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Abstract

Background: Identification of factors that influence the neonatal gut microbiome is urgently needed to guide
clinical practices that support growth of healthy preterm infants. Here, we examined the influence of nutrition and
common practices on the gut microbiota and growth in a cohort of preterm infants.

Results: With weekly gut microbiota samples spanning postmenstrual age (PMA) 24 to 46 weeks, we developed
two models to test associations between the microbiota, nutrition and growth: a categorical model with three
successive microbiota phases (P1, P2, and P3) and a model with two periods (early and late PMA) defined by
microbiota composition and PMA, respectively. The more significant associations with phase led us to use a phase-
based framework for the majority of our analyses. Phase transitions were characterized by rapid shifts in the
microbiota, with transition out of P1 occurring nearly simultaneously with the change from meconium to normal
stool. The rate of phase progression was positively associated with gestational age at birth, and delayed transition
to a P3 microbiota was associated with growth failure. We found distinct bacterial metabolic functions in P1–3 and
significant associations between nutrition, microbiota phase, and infant growth.

Conclusion: The phase-dependent impact of nutrition on infant growth along with phase-specific metabolic functions
suggests a pioneering potential for improving growth outcomes by tailoring nutrient intake to microbiota phase.
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Background
Nutrition in early life is a critical factor in neonatal
growth and long-term health. Managing nutritional in-
take in preterm infants is a significant clinical challenge,
with optimal nutrition and feeding regimens not re-
solved despite extensive study [1]. Even with continuing
improvements in preterm infant care, > 50% will be
discharged with ongoing severe postnatal growth failure
[2]. Due to the profound impact of postnatal growth fail-
ure on health over an entire lifespan, it is imperative that

we understand the clinical and nutritional variables that
contribute to a poor outcome.
Recent studies on metabolism and metabolic diseases

suggest that the infant gut microbiome directly impacts
growth and development of preterm infants [3–6]. Mat-
uration of the gut microbiota in early life is linked to
physiological development, with long-term influences on
factors that affect infant health [7–9]. While colonization
of the infant gut microbiota is thought to begin within
days of birth, observations of microbiota in the placenta
and amniotic fluid suggest that initial seeding of infants by
pioneering colonizers occurs in utero [10–13]. Evidence in
premature infants suggests that microbiota development
is driven by host biology and associated with gesta-
tional age [5], but is also shaped by the restricted en-
vironment in the neonatal intensive care unit (NICU),
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infant nutrition, and common clinical practices in neonatal
care [14–20]. We hypothesize that assembly and function
of the preterm infants’ gut microbiota is associated with
postnatal growth patterns and represents a yet unexplored
personalized therapeutic potential for optimizing infant
development.
Development of the premature infant gut microbiota

has recently been shown to evolve in a patterned pro-
gression associated with postmenstrual age (PMA; gesta-
tional age at birth plus week of life), dominated by
Bacilli at early PMA, followed by Gammaproteobacteria
and then Clostridia [5]. In our study, we introduce two
models to identify associations between the microbiota,
nutritional intake, medication, and preterm infant growth:
a categorical model based on three quantitatively defined
“phases” (P1, P2, and P3) that corresponds to three states
of the microbiota and a PMA-based model with the three
composition-based phases replaced by two constant time
periods identified as early (< 34 weeks PMA; n = 362 data
points) and late (≥ 34 weeks PMA; n = 343 data points).
Our analyses identified more significant associations with
phase, which led us to use the phase-based framework to
explore potential functional relationships between the pre-
term microbiota, nutrition, and growth.
We first defined the phases and phase transition points

in longitudinal gut microbiota samples from two cohorts
of preterm and full-term infants from the multicenter
Prematurity and Respiratory Outcomes Program (PROP)
and Respiratory Pathogens Research Center (RPRC) at the
University of Rochester School of Medicine. The distin-
guishing composition and putative functional capacity of
each phase was assessed, along with the properties of tran-
sitions between phases. Our data suggest phase-specific
microbiota functions and demonstrate the effect of nutri-
tional intake and clinical factors on phase and period-
specific microbiota development. Furthermore, our results
indicate significant associations between nutritional in-
take, the phase of the microbiota, and preterm infant
growth. Finally, we demonstrate that transition out of
phase 1 (P1) occurs simultaneously with transition from
meconium to normal postnatal stool, a milestone that can
be unambiguously identified at the bedside.
Overall, our results illustrate an ecological framework

for the preterm infant gut microbiome and represent a
significant first step in tailoring nutrient intake accord-
ing to microbiota phase. Thus, our study will inform and
contribute to establishing much needed clinical criteria
for managing microbiota-based nutrient intake and care
that supports optimal infant growth and development.

Results
Overview of preterm infant cohort
Our study examined associations between preterm infant
PMA, growth, nutrition, clinical factors, and gut microbiota

development in a cohort of 95 preterm and 2 full-term in-
fants from PROP and 23 full-term infants from RPRC at
the University of Rochester School of Medicine. A total of
719 rectal swab samples were collected weekly from the
PROP preterm infants while in the NICU, spanning PMA
from 24 to 46 weeks with a good representation across ges-
tational ages. A total of 2 rectal swabs were collected from
the 2 PROP full-term infants, and 46 rectal swabs from the
23 RPRC full-term infants: one near birth (≤ 20 day of life
[DOL]) and—for the RPRC subjects only—a second at
1 month of age (20 <DOL ≤ 50) (Table 1). The longitudinal
analyses included 719 samples from preterm and 48
samples from full-term infants. Relevant available age
metrics were gestational age at birth, day of life
(DOL), and PMA. To select the age metric for our
analyses, we used functional data analysis to fit nutri-
tion and growth variables, as well as the abundance of
operational taxonomic units (OTUs) in the micro-
biota, first using PMA and then DOL as the age vari-
able [21]. The overall fitting variance using PMA was
lower for OTU abundance and, for most metrics of
growth and nutrition, consistent with previous findings
that the temporal dynamics of the preterm infant gut
microbiota correspond better to PMA than to DOL [5].

Table 1 Demographic and clinical variables

Variables (N = 120) Values (mean ± SD or N)

Gestational age at birth
(weeks, preterm/full-term, mean ± SD)

28.83 ± 3.37/39.72 ± 1

Gestational age at birth (23–25/26–27/28–29/
30–31/32–33/34–35 weeks/full-term, N)

25/22/11/11/18/8/25

Birth Weight (Kg, preterm/full-term,
mean ± SD)

1.29 ± 0.57/3.6 ± 0.45

Sex (male/female, N) 59/61

Race (Caucasian/AA/Asian/Other, N)a 76/29/1/14

Ethnicity (Hispanic or Latino Y/N/unnkown, N) 13/103/4

Delivery method (C-section/vaginal, N) 60/60

Necrotizing enterocolitis diagnosis
(medical, surgical, N)b

11

Received antimicrobials (any, ≥ 7 days, N)c 82 / 63

Received diuretics (any, N)c 54

Received postnatal corticosteroids (any, N)c 22

Received proton pump inhibitors (any, N)c 7

Received H2 receptor antagonist (any, N)
c 13

Received motility agents (any, N)c 24
aOther race includes those unknown
bNecrotizing enterocolitis diagnosis (medical, surgical) diagnosis for one baby
is unknown because of early withdrawal from study
c Medication received within 1 week prior to microbiome sample collection.
Sample collection occurred approximately weekly throughout the majority of
the hospitalization as clinically permitted. If the interval between samples was
greater than 7 days apart, then short portions of the hospital stay are not
covered by this analysis. Therefore, subjects who had the respective
medication, but not within 1 week prior to sample collection, are not counted
in this summary table
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Consequently, we used gestational age at birth and PMA
for our analyses.
To select nutritional and clinical variables for our

study, we first used an initial linear mixed effect regres-
sion that associates gestational age at birth, PMA, one
main covariate (see Additional file 1: Table S1 for the full
list of covariates), and its interaction with PMA, with
microbiota taxa abundance. We found that mode of
delivery was not significantly associated with microbiota
composition after controlling for age, which is similar to
recent studies where mode of delivery was not associ-
ated with the influence of breast milk in preterm infants
or with stool composition in full-term infants [22, 23].
Overall, PMA has the strongest impact on microbiota
composition, followed by the ratio of enteral calories,
total calories normalized by body weight, proportion of
dietary lipids, antimicrobial usage, proportion of dietary
protein, and diuretics usage (Additional file 1: Table S1).
Corticosteroids, H2 receptor antagonists, and motility
agent usage also have limited associations with some
taxa. Based on these results, we applied a full linear
mixed-effect regression model to identify the associa-
tions between microbiota phase, gestational age at birth,
nutrient intake, and medication.

