
RESEARCH ARTICLE

A framework for analyzing contagion in

assortative banking networks

Thomas R. Hurd1*, James P. Gleeson2, Sergey Melnik2

1 Department of Mathematics, McMaster University, Hamilton, Ontario, Canada, 2 MACSI, Department of

Mathematics & Statistics, University of Limerick, Limerick, Ireland

* hurdt@mcmaster.ca

Abstract

We introduce a probabilistic framework that represents stylized banking networks with the

aim of predicting the size of contagion events. Most previous work on random financial net-

works assumes independent connections between banks, whereas our framework explicitly

allows for (dis)assortative edge probabilities (i.e., a tendency for small banks to link to large

banks). We analyze default cascades triggered by shocking the network and find that the

cascade can be understood as an explicit iterated mapping on a set of edge probabilities

that converges to a fixed point. We derive a cascade condition, analogous to the basic repro-

duction number R0 in epidemic modelling, that characterizes whether or not a single initially

defaulted bank can trigger a cascade that extends to a finite fraction of the infinite network.

This cascade condition is an easily computed measure of the systemic risk inherent in a

given banking network topology. We use percolation theory for random networks to derive a

formula for the frequency of global cascades. These analytical results are shown to provide

limited quantitative agreement with Monte Carlo simulation studies of finite-sized networks.

We show that edge-assortativity, the propensity of nodes to connect to similar nodes, can

have a strong effect on the level of systemic risk as measured by the cascade condition.

However, the effect of assortativity on systemic risk is subtle, and we propose a simple

graph theoretic quantity, which we call the graph-assortativity coefficient, that can be used

to assess systemic risk.

Introduction

The study of contagion in financial systems is topical in light of the recent global credit crisis

and the resultant damage inflicted on financial institutions. Contagion [1] refers to the spread

of dangerous shocks through a system of financial institutions, with each successive shock

causing increasing pressure on the remaining components of the system. The term systemic
risk refers to the contagion-induced threat to the financial system as a whole, due to the failure

of one (or more) of its component institutions.

Over time, the nature of such contagious shocks has been a topic of active discussion,

with a growing list of channels such as funding illiquidity, asset fire sales and collateral

shocks, that extend beyond the standard default or insolvency channel. For clarity in this
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paper, we adhere to the main body of systemic risk modelling, and focus only on the default

channel [2].

It is widely held (see [3] and [4] and references therein) that financial systems, defined for

example as the collection of banks and financial institutions in a developed country, can be

modelled as a random network of nodes or verticeswith stylized balance sheets, connected by

directed links or edges that represent exposures or interbank loans, each edge with a positive

weight that represents the size of the exposure. If ever a node becomes insolvent and ceases to

operate as a bank, it will create balance sheet shocks to other nodes, creating the potential of

chains of insolvency that we will call default cascades. Financial networks are difficult to

observe because interbank data is often not publicly available, but studies have indicated that

they share characteristics of other types of technological and social networks, such as the

World Wide Web and Facebook. For example, the node degree distributions P of financial net-

works are thought to be fat-tailed since it is observed that a significant number of banks are

very highly connected.

A less studied feature observed in financial networks (and as it happens, also the World

Wide Web) is that they have high negative assortativity characterized by an edge degree distri-
bution Q (see [5], [6] and [7]). This refers to the property that any bank’s counterparties (i.e.,

their graph neighbours) have a tendency to be banks of an opposite character. For example,

it is observed that small banks tend to link preferentially to large banks rather than other

small banks. Commonly, social networks are observed to have positive rather than negative

assortativity. Structural characteristics such as degree distribution and assortativity are felt to

be highly relevant to the propagation of contagion in networks but the nature of such rela-

tionships is far from clear [8]. Negative assortativity can account for the observed core-
periphery structure identified in [9] and [10] as an important characteristic of financial

networks.

Our aim here is to develop a mathematical framework that will be able to determine the sys-

temic susceptibility in a rich class of infinite random network models with enough flexibility

to include the most important structural characteristics of real financial networks, with general

degree distributions and, for the first time, a prescribed edge-assortativity. In developing a the-

ory of infinite size random networks, it is imperative to point out that its results may have only

very limited explanatory power for observations of real financial networks, or indeed on finite

size random networks. Such a theory is first and foremost a guide to understanding, and is not

directly applicable to real networks by central bankers and supervisors. Our starting point will

be the Gai-Kapadia (GK) cascade model [11] and the analytical methods developed there and

in [12] for that model. The basic assumptions introduced in the GK model are:

1. The network is a large (actually infinite) random directed graph with a prescribed degree

distribution;

2. Each node (bank) is labeled with a stylized banking balance sheet that identifies its external

assets and liabilities, its internal (i.e., total interbank) assets and liabilities, and γ, its net

worth or equity (i.e., its total assets minus its total liabilities). Initially, the system is in equi-

librium, meaning each node has positive net worth γ> 0;

3. Each directed edge is labeled with a deterministic weight w that represents the positive

exposure of one bank to another. These weights depend deterministically on the in-degree

of the edge, and are consistent with the interbank assets and liabilities at each node;

4. A random shock is applied to the balance sheets in the system that triggers the default or

insolvency of a fixed fraction of nodes;
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5. The residual value of an interbank exposure available to creditors of a defaulted bank is

zero, and thus the shock has the potential to trigger a cascade of further bank defaults.

