological treat-
ment (41), the potential contributions of loop diuretic
and impaired clearance of uremic toxins might war-
rant further investigations.

STUDY LIMITATIONS. Our clinical analyses were
carried out on a nonrandomized cohort. Therefore,
association findings might be biased by unmeasured
confounders or severity of disease burden despite
extensive matching to adjust for these biases. How-
ever, it was difficult to ascertain if any unmeasured
variable could be completely unrelated to any of the
covariates used in our propensity score analysis. Our
clinical findings were in line with propensity
score�matched studies in other independent cohorts
(14,15). We also included additional continuous
covariates not present in previous propensity score
studies investigating the loop diuretic relationship
with clinical outcomes. These covariates included
those that controlled for kidney function (cystatin C),
inflammation (C-reactive protein), diabetes (insulin/
glucose ratio), and TMAO-related metabolites
(choline, betaine).In this cohort, we did not have the
clinical data to perform additional stratification on
loop diuretic dose or type. However, based on general
institutional practices, furosemide likely predomi-
nated as the treatment of choice. Moreover, because
this study cohort was focused on coronary outcomes,
additional data on New York Heart Association func-
tional heart failure class, left ventricular ejection
fraction, mineralocorticoid receptor antagonist use,
and follow-up for heart failure hospitalization
were unavailable.

Although our clinical association between loop
diuretic use and elevated TMAO was confirmed
in vivo, it is also important to note that the detailed
molecular mechanisms of TMAO excretion remain
inconsistent in published reports. In a recent report, it
was suggested that the organic osmolyte function of
TMAO induced diuresis when given at supra-
physiologic levels, which led to improved heart failure
outcomes. The investigators reported a primary
diuretic effect in TMAO-fed rats (42). Interestingly, all
the TMAO-fed rats (a different animal model
compared with most TMAO studies) in this study also
exhibited decreased plasma sodium with increased
plasma renin, which is typically seen in worsened
heart failure physiology. This raised the question if
acute diuresis (whereas the control group had no
method for additional diuresis) only provided short-
term symptom relief while still retaining harmful
uremic toxins that might have worsened outcomes if
the control also received equivalent volume removal.
At the molecular level, other studies on uremic toxin
retention with OAT3 did not find TMAO levels to
change (43). Although our measurements of d9-TMAO
suggested that TMAO was secreted and that this
secretion was strongly attenuated after furosemide
treatment with adjustment for glomerular filtration
with plasma creatinine, we could not exclude that the
accumulation of d9-TMAO in the kidney might have
been secondary to dehydration, with a resultant in-
crease in the concentration of filtered d9-TMAO in the
tubules secondary to increased resorption of water in
the distal tubule. During the preparation of this paper,
a study was published that also characterized the
positive association between furosemide and elevated
TMAO in a limited number of patients (n ¼ 19 furose-
mide users) (44). Using a backward multiple linear
regression analysis, the investigators also identified
loop diuretic agents and the estimated glomerular
filtration rate to be associated with elevated TMAO.
However, they did not observe TMAO increases with
the use of OAT3 inhibitor probenecid. Further rigorous
investigations into mechanisms of TMAO transport
require confirmation of functional transporter
expression, use of appropriate controls, and demon-
stration of clinically relevant pharmacokinetics.

CONCLUSIONS

Loop diuretic use is associated with poor outcomes.
Loop diuretic use also shows independent association
with elevated plasma TMAO, and animal model
studies suggest that competition at the level of renal
transporters between furosemide, a prototypic loop
diuretic, and TMAO contributes to elevated plasma
and renal tissue TMAO levels. Both TMAO and loop
diuretic use are independently associated with the
overall poor prognosis.
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observed a clear relationship between loop diuretic

use, elevated TMAO levels, and adverse clinical out-

comes (MI, stroke, and death), despite careful pro-
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plasma and intrarenal accumulation of d9-TMAO

suggests that furosemide impairs the efflux of

TMAO at the level of the kidney. Therefore, TMAO

accumulation may be a modifiable contributor to-

ward the detrimental effects of long-term loop

diuretic use.
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