Evaluation of fecal microbiota sampling methods
To develop a sampling protocol that yields highly reprodu-
cible and representative fecal microbiota profiles, we first
compared fecal microbiota obtained from matched stools
or meconium and rectal swabs from five infants. Both sam-
pling methods identify similar composition of operational
taxonomic units (OTUs) and alpha diversity or evenness of
observed OTUs within each subject (p values > 0.1 be-
tween stool-meconium and rectal swabs) and greater diver-
sity between subjects (Additional file 2: Figures S1 and S2).
Results from differential abundance testing on a per taxon
basis between the three groups (stool, meconium, and rec-
tal swab) are not significant. Differential abundance testing
between two groups (stool-meconium and rectal swab)
identified one adjusted p value < 0.1 (0.088) for the Clostri-
diales. In comparison, evaluation of fecal microbiota col-
lected as matched stool and swab samples in other studies
demonstrated by composition and diversity metrics that
microbiota from both samples is nearly identical [24, 25].
Based on similarity of alpha diversity and the ability of
clinical NICU staff to collect and store samples directly
from infants at specific times without cross contamination
from infant diapers and skin, we selected rectal swabs as
the preferred method for sampling gut microbiota.

Three phases of the preterm infant gut microbiota
Characterization of microbiota from all subjects and
time points spanning PMA from 24 to 46 weeks identi-
fied Bacilli, Gammaproteobacteria, and Clostridia as by

far the most abundant taxa, with relative abundances of
41.75, 23.0, and 22.5% respectively, accounting for 87.0%
of the total observed abundance (Fig. 1a). The next most
abundant classes are Actinobacteria and Bacteroidia,
which account for just 6.5 and 5.1% of total observed
abundance, respectively. To characterize the apparent
developmental phases of the premature infant gut
microbiome, we used threshold values for the log ratio
of the three predominant bacterial classes—Bacilli,
Gammaproteobacteria, and Clostridia—to construct a
decision tree that permits objective assignment of indi-
vidual microbiota samples to one of the three phases
based on their composition (Fig. 1a and Methods). We
used criteria that distinguished the phases based on their
association with prematurity and lower PMA and on the
relative dominance of Bacilli, Gammaproteobacteria,
and Clostridia in P1, P2, and P3 respectively. The com-
position of individual samples assigned to each phase at
the class level using these criteria is shown in Fig. 1b.
The categorical structure of the model, which assumes
relative stability within a phase and abrupt shifts in com-
position between phases, was validated by examining the
week-to-week changes of the microbiota within each
subject. Quantitative changes in the weekly microbiota
samples were determined using weighted UniFrac dis-
tance to measure the dissimilarity between consecutive
samples. Averaged over all subjects, consecutive samples
of the same phase show substantially less dissimilarity
week-to-week than consecutive samples of the differing
phases (i.e., samples before and after a phase transition;
Fig. 1c). Testing the median dissimilarity revealed that it
is significantly higher when the phase changed between
consecutive samples than when it remained the same
(p < 0.0001), suggesting discrete periods of community
restructuring corresponding to phase transition.
We quantified the pattern of progression of the gut

microbiota with respect to the order of phase transition
events using the sequence of phases observed in the
consecutive samples from each individual infant to com-
pute the transition probabilities between the phases. For
each phase, the probability that the subsequent sample
from the same individual will be in the same phase is
higher than the probability of transitioning to a different
phase (Fig. 1d). Transition from one phase to the next
consecutive phase is more likely than the transition from
a higher phase to a lower phase (e.g., P2 to P1) or from
P1 to P3 directly. Accordingly, we found a strong rela-
tionship between PMA and microbiota phases (Fig. 1e).
For this preterm cohort, 70% of all P1 samples were
observed at PMA of 29 weeks or less; 84% of all P2
samples were observed from 28 weeks to 36 weeks
PMA; and 78% of all P3 samples at 33 weeks or later.
Eighty six percent of all samples from 37 weeks PMA
and later were in P3, suggesting that preterm infant
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Fig. 1 Overview of the preterm infant gut microbiota phases and properties. a The decision tree for classifying a microbiota sample into one of
the three phases. b A composition bar chart with each sample grouped by phases 1–3 (P1–P3) from left to right. Green, gray, orange, and blue
represent Bacilli, Gammaproteobacteria, Clostridia, and Bacteroidia, respectively. c Bar charts representing the average weighted UniFrac distance
between consecutive samples of each individual infant. The bars are grouped into three major categories from left to right according to the
initial phase of the consecutive samples being assessed. Each bar within a category corresponds to the phase of the second consecutive sample.
The height of the bar indicates the average dissimilarity between consecutive samples of the corresponding phases, with exact values included in
the table below the graph. d Bar charts indicating the transition probability between consecutive samples within an individual. The groupings
and bars within each group indicate the phases of the first and second sample of a pair of consecutive samples, respectively, and are ordered as
described in c. Transition probabilities are included in the table below the graph. e The distribution of samples over corrected gestational age in
weeks. The dashed line separates the samples into early (< 34 weeks PMA) and late period (≥ 34 weeks PMA), based on functional variance of
microbiota composition across all 81 individuals. f Bar charts showing the average composition of the samples in each phase at the genus level,
with prominent genera labeled. For two Enterobacteriacaea and one Clostridiacaeae, the genus could not be determined and the family is indicated
instead (See Additional file 2: Comment on Figure 3F). Lines connecting segments between phases indicate that the segment represents the same
genus in each bar. A complete list of the genera represented here and their relative abundances can be found in Additional file 4: Table S3
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gut physiology and developmental stage influences the
microbiota following birth.
For a point of comparison with our phase-based cluster-

ing, we performed Dirichlet multinomial mixture (DMM)
modeling, using the composition of each sample at the
class level as input. The optimal model fit was
achieved with four Dirichlet components (Additional
file 2: Figures S3 and S4A–B and Additional file 3:
Table S2). DMM component three corresponds to our
P1 cluster, component two corresponds to P2, and
components one and four correspond to P3. A major-
ity of all samples (89.9%) were classified as represent-
ing the Dirichlet component matching the phase of the
sample. DMM components one and four within the P3
cluster correspond to more and less mature sub-types.
DMM component four was the more mature sub-type,
with the average sample occurring 2 weeks after the aver-
age component one sample, and exhibited the canonical
characteristics of P3 (high Clostridia, high diversity) with
little or no recognizable characteristics of P2. DMM
component one was the less mature sub-type, with
samples exhibiting the distinguishing characteristics of
P3 while retaining to some extent features of P2 (rela-
tively high Gammaproteobacteria). The high concord-
ance observed between DMM components and phases
provides statistically grounded support for our heuris-
tic model (See Additional file 3: Table S2 for details).

Variance and abundance of taxa across three microbiota
phases
Taxonomic analysis of all samples identified 16 phyla, 38
classes, 73 orders, 158 families, and 383 genera. Compos-
itional differences across the phases at all taxonomic levels
were characterized and pairwise comparisons were made
between phases. The average composition of the samples
in each phase at the genus level is shown in Fig. 1f, which
represents the abundance of genera relative to bar size.
The most significantly differentially abundant taxa between
P2 and P3 were a variety of Clostridiales elevated in P3, in-
cluding the genera Veillonella, Finegoldia, Clostridium, and
Anaerococcus. The most significant differences between P1
and P3 were observed among Staphylococcaceae which
were elevated in P1, and among Clostridiales genera Fine-
goldia and Veillonella which were elevated in the P3. A
complete list of differentially abundant taxa can be found
in Additional files 4 and 5: Tables S3 and S4A–C.

Functional capacity of microbiota phases
The inferred functional capacity of the microbiota was
compared between the three phases, revealing differ-
ences potentially relevant to nutrient processing and
microbiota-derived metabolites that contribute to estab-
lishment and maintenance of gut mucosal homeostasis
(Fig. 2). P1 exhibited enrichment for bisphenol A (BPA)

degradation and carotenoid synthesis pathways with
BPA being an environmental contaminant frequently
found in preterm infants due to repeated exposure to
plastics in medical devices [26–28] and carotenoids con-
ferring protection of gut microbiota against oxidative
stress [29, 30]. Additional pathways were found to be
significantly differentially abundant when comparisons
were made between phases, including an increased cap-
acity for synthesis of isoquinoline alkaloids, glycan and
lipopolysaccharide (LPS) in P2 and P3. Protein transla-
tion, fatty acid biosynthesis and glycolysis and gluco-
neogenesis were increased in P1. A complete list of
differentially abundant putative functions can be found
in Additional file 6: Table S5.

Effect of microbiota phase on infant growth, nutrient
intake, and medication
These observations prompted us to explore the potential
relationship between microbiota phase, parenteral and
enteral nutrient intake, medication and infant growth.
Using linear mixed-effect regression models that account
for subject-specific variation, with microbiota phase, ges-
tational age at birth, nutrient intake, and medication as
explanatory variables, we assessed the association of
weight Z-score (standard deviation score (Z-score) of in-
fant’s weight based on weight percentiles of a reference
population matched for prematurity and sex; used as the
dependent variable) and these covariates. Significant
associations with weight Z-score include gestational age
at birth, the phase of the microbiota, the ratio of major
macronutrients, the proportion of calories administered
enterally, the receipt of motility agents, antibiotics,
diuretics, corticosteroids, and several interaction terms
between medication/nutrition and the phase of the
microbiota (Table 2). The significance with respect to
weight Z-score of interaction terms between relative
lipid and protein intake and the phase of the microbiota
indicate that the observed association between these
macronutrients and growth depends on the composition
of the gut microbiota and differs between microbiota
phases.
The longitudinal patterns of rectal microbiota phase

transitions for 95 preterm and 25 full-term subjects are
shown in Fig. 3a relative to gestational age at birth.
Growth of the subjects is shown as change in weight Z-
score from birth to NICU discharge for preterms and
birth to 1 month for full terms. Comparison of preterm
infants in P1 (N = 42; mean birth GA (gestational age) =
27.43 weeks) with those in P2 or P3 (N = 55; mean birth
GA = 30.29 weeks) at the time of their first microbiota
sample showed significant difference (p < 0.0001) in
mean birth GA between these two groups. Furthermore,
the most premature subjects (< 29 weeks birth GA) were
significantly more likely to be in P1 than the full-term
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Fig. 2 a–i Functional capacity of microbiota phases. The functional capacity of the microbiota present in each sample was inferred using PICRUSt
(Phylogenetic Investigation of Communities by Reconstruction of Unobserved States) [63]. Each gray panel corresponds to one function and each
point within a gray panel represents one sample. The samples are stratified by phase along the x axis, with red circles corresponding to P1,
orange triangles corresponding to P2, and green squares corresponding to P3 samples. The sample position on the y axis indicates the relative
abundance of the specified KEGG pathway, calculated as the fraction of times functional components of that pathway occurs across all organisms
in the sample, with the contribution of each organism weighted by its relative abundance. Within each phase, samples are plotted on top of a
box plot, which is centered on the median, with notches indicating an approximately 95% confidence interval, boxes indicating the boundaries
of the first and third quartiles, and whiskers extending to the largest and smallest values no further than 1.5*(inter-quartile range) from the boxes.
Points beyond the whiskers are outliers. If the notches of two boxes within the same gray panel do not overlap on the y axis, there is strong
evidence that the true medians differ [69]. Functional pathways that are differentially enriched among the three phases include those that
contribute to the degradation of phthalates on NICU medical devices (bisphenol degradation), protection against oxidative stress (carotenoid
biosynthesis), microbiota driven increases in lipopolysaccharide (LPS) concentrations (lipopolysaccharide biosynthesis), short-chain fatty acids
(fatty acid biosynthesis), isoquinoloine alkaloid biosynthesis, glycolysis and gluconeogenesis, glycan biosynthesis and metabolism, membrane
transport and translation
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subjects at their first sample (61.8 vs 32.0%, p = 0.025).
The change in weight Z-score is associated with length
of time in each phase, with the lowest change (at the red
end of the spectrum in Fig. 3a) in subjects (i.e., JE573,
J5028, J1B12) who remain in phase 1 or 2 for prolonged
periods. The largest negative change in weight Z-scores
was associated with delays in transition to a P3 gut
microbiota (p = 0.0023). Delayed achievement of P3 was
also associated with prematurity, with full-term subjects
reaching P3 by 1 month of age much more frequently
than preterm subjects (100 vs 53.4%, p = 0.0001).
Similarly, greater PMA-adjusted growth by discharge
(preterms) or 1 month (full terms) was observed in
the full-term subjects than in the preterm subjects
(mean change in weight Z-score − 0.033 vs − 1.269,
p ≈ 0.0). Eleven infants were treated for necrotizing
enterocolitis (NEC) and two of these died of the dis-
ease. In those who survived, NEC was frequently
followed by more than 2 weeks in P2 (J6B6F, J900B,
J00F9, J2B52, and J8648). One infant who required a
jejunal ostomy remained in P1 for an extended period
of time (J0BE5). Thus, prolonged periods in P1 and P2
may represent the effects of lengthy antibiotic treat-
ment and/or lack of enteral nutrition. Although the
number of cases is insufficient for statistical assess-
ment, our data suggest an association between delayed
transition to P3 and a long-standing feeding intoler-
ance in the NICU that results in administration of
elemental amino acid-based formula (maroon ‘E’ in
the right-hand margin of Fig. 3a).

Effect of nutrition and medication on microbiota taxa in
each phase
We next examined the effects of nutrient intake and med-
ications on the microbiota within each phase. Changes in
taxa abundance would suggest adaptation of the micro-
biota in response to factors that the preterm infant en-
counters while in the NICU and may affect development
of a mature, functional gut microbiota. Using a multivari-
ate mixed-effects regression model that accounts for
subject-specific variations, we assessed changes in taxa
abundance at each phase, with PMA, gestational age at
birth, total calories per kilogram in the past week, propor-
tion of enteral calories in the past week, ratio of lipids,
carbohydrates and protein in the past week, antibiotics
and corticosteroid received during the past week, and add-
itional medications as covariates. We found phase-specific
changes in the microbiota significantly associated with the
ratio of lipids, proteins, or carbohydrates in nutrition
(total enteral and parenteral), with the dominant effect of
all three nutrients in P3. At the phylum level, Actinobac-
teria and Proteobacteria are significantly associated with
lipid intake, Firmicutes with protein and Actinobacteria,
Proteobacteria, and Firmicutes with carbohydrates. Abun-
dance of Bifidobacterium, an Actinobacterium most com-
monly linked with development and maintenance of the
healthy infant gut microbiota [31, 32], is significantly asso-
ciated with lipid and protein intake in P3, with increased
Bifidobacterium abundance associated with increased lipid
in the diet and decreased abundance with greater amounts
of protein. Among the commonly used NICU medica-
tions, increased abundance of Bifidobacterium was signifi-
cantly associated with use of corticosteroids and H2

receptor antagonists in the past week in P3. A complete
list of nutrition and medication variables significantly
associated with changes in microbiota taxa in all the three
phases can be found in in Additional file 7: Table S6.

Early and late periods of the preterm infant microbiome
To demonstrate the utility of modeling the microbiome
as three compositionally defined phases, we compared
gut microbiota development using two constant time pe-
riods based solely on PMA. Specifically, all preterm longi-
tudinal samples (n = 705) were divided into two groups or
periods of equal functional variance based on fitted micro-
biota taxa abundance, an early period (< 34 weeks PMA;
n = 362) and a late period (≥ 34 weeks PMA; n = 343)
(Fig. 1e and Additional file 2: Figure S5). This separ-
ation into early and late periods was used as an un-
biased point of comparison to assess the utility of the
phase-based approach relative to a purely temporal
approach in the context of a nutrition-medication-
microbiota-growth model. Using linear mixed-effects re-
gression models as described for the phase-based nutrition
analysis (Methods-Model A) with the weight Z-score as

Table 2 Associations of weight Z-score with microbiome phase,
nutrition, and clinical covariates

Significant covariates p value Beta value

Ratio of proteins to total calories (g/cal) * phase 2 0.0071 10.95

Ratio of lipids to total calories (g/cal) * phase 2 0.0437 5.658

Phase 2 0.0003 − 0.7766

Calories/kilogram past week < 0.0001 − 0.626

Proportion of calories enteral < 0.0001 − 0.5566

Corticosteroids past week * phase 1 0.0035 0.3669

Diuretics past week * phase 1 0.0002 0.3393

Diuretics past week * phase 2 < 0.0001 0.3306

Motility agents past week * phase 2 0.0003 − 0.3144

Diuretics past week < 0.0001 − 0.2266

Antibiotics past week < 0.0001 − 0.2176

Motility agents past week 0.0087 0.1522

Gestational age at birth 0.0165 0.059

Multiple regression associations of weight Z-score (as the outcome variable)
with microbiome phase, nutrition, and other clinical covariates, as well as the
interactions between phases and clinical covariates (interaction terms denoted
with an asterisk). P values indicate the significance of each association while
beta values indicate the direction and magnitude of the relationship between
weight Z-score and the covariates
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an outcome variable, we identified more significant associ-
ations in the phase based model than the period based
model. The complete results of the period-based models
can be found in Additional file 8: Table S7. Overall, our
results demonstrate that the phase-based model of gut
microbiota development in the preterm infant provides a
more robust explanation of the data than the period-based
model.

Potential associations of nutrition and medications with
phase
After identifying the microbiota phase as a significant
factor in infant growth, we sought to identify potential
associations of nutrition and medications with phase by
including them as explanatory variables and microbiota
phases P1 and P2 as the outcome (with P3 as the baseline
phase) in a multivariate mixed-effects logistic regression
model. We completed separate analyses to identify associ-
ations during the early and late periods with nutrition and
medications. Postmenstrual age, nutrient ratios, and the

proportion of calories from enteral feeding are signifi-
cantly associated with the phase of the microbiota in both
periods. A higher proportion of nutritional lipids is con-
sistently positively associated with the infant gut micro-
biota being in P2 and negatively associated with P1, while
a higher proportion of proteins is positively associated
with a P1 microbiota at an earlier PMA, negatively associ-
ated with being in P1 at later PMA, and negatively associ-
ated with being in P2 irrespective of PMA. Antibiotics are
positively associated with a P2 gut microbiota, significant
in the later PMA period (p = 0.0015), and nearly
significant in the earlier period (p = 0.0778). The vari-
ables used in these analyses, as well as their p values
and beta estimates, are provided in Table 3A–B and
Additional file 9: Table S8A–B.

Association between the meconium microbiota and
transition out of phase 1
In addition to nutrition and other external factors that
may influence the phase of the gut microbiome, we

(See figure on previous page.)
Fig. 3 Temporal distribution of gut microbiota phases, change in infant weight and meconium clearance. a All rectal samples from 95 preterm
and 25 full-term infants are plotted against post menstrual age, stratified by subject and sorted by gestational age at birth. Samples for preterm infants
include those collected weekly from birth through discharge. Samples for full-term infants include the first sample after birth (collected at ≤ 20 DOL)
and a second sample, collected ≤ 50 DOL. Microbiota phases (P1, red circle; P2, orange circle; P3, green circle), birth (gray diamond), stool transition
(blue arrowhead), and NEC diagnosis (black square) at discharge are also indicated. Change in weight Z-score from birth to discharge, and elemental
feeding requirements (maroon E) at discharge for preterm infants are indicated in the right margin. The lowest to greatest change in weight Z-score
from birth to discharge spans the spectrum from red to green. In all infants, except for J94F4, the total weight change in weight Z-score from birth to
discharge was negative. Weight Z-score changes in full-term infants were both positive and negative, and negative changes tended to be smaller than
those observed in preterms. b Day of life of stool transition and phase transition for 38 preterm subjects in phase one (P1) at the time of their first
microbiota sample. The relationship between day of life (DOL) for the initial transition out of P1 and from meconium to normal infant stool was
modeled by linear regression. These results demonstrate a highly significant association between the transition out of P1 and from meconium to
normal infant stool that is independent of PMA or prematurity, suggesting that the P1 and meconium microbiota are closely associated

Table 3 Significant results of mixed effects logistic regression for nutrition and medication

Covariates Phase 1 p value Phase 2 p value Phase 1 beta value Phase 2 beta value

Aa

Ratio of lipids to total calories (g/cal) 0.1913 0.0002 − 57.74 119.8

Ratio of proteins to total calories (g/cal) 0.0092 0.0053 110.1 − 70.12

Proportion of calories enteral 0.8786 < 0.0001 − 0.2702 − 6.039

Diuretics past week 0.007 0.1053 − 1.457 0.5927

PMA (week) 0.032 0.1674 − 0.3831 0.1403

Bb

Ratio of proteins to total calories (g/cal) 0.9455 0.0259 − 84.96 − 98.05

Proportion of calories enteral 0.7124 0.0017 15.29 − 6.428

Antibiotics past week 0.8903 0.0014 9.91 1.903

PMA (week) 0.3467 0.0011 − 7.108 − 0.4875
aResults of mixed-effects logistic regression analysis between nutrition/medication and microbiome phases during the EARLY period (< 34 weeks PMA). Phases 1
and 2 are considered as binary outcome variables (yes/no) and are analyzed separately. Beta values are the estimated regression coefficients and p values are
computed from the likelihood ratio tests. For clarity, only significant associations are reported in this table. Full results are reported in Additional file 9: Table S8A
bResults of mixed-effects logistic regression analysis between nutrition/medication and microbiome phases during the LATE period (≥ 34 weeks PMA). Phases 1
and 2 are considered as binary outcome variables (yes/no) and are analyzed separately. Beta values are the estimated regression coefficients and p values are
computed from the likelihood ratio tests. For clarity, only significant associations are reported in this table. Full results are reported in Additional file 9: Table S8B
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sought to identify dynamic aspects of host biology that
correspond to phase transition. Emerging evidence sug-
gests that the initial newborn infant gut microbiota is
partially acquired by maternal transmission from the
amniotic fluid and placenta before birth [10–13]. In
utero, the fetus swallows large quantities of amniotic
fluid that is colonized with bacteria in those mothers
who deliver prematurely [11, 33]. Genera in common
between amniotic fluid and the meconium, the earliest
fecal material passed by infants, suggests that pioneer
colonizers of the infant gut are from this maternal
source. In addition to amniotic fluid that has been con-
sumed, meconium is formed from sloughed off gastro-
intestinal epithelial cells which are generated as debris
during periods of rapid digestive tract development and
convolution of the intestinal epithelial surface. It has
been established that in preterm infants, passage of
meconium as stool is both delayed and prolonged and is
observed well beyond the first stool, with final clearance
occurring up to several weeks after birth [34].
To identify potential associations between the presence

of meconium and P1 of the microbiota, we examined the
relationship between clearance of the meconium from the
stool and the initial transition of the microbiota out of P1
(Fig. 3b). Two infants remained in P1 (J7F5C and J8560),
but did not survive beyond the first weeks in the NICU.
Two infants cleared their meconium by discharge but
their last microbiota sample was still in P1 (J0BE5 and
J5633). The remaining 38 infants that were observed to be
in P1 at their first rectal sample were included in a linear
regression model using gestational age at birth and the
DOL of their last P1 sample before their initial transition
to another phase as explanatory variables, with the DOL
of meconium clearance as the dependent variable. This
model explained approximately half of the variation in the
day of life of stool transition from meconium to normal
infant stool (R-square = 0.51). Phase transition was found
to be highly significant in this model (p < 0.0001), while
gestational age at birth and the intercept did not exhibit
significant associations (p values = 0.35 and 0.23, respect-
ively), indicating that the time of stool transition was not
associated with prematurity or PMA once microbiota
phase transition was controlled for. On average, the last
P1 sample before the initial phase transition occurred
4.7 days before stool transition was observed (Fig. 3b). To
assess the similarity between the meconium and P1
microbiota samples, we first categorized all 721 samples
as meconium or not, depending on whether the sample
was collected from an infant that had not transitioned to
normal stool, and as P1 or not, according to the decision
tree. A majority of meconium samples were in P1 (59.8%)
and P1 samples in meconium (64.4%) (Additional file 2:
Figure S6A). We next used linear regression analysis to
identify the taxa significantly associated with meconium

and then again to identify those associated with P1
(Additional file 2: Figure S6B and Additional file 10:
Table S9). The taxa that differ significantly between
meconium and non-meconium samples are nearly
identical to the taxa that differ significantly between P1
and P2-P3. These results demonstrate a highly significant
association between the transition out of P1 and transition
between meconium and normal infant stool, and that P1
and meconium share similar microbiota.

Discussion
Development of the early life gut microbiome is a crit-
ical factor in neonatal survival and long-term health
[5, 6, 35–38]. In this study, we examined the effects of
nutrition and clinical practices in the NICU on devel-
opment of the preterm gut microbiome and neonatal
growth. The developing microbiota of preterm infants
is dominated by three classes of bacteria, whose rela-
tive proportions are temporally defined [5]. In most
infants, Bacilli initially dominate, followed by Gam-
maproteobacteria, and ultimate convergence to a state
dominated by Clostridia by approximately 37 weeks
PMA. We demonstrate that this process can be under-
stood as a series of three ordered phases, with relative
stability being maintained for a period within each
phase and transitions between phases characterized by
rapid, dramatic shifts in the composition of the microbial
community. The phases and transition points between
them can be defined quantitatively, allowing individual
microbiota samples to be unambiguously categorized.
Analyses of the putative functional capacity of the phases
revealed marked differences and suggest significant roles
in host metabolism and gastrointestinal development.
While progression through the phases depends largely on
PMA, we identified significant associations with nutri-
tional factors, diuretics, and antibiotics. Notably, the initial
transition out of P1 is significantly associated with the ob-
served transition from meconium to normal stool. These
results suggest that the gut microbiota of premature in-
fants and its temporal dynamics may be best understood
through a phase-based paradigm. We have demonstrated
the utility of this paradigm by applying it to our examin-
ation of the relationships between the gut microbiota,
nutrition, and growth.
The gut microbiota of preterm infants at birth is less di-

verse than in full-term infants and at a greater risk for dys-
biosis due to physiological and immune immaturity and
postnatal influences that disrupt developmental succession
of the microbiota as they mature [23, 37, 39, 40]. Factors
that influence microbiota development include prolonged
hospitalization, postnatal medications, and formula feed-
ing [16, 23, 37, 39, 41]. In this study, preterm infants were
fed specialized premature base formulas or breast milk,
which were then fortified with composition and volume
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guided by daily infant growth rates and clinical evaluation.
All premature infants were supplemented with some li-
quid or powder formula fortification in order to target
their higher macronutrient, phosphorous, and calcium tar-
gets set by current pediatric guidelines. It would be inter-
esting to compare formula supplemented to exclusive
maternal breastmilk intake, though this theoretical control
group’s intake would place infants at unacceptable risk for
growth failure. The composition and volume of formulas
and volume of breast milk was monitored for each infant.
Nutritional intake for each infant was calculated as the ra-
tio of lipid, protein, and carbohydrate, total caloric intake,
and proportion of enteral calories, normalized by body
weight, and received the week prior to fecal sampling for
microbiota analysis. We then evaluated the impact of
these nutrients on successive phases of the microbiota in
relationship to PMA and infant growth. Adjustment of en-
teral and parenteral intake of these nutrients, along with
total calorie intake and medications, were associated with
infant growth.
The succession of gut microbiota in our preterm co-

horts revealed a low level of initial diversity in P1, which
is dominated by facultative anaerobes, followed by in-
creasing diversity and abundance of obligate anaerobes
and a shift to fermentation based metabolism in P3.
Consistent with other studies, we determined that this
programmed, non-random developmental succession of
microbiota is largely determined by PMA [5, 6]. What
drives this patterned succession toward a homeostatic
relationship between the infant and colonizing microbiota
is not known, but likely involves complex interactions be-
tween the mucosal immune system as well as metabolic
interactions within the gut microbial community and the
surrounding tissue and microenvironment, which remain
dynamic during periods of gastrointestinal development in
early life. Antimicrobial peptides (AMPs) produced by
Paneth cells (PCs) in the epithelium of the small intestine
establish a feedback loop between the host and com-
mensal bacteria that is essential for intestinal homeostasis
and microbiota colonization [39]. Although the number of
immune-competent PCs are significantly higher after
37 weeks of gestation when compared to preterm infants,
the number of immune-competent PCs are higher in in-
fants with GA above 29 weeks compared to infants with
GA under 29 weeks [42]. This period around PMA
29 weeks corresponds to the PMA ~ 30 weeks where we
observed the transition from P2 to P3 in our preterm co-
horts, suggesting that PC AMPs are one factor that modu-
lates the shift toward a community dominated by obligate
anaerobes. Streptococcus and Veillonella in P3, which fre-
quently co-occur and interact metabolically in microbial
communities, through the production of lactic acid by
Streptococcus which is used as a carbon source by Veillo-
nella [43]. Similar metabolic interactions that contribute

to succession and homeostasis will likely be identified
through metabolic profiling of communities within each
phase [6].
Phase-specific changes in the microbiota and infant

growth were significantly associated with the ratio of lipids,
proteins, and carbohydrates, and total caloric intake. In-
creased abundance of Actinobacteria and Proteobacteria
was significantly associated with lipid intake, Firmicutes
with protein, and Actinobacteria, Proteobacteria and Firmi-
cutes with carbohydrates (Additional file 7: Table S6). A
greater abundance of Staphylococcus, Clostridium, and En-
terococcus as a result of an increased ratio of carbohydrates
and total caloric intake in P3 reflects a potential change in
the energy balance and increased growth due to a greater
abundance of genes involved in lipid and carbohydrate me-
tabolism and production of butyrate in these Firmicutes
[44, 45]. While the increased ability of the microbiota to
extract nutrients from the food consumed by the host may
have a direct benefit for the preterm infant in early life,
emerging data suggests the potential for a strong impact
on disease programming and obesity in later life [46–48].
Importantly, the effect of nutrition on growth was
dependent on the microbiota phase during which individ-
ual nutrients were administered. These findings are con-
sistent with the inferred functional differences between the
phases and suggest that diet and treatment can be opti-
mized based on microbiota phase. A higher proportion of
protein is significantly positively associated in early life with
a P1 microbiota. Increased protein and lipids during P1 are
strongly associated with a higher growth rate. In contrast, a
higher proportion of protein is significantly negatively asso-
ciated with a P2 microbiota, with increased proportions of
total nutrition lipids and protein in P2 strongly associated
with higher weight Z-score. Relative to P1 and P3, P2 is
associated with lower weight and growth at a given time.
Significant associations with phase succession were

identified with exposure to broad-spectrum antibiotics,
gut motility agents, corticosteroids for treatment of
bronchopulmonary dysplasia (BPD), histamine-2 recep-
tor (H2)-blockers and proton pump inhibitors (PPI)
that reduce gastric acidity and gastroesophageal reflux
[41, 49, 50]. Previous studies evaluating use of antibi-
otics, H2-blockers and PPI in preterm infants identified
a relationship between their use and development of
necrotizing enterocolitis (NEC) [5, 51]. Treatment with
H2-blockers has been shown to favor the proliferation
of Proteobacteria over Firmicutes in fecal microbiota,
which is also associated with development of NEC [41].
Eleven preterm infants with NEC were included in our
study, but were not analyzed as an independent group,
and therefore, we cannot directly associate phase with
changes in microbiota and NEC. However, our analysis
of phase succession demonstrated that treatment of our
preterm infants with H2-blockers or PPI was associated
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with an increase in Proteobacteria, Actinobacteria, and
Bacteroidetes in P2 (Additional file 7: Table S6). Expos-
ure to antibiotics in P2-3 and P3 resulted in a decrease
in Firmicutes and increase in Proteobacteria, respectively.
Furthermore, the occurrence of NEC relative to phase
transition suggests an association of NEC with microbiota
reverse transitions from P2 to P1 (subject J0BE5) and P3
to P2 (JF17A and J6B6F) and delayed transition to P3
(J00F9, J900B, and J2B52) (Fig. 3a).
While microbiota phase transition presents an oppor-

tunity to optimize postnatal growth, weekly assessment
of an individual infant’s gut microbiome to target nutri-
tional therapy is not yet feasible. However, the associ-
ation of meconium clearance with transition out of P1
suggests use of clearance as a cost-free bedside tool to
assess the consequences and therapeutic potential of
transition from P1 to P2 in preterm infants. Implement-
ing a diet with increased proportions of lipids and pro-
teins in P1 may enhance infant growth and promote
transition to P2. A subsequent increase in the proportion
of proteins after transition to P2, as indicated by clearance
of meconium, could maximize growth and promote pro-
gression to P3, and could be followed by adjustment of
overall enteral calories for optimal growth. Further investi-
gation into clinical surrogates of the microbial transition
to P3 would provide additional benefit to bedside care and
assessment of nutrition on long-term infant development.
Broadly, healthy growth and rapid gut microbiota develop-
ment (transition through the three phases) occur in paral-
lel and are hindered by prematurity. Further investigation
of associations between phase progression and dietary
macronutrients and common medications may suggest
potential avenues for microbiotic-focused care aimed at
optimizing growth and mitigating certain pathologies
associated with prematurity.
The clearance of meconium and transition out of P1 is

not always stable, with the microbiota of some infants
reverting back to a meconium state or P1 after the initial
transition to P2 (Fig. 3a). Furthermore, clearance of
meconium occurs in P2 of some (e.g., J5028 in Fig. 3a)
or whose first sample was in P2 (i.e., J94E8). Expansion
of meconium clearance over P2 is also shown in
Additional file 2: Figure S6, where a significant num-
ber of P1 samples were not identified as meconium.
This may be due to our reliance on a clinical obser-
vation of meconium clearance to more solid fecal
material. Another likely source is the dynamic environ-
ment of the preterm gut and changes in microbiota-gut
epithelium interactions during rapid development [52]. In
addition to the expected observation of delayed and pro-
longed meconium clearance due to hypomotility consist-
ent with the immature preterm gastrointestinal tract, it
may be that the continued accumulation of sloughed off
epithelial cells during the period of rapid intestinal growth

and convolution known to occur during the developmen-
tal period corresponding to the third trimester results in a
mixture of normal stool and meconium.
Given that functional properties of the microbiome,

metabolism, and host physiology are likely of paramount
significance to our observations, additional experimental
approaches to identify underlying microbiome mechanisms
at each phase would be of substantial value. Additionally, as
this was not a case-control study, our ability to rigorously
assess the relationship between nutrition, the microbiota,
and growth was limited. Significant associations identified
between different nutrients, the phase of the microbiota,
and growth depended upon the variation in nutritional in-
take that occurred as a matter of course, independent of
our study. Controlling these factors in a systematic way
would likely be highly informative, but would be difficult to
achieve given the risks to the study population. We also ac-
knowledge a study limitation with the proportion of breast
milk received by each infant, in that we were unable to
collect precise measurements of breastmilk volumes due to
variability from feed to feed in breastmilk availability. We
recommend that future studies control or measure this
quantity more precisely. Finally, additional metrics of host
gut physiology and immune and metabolic development
can be incorporated into future studies as they may provide
insights into the factors driving phase progression as well
as the potential impact of phase transition on the newborn’s
growth and development.

Conclusion
To our knowledge, this is the first study to demonstrate an
association between gut microbiota phase, nutritional in-
take, and growth of preterm infants. We first developed a
discrete three phase-based model based upon quantitative
categorical classification of the preterm gut microbiota,
characterized the composition and putative functional cap-
acity of the three microbiota phases, and described the
properties of phase transition. We determined that transi-
tion from meconium to normal infant stool is associated
with transition of the microbiota out of P1. Second, we
identified significant associations between phase-specific
gut microbiota functions, growth, nutritional intake, and
medication. Third, in both the phase- and period-based
models, the abundance of several dominant infant gut
microbiota taxa (e.g., Bifidobacterium) [37, 53] were signifi-
cantly affected by gestational age at birth, PMA at sam-
pling, total calories and proportions of macronutrients
consumed at the week of sampling, and multiple clinical
variables. Collectively, this work lays the foundation for
additional studies to determine causality leading to person-
alized microbiome medicine of preterm infants and new
clinical guidelines with nutritional and medication recom-
mendations based on infant growth and gut microbiota
development.
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Methods
Clinical methods
All study procedures were approved by the University of
Rochester School of Medicine Internal Review Board (IRB)
(Protocol # 37933). Infants included in the study were from
the multicenter Prematurity and Respiratory Outcomes
Program (PROP) and the Respiratory Pathogens Research
Center (RPRC) at the University of Rochester School of
Medicine and were cared for in a single-center Newborn
Intensive Care Unit (NICU). Clinical care in terms of type
and duration of antibiotic treatment, corticosteroids, di-
uretics, motility agents, and H2 receptor agonists as well as
the timing and volume of feeds was at the discretion of
treating physicians. Rectal swabs were used to collect fecal
material from consented infants from 24 PMA until dis-
charge and again at 6 months and 1 year for preterms and
birth and 1 month for full terms. Each sample was collected
by inserting a sterile Copan flocked nylon swab (Copan
Diagnostics, Murrieta, CA) moistened with normal saline
beyond the sphincters into the rectum and then twirled.
Each sample was immediately placed into sterile buffered
saline and stored at 4 °C for no more than 4 h. Samples
were processed daily, which involved extraction of the fecal
material from the swab in a sterile environment and imme-
diately frozen at − 80 °C until DNA extraction. All sampling
swabs, plasticware, buffers, and reagents used for sample
collection and extraction of nucleic acids were sterile and
UV-irradiated to insure no contamination from sources
outside of the infant and sample.

Derived medication and nutrition variables
For all medications considered, binary variables were
derived for each sample that indicate whether or not a
given medication was administered in the week (7 days)
prior to sample collection. Weight Z-score was com-
puted as a proxy for growth. First, weight percentile was
computed as the percentage of weight measures of a
population of the same sex and age that fall below the
observed weight value. We applied Cole’s LMS method
as used by CDC and WHO [54]. The standard growth
chart is based on sex-matched premature infant popula-
tion weight data collected by Fenton and Kim [55, 56].
Weight Z-scores were computed based on the corre-
sponding weight percentiles. Four variables associated
with each sample were derived for nutritional intake:
total calories per kilogram in the week prior to sample
collection, ratio of lipids or proteins in the week prior to
sample collection, and the ratio of total calories in the
week prior to sample collection that were consumed en-
terally (as opposed to parenterally). These values were
computed based on detailed daily feeding records and
the available nutrition facts for all formulas, supple-
ments, and total parenteral nutrient preparations used in
the NICU. Total calories per kilogram in the past week

is the sum of total calories per kilogram per day for the
7 days prior to sampling. The proportion of enteral calo-
ries computed as the ratio of (grams of lipids/protein
per kilogram) divided by (total calories per kilogram) for
each day, summed over the 7 days prior to sampling.
“Enteral calorie ratio past week” was computed as the
total calories per kilogram consumed enterally in the
week prior to sampling divided by the total calories per
kilogram consumed (enterally and parenterally) in the
same period.

Genomic DNA extraction
Total genomic DNA was extracted with a modified
method using the QIAGEN Fecal DNA kit and FastPrep
mechanical lysis (MPBio, Solon, OH). 16S ribosomal
RNA (rRNA) was amplified with Phusion High-Fidelity
polymerase (Thermo Scientific, Waltham, MA) and
dual indexed primers specific to the V3-V4 hypervari-
able regions (319F: 5′ ACTCCTACGGGAGGCAGCAG
3′; 806R: 3′ ACTCCTACGGGAGGCAGCAG 5′) [57].
Amplicons were pooled and paired-end sequenced on
an Illumina MiSeq (Illumina, San Diego, CA) in the
University of Rochester Genomics Research Center.
Each sequencing run included (1) positive controls con-
sisting of a 1:5 mixture of Staphylococcus aureus, Lacto-
coccus lactis, Porphyromonas gingivalis, Streptococcus
mutans, and Escherichia coli and (2) negative controls
consisting of sterile saline.

16S rRNA sequence processing
Raw data from the Illumina MiSeq was first converted
into FASTQ format 2 × 300 paired-end sequence files
using the bcl2fastq program, version 1.8.4, provided by
Illumina. Format conversion was performed without de-
multiplexing and the EAMMS algorithm was disabled.
All other settings were default. Sequence processing and
microbial composition analysis were performed with the
Quantitative Insights into Microbial Ecology (QIIME)
software package [58], version 1.9. Reads were multi-
plexed using a configuration described previously [57].
Briefly, for both reads in a pair, the first 12 bases were a
barcode, which was followed by a primer, then a hetero-
geneity spacer, and then the target 16S rRNA sequence.
Using a custom Python script, the barcodes from each
read pair were removed, concatenated together, and
stored in a separate file. Read pairs were assembled
using fastq-join from the ea.-utils package, requiring at
least 40 bases of overlap and allowing a maximum of
10% mismatched bases. Read pairs that could not be
assembled were discarded. The concatenated barcode
sequences were prepended to the corresponding assem-
bled reads, and the resulting sequences were converted
from FASTQ to FASTA and QUAL files for QIIME ana-
lysis. Barcodes, forward primer, spacer, and reverse primer
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sequences were removed during de-multiplexing. Reads
containing more than four mismatches to the known
primer sequences or more than three mismatches to all
barcode sequences were excluded from subsequent pro-
cessing and analysis. Assembled reads were truncated at
the beginning of the first 30 base window with a mean
Phred quality score of less than 20 or at the first ambigu-
ous base, whichever came first. Resulting sequences
shorter than 300 bases or containing a homopolymer lon-
ger than six bases were discarded. Operational taxonomic
units (OTU) were picked using the reference-based
USEARCH (version 5.2) [59] pipeline in QIIME, using the
May 2013 release of the GreenGenes 99% OTU database
as a closed reference [60, 61]. An indexed word length
of 128 and otherwise default parameters were used with
USEARCH. Chimera detection was performed de novo
with UCHIME, using default parameters [59]. OTU
clusters with less than four sequences were removed,
and representative sequences used to make taxonomic
assignments for each cluster were selected on the basis
of abundance. The RDP Naïve Bayesian Classifier was
used for taxonomic classification with the GreenGenes
reference database, using a minimum confidence thresh-
old of .85 and otherwise default parameters [62]. Phylo-
genetic investigation of communities by reconstruction of
unobserved states (PICRUSt) [63] was used with the pro-
vided pre-processed KEGG Orthologs database to infer
the putative functional capacities of these communities.

16S rRNA microbiota data pre-processing
To ensure the quality of statistical analysis, microbiome
samples with < 12,000 total reads were excluded from the
subsequent data analyses. Microbiota abundance data
were summarized at six different levels (level 2:
PHYLUM–level 7: SPECIES). For characterization of the
microbiota phases and within phase abundance analyses,
raw relative abundance values were used. For beta diver-
sity calculations, normalization by rarefaction at a depth
of 12,000 reads was performed. For longitudinal abun-
dance analyses, at each taxonomic level we excluded OTU
units (taxa) with equal or more than 98% of exactly zero
reads among the 705 samples. In total, 140 genera and
198 species are used for these statistical analyses. The
abundance data were log2 transformed (log2(x + 1)) fol-
lowing normalization by cumulative sum scaling [64].

Description of decision tree logic to define microbiota
phases
Drawing on the microbial dysbiosis index described by
Gevers et al. [65], the first step in the decision tree is to
compute and evaluate the log of (total abundance of the
classes increased in prematurity (Bacilli +Gammaproteo-
bacteria)) over (total abundance of the class decreased in
prematurity (Clostridia)). If this value is less than or equal

to two, the gut microbiota is defined as being in phase 3.
If the result of the first step in the tree is greater than two,
a second step is taken where we compute and evaluate the
log of (total abundance of the class increased in extreme
prematurity (Bacilli)) over (total abundance of the class
decreased in extreme prematurity (Gammaproteobac-
teria)). If the resulting value is less than or equal to two,
the gut microbiota is defined as being in phase two; other-
wise, it is defined as being in phase one (P1). In the event
that the ratio is non-computable because Clostridia is en-
tirely absent and the P1|P2 branch is taken, or the P1|P2
branch is taken and Gammaproteobacteria is absent, the
microbiota is defined as being in P1 or the P1|P2 branch
is taken and Bacilli is absent, the microbiota is defined as
being in P2. If two of the three classes are absent, the
microbiota is defined as being in the phase characterized
by the class that is present. No samples were entirely
devoid of all three classes, but such a case could not be
resolved within this framework. Dirichlet multinomial
mixture (DMM) modeling for comparative purposes was
performed using the Dirichlet multinomial R package,
which is based on Holmes et al. [66]. Class-level compos-
ition was used, and per sample normalization was per-
formed by converting relative abundances to counts
summing to 12,000 (the minimum read threshold for in-
clusion in analysis). The dmn function was used with de-
fault parameters and an arbitrary seed value of 11; count
data was fit to one through ten Dirichlet components, and
model fit was estimated using the Laplace metric.

Functional capacity of microbiota phases
The functional capacity of the microbiota present in
each sample was inferred using PICRUSt (Phylogenetic
Investigation of Communities by Reconstruction of Un-
observed States) [63], which reconstructs the functional
composition of a microbial community sample using
16S rRNA phylogeny and a database of annotated refer-
ence genomes. For each functional pathway from the
Kyoto Encyclopedia of Genes and Genomes (KEGG) that
was putatively identified, comparisons were made be-
tween the phases using LEfSe, which identifies features
that are statistically differentially abundant among bio-
logical classes (in this case phases) and then performs
comparative tests between pairs of biological classes to
identify where these features are significantly enriched
or diminished.

Comparing taxonomic composition, functional capacity,
and week-to-week dissimilarity between phases
Analysis of variance of taxa abundance at all taxonomic
levels across the three phases of the microbiota was con-
ducted using a Kruskal-Wallis test, and the results are
summarized in Additional file 4: Table S3. Differential
abundance of taxa between each pair of two phases was
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assessed at each taxonomic level using the metagen-
omicsSeq zero-inflated Gaussian test [64], and the re-
sults are summarized in Additional file 5: Tables S4A–C.
Testing for differential functional capacity between the
phases was performed using LEfSe [67] with per-sample
normalization to 1 M total counts, minimum effect size
of 2.0, alpha of 0.1, an all-against-all strategy, and other-
wise default parameters. The results are summarized in
Additional file 6: Table S5. An exploratory test of the
equality of the median of the week-to-week differences
of samples within individual subjects between the cases
where the phase remains the same and the cases where the
phase changes was performed using the Wilcoxon rank-
sum test. The p value reported for this test is approximate
due to the paired nature of beta-diversity and the presence
of repeated measures from the same subjects.

Transition from meconium to solid stool
The point of stool transition from meconium to normal
as described in the text was determined from nurses’ re-
cords subjectively characterizing diaper contents when
they were changed. These records were available as free
text and each entry was time stamped, with one entry
for every time a diaper was changed. Stool transition
was defined as the first such record without the word
meconium that was followed by no more than two
records containing the word meconium. To assess the
associations between day of life (DOL) of stool transition
and day of life of initial transition out of phase one, a
simple linear regression model was used with DOL of
transition out of phase 1, gestational age at birth as
covariates, and DOL of stool transition as the outcome.
A similar regression model was used to assess the asso-
ciation between growth and time to reach phase 3. The
DOL of the first phase 3 sample observed for each sub-
ject and their gestational age at birth were used as covar-
iates, and the total change in weight Z-score from birth
to discharge was used as the outcome variable. This
model included only the 81 subjects who reached phase
three prior to discharge.

Determination of early and late time periods
We applied functional principal component analysis to
the microbiota abundance data [21]. The estimated tem-
poral abundance function of taxon v and subject I, xi;v
tð Þ , was represented by a linear combination of eigen-
functions as follows:

x̂i;v tð Þ ¼ μ̂v tð Þ þ
XKv

k¼1

cik;vξk;v tð Þ:

Here, μ̂v tð Þ is the estimated mean curve for the vth
taxon, ξk, v(t) is the kth eigen-function for this taxon,
Kv is the number of top eigen-functions needed to

explain ≥ 99% of total functional variation, and cik, v

are the linear coefficients. On average, it takes 2.93
functional principal components to explain ≥ 99% of
total variation at the species level. We calculated the
total functional variance based on the fitted micro-
biota abundance at the species level. More specifically,
we computed the pointwise variance function for each
species from the smoothed temporal curves of abun-
dance at the species level, then took the summation
over all species used in this study

Vv tð Þ ¼ 1
N−1

XN

i¼1

x̂i;v tð Þ−x⋅;v tð Þ� �2
; V tð Þ≔ 1

M

XM

v¼1

Vv tð Þ:

Here, x⋅;v tð Þ represents the sample mean abundance
function calculated from all subjects. V tð Þ represents the
overall temporal variance at the species level. The max-
imum of V tð Þ occurred at PMA = 34 weeks (rounded to
integers), which is illustrated in Additional file 2: Figure S5.
Based on this cutoff, we define the EARLY period of PMA
to be (0,34) and the LATE period to be [34,∞). The EARLY
interval has 362 data points; the LATE interval has 343
data points.

Association between clinical variables and microbiota
abundance in each phase
Within each phase independently, association testing be-
tween all taxa and clinical and nutritional factors of
interest was performed by regressing the relative abun-
dance of each taxon on these covariates: gestational age
at birth, post menstrual age, total calories per kilogram
in the past week, ratio of lipids in the past week, ratio of
proteins in the past week, ratio of carbohydrates in the
past week, proportion of total calories received enterally
in the past week, whether antibiotics were received in
the past week, whether diuretics were received in the
past week, whether corticosteroids were received in the
past week, whether motility agents were received in the
past week, whether proton pump inhibitors were re-
ceived in the past week, and whether H2 receptor antag-
onists were received in the past week. This was done
using the MaAsLin algorithm [68] with subject as a ran-
dom variable, without model selection, and with other-
wise default parameters. The results are summarized in
Additional file 7: Table S6.

Association between nutrition/medication and growth
We performed linear mixed-effect regression analysis
similar to the above model on both early and late pe-
riods (Model A) and three phases (Model B) to test
the association between the nutrition/medication factors
(as covariates) and weight Z-score as a proxy for growth
(as the response variables). We included gaBirth (gesta-
tional age at birth) and PMA in the model to control for
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their possible confounding effects. More specifically,
the following two linear mixed-effects regressions were
performed.
Model A:

Weighti tj
� � ¼ Periodi tj

� �
βperiod

þ
XK

k¼1

NutriMedi;k tj
� �

βk

þ Interactionsþ αi þ �ij:

Model B:

Weighti tj
� � ¼ Phasei tj

� �
βphase

þ
XK

k¼1

NutriMedi;k tj
� �

βk

þ Interactionsþ αi þ �ij:

Here, NutriMed(i,k) (tj) is the kth clinical covariate for
the ith subject measured at the jth time point. βk is the
corresponding linear coefficient (fixed effect); αi is a
random-effect term that quantifies the within-subject
dependence; and ϵij is the i.i.d. measurement error. In
summary, model A associates weight Z-score to the
time periods (EARLY versus LATE), nutrition and
medication variables, and their interactions. Model B is
much like model A except that it uses microbiota
phases to quantify the developmental stages of micro-
bial community instead. For model A, LATE is consid-
ered as the baseline phase (coded as 0) and EARLY is
coded as 1. For model B, phase 3 is considered as the
baseline phase (coded as 0); phases 1 and 2 are coded
as 1 in two separate binary variables. The interactions
included in both models are defined as the products of
the nutrition/medication variables and period/phase-re-
lated covariates. The significance of associations is de-
termined by regression t test with Satterthwaite’s
approximation. Due to the use of large number of co-
variates in these models, stepwise model selection
based on the Akaike information criterion (AIC) was
used to reduce model complexity. The results of model
B for weight Z-score are summarized in Table 2 of the
main text. As an example, the linear associations of P2
and percent lipids * P2 with the weight z-score are both
significant (beta = − 0.7766 for P2 and 5.658 for lipids *
P2); meaning that while P2 is correlated with a smaller
weight z-score as compared with the baseline (P3), a
higher percent of lipid intake for P2 subjects increases
the weight Z-scores for subjects in P2. Analyses were
performed in R 3.2.0 (R Foundation for Statistical Com-
puting, Vienna, Austria).

Predicting microbiome phases
We performed a mixed-effects logistic regression analyses
to study the associations between a host of nutrition- and

medication-related covariates and the three micro-
biota phases on the early and late intervals. We con-
sidered P3 as the baseline phase and represented P1
and P2 by two separate binary outcome variables.
Gestational age at birth and PMA were included to
control for their potential confounding effects. A like-
lihood ratio test was used to determine the statistical
significance of associations. The results are summa-
rized in Tables 3A and B.

Additional files

Additional file 1: Table S1. Number of significant associations
identified in the initial linear mixed-effects regression analysis. Specifically,
for each covariate listed in this table, we performed linear mixed-effects
regression analyses in which the response variables are microbial taxa
abundance and the regressors are as follows: (1) gestational age at birth,
(2) post-menstral age, (3) this covariate (main), and (4) the interation
between the main covariate and PMA. Regression t tests were used to
assess the statistical significance of associations. Benjamini-Hochberg multiple
testing procedure was used to control false discovery rate at 0.05 level. Listed
in this table are the numbers of taxa that are significantly associated with
each regressors in these initial regression analyses. (DOCX 17 kb)

Additional file 2: Figure S1. Composition bar charts by subject and
sampling method. Figure S2. Alpha diversity by subject and sampling
method observed OTUs. Figure S3. Number of Dirichlet components vs.
model fit. Figure S4. Weighted UniFrac Principal Coordinate Analyses of
phase and Dirichlet component. (A) Weighted UniFrac Principal
Coordinate Analysis plot colored by phase. (B) Weighted UniFrac Principal
Coordinate Analysis plot colored by Dirichlet Component. Figure S5.
Total functional variance based on the fitted microbiome abundance at
the species level relative to postmenstrual age (PMA). Figure S6. Linear
regression analysis of meconium samples and Phase 1 rectal samples.
Comment on Figure 3F. (DOCX 1141 kb)

Additional file 3: Table S2. Confusion table of phases vs. Dirichlet
multinomial mixture components. Each sample was classified as
representing a specific phase based on the ratios of Bacilli,
Gammaproteobacteria, and Clostridia, as described. Independently, each
sample was classified as representing a Dirichlet multinomial mixture
(DMM) component based on the abundances of all classes of bacteria
present. Each row of the table above indicates the number of samples
classified as a given phase, and each column indicates the number of
samples classified as a given DMM component. Row/column
intersections indicate the number of samples classified as the
corresponding phase (row) and DMM component (column). DMM
components are numbered automatically from the most common to the
least common, while phases are numbered according to their order in a
model of temporal progression. Phase 1 is equivalent to DMM
component 3; phase 2 corresponds to DMM component 2; and phase 3
corresponds to both DMM components 1 and 4. Colors on the row and
column labels indicate these correspondence relationships, and colors
internal to the table identify sets of samples where the phase-based and
DMM component classifications are in agreement. (DOCX 18 kb)

Additional file 4: Table S3. Kruskal-Wallis analysis of variance of all
bacterial taxa across the three Phases of the microbiome. (XLSX 109 kb)

Additional file 5: Table S4. A. Results of differential abundance tests
(metagenomeSeq zero-inflated Gaussian) of all bacterial taxa between
microbiome phases 1 and 2. B. Results of differential abundance tests
(metagenomeSeq zero-inflated Gaussian) of all bacterial taxa between
microbiome phases 2 and 3. C. Results of differential abundance tests
(metagenomeSeq zero-inflated Gaussian) of all bacterial taxa between
microbiome phases 1 and 3. (ZIP 536 kb)

Additional file 6: Table S5. Significant results of linear discriminant
analysis of putative functional features of microbial communities across
the three Phases of the microbiome. (XLSX 24 kb)
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Additional file 7: Table S6. Significant associations between bacterial
taxa and nutrition, medications, and other clinical factors, within each of
the three phases of the microbiome. (XLSX 34 kb)

Additional file 8: Table S7. Multiple regression associations from
period-based model with weight Z-score as the outcome variable. The
interaction terms are denoted by an asterisk. The p values indicate the
significance of each association, while the beta values indicate the
direction and magnitude of the relationship between weight Z-score
and the covariates. (DOCX 12 kb)

Additional file 9: Tables S8. A–B. Full results of mixed-effects logistic
regression for nutrition and medication. (DOCX 14 kb)

Additional file 10: Table S9. Linear regression analysis of significant
taxa for two variables (genera in P1 and genera in meconium), those that
are significant for both variables and those that are unique to each
(P1 or meconium). (XLSX 9 kb)
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