The principle of limited liability for banks means that shareholders are never asked to cover a

negative net worth of an insolvent firm. Instead, the insolvent firm is assumed to default. This

means it ceases to operate as a going concern, shareholders are wiped out, and its creditors

divide the residual value. Since this residual value is always less than the nominal liabilities,

creditor banks thus receive a shock to their balance sheets, which creates the potential for a

default cascade. The GK model makes a very simple zero recovery assumption that residual val-

ues of defaulted banks will be zero, and thus every time a bank defaults a maximal possible

shock will be transmitted to its creditors. The GK model can easily be extended to a constant

recovery assumption with fraction R by reparametrizing all exposures w! (1 − R)w.

Our paper makes the following contributions towards developing a mathematical theory of

systemic risk.

1. We generalize the GK model in an important respect, namely that the edge degree distribu-

tion Q is arbitrary, allowing for any desired amount of assortativity in the network.

2. We present a simple algorithm for constructing general assortative random directed graphs

of the configuration class.

3. We provide formulas for the expected cascade size, the frequency of global cascades, and

the spectral cascade condition.

4. We introduce the concept of graph assortativity for directed graphs that can be used to

assess systemic risk.

The remainder of this paper is structured as follows. In Sec. 1, we introduce our assortative

banking network model. In Sec. 2, we present our analytical results, including the calculation

of the expected cascade size, the cascade condition, and a formula for the frequency of large

scale cascades. In Sec. 3, we compare numerical results of Monte Carlo simulations with the

analytical predictions of Sec. 2 for several examples of networks generated using our model.

Section 4 concludes.

1 The banking network model

In this section we specify the two constituent parts of our interbank model: network structure

and dynamics. The structure or skeleton of the network is modelled as a random directed

graph. The dynamics is determined by the bank balance sheets and the rules for the propaga-

tion of defaults through the interbank network.

1.1 The assortative skeleton network

The first step in building a financial network is to build the skeleton random directed graph

where nodes represent banks and edges represent interbank loans. Our construction is an

extension of the well-known configuration graph model [13], and to describe it we introduce

the following definitions and notation:

1. A node v has type (j, k) means its in-degree, the number of in-pointing edges, is j and its

out-degree is k.

2. An edge ℓ is said to have type (k, j) with out-degree k and in-degree j if it is an out-edge of a

node with out-degree k and an in-edge of a node with in-degree j.

A framework for analyzing contagion in assortative banking networks
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3. We write Eþv (or E �v ) for the set of out-edges (respectively, in-edges) of a given node v. We

write vþ‘ (or v�‘ ) for the node for which ℓ is an out-edge (respectively, in-edge). In other

words, edge ℓ starts from vþ‘ and ends at v�‘ .

4. Let Pjk be the probability of a type (j, k) node. This distribution has marginals Pþk :¼
P

jPjk
and P�j :¼

P
kPjk , and mean in- and out-degree z ¼

P
jjP
�
j ¼

P
kkP

þ
k .

5. Let Qkj be the probability of a type (k, j) edge. This distribution has marginals Qþk :¼
P

jQkj
and Q�j :¼

P
kQkj.

Fig 1 illustrates the neighborhood of a type (j = 3, k = 2) node. Arrows point from debtor to

creditor banks, so that default contagion propagates along the edge directions.

To define an ensemble of directed configuration graphs with N nodes and joint distribu-

tions of node types P and edge types Q the following consistency conditions should hold for

each j and k

� NPjk 2 Z; NzQkj 2 Z;

� Qþk ¼ kPþk =z; Q�j ¼ jP�k =z:
ð1Þ

Here, the first condition states that there must be an integer number of nodes and edges, while

the second condition ensures that the number of edges of different types corresponds exactly

to the degrees of nodes. Under these conditions, we use the following algorithm to construct a

directed edge-assortative graph from our ensemble:

1. Make a list of N nodes of which exactly NPjk are of type (j, k) and a list of zN edges of which

exactly NzQkj have type (k, j). We refer to the unpaired in (out) arrows of each node and

edge as j-stubs (or k-stubs).

2. While there are unmatched stubs

• Pick an unmatched edge at random. Let its type be (k, j).

Fig 1. The network neighborhood of a bank v which has type (j = 3, k = 2), since it has 3 debtors and 2 creditors

in the interbank network. Edge ℓ has type (k = 1, j = 3), since it is an out-edge of a node with out-degree 1 and an in-

edge of a node with in-degree 3.

doi:10.1371/journal.pone.0170579.g001
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• Match its j-stub to a random unpaired j-stub of a node, chosen uniformly at random from

unmatched j-stubs.

• Match its k-stub to a random unpaired k-stub of a node, chosen uniformly at random

from unmatched k-stubs.

Two recent papers, Refs. [14] and [15], have explored the class of Assortative Configuration

Graphs, and proposed more complex simulation algorithms that do not rely on the rationality

of P, Q in Eq (1). The algorithm we propose here is easy to understand, and adequate for our

purposes.

We illustrate the stub-matching process in Fig 2. It is important to recognize that this graph

construction may lead for finite N to self-edges as well as multiple edges between node pairs.

Such anomalies have been shown in configuration random graphs to occur with vanishing

density as N goes to infinity [16]. Although financial networks are necessarily finite and rela-

tively small, analytical results for infinite graphs can nevertheless guide understanding of the

role of the various parameters in the financial interpretation. The property of configuration

graphs in the N!1 limit that cycles of any fixed finite length occur only with zero probabil-

ity, called the locally tree-like (LT) property, has been recently proven in Ref. [15].

The special case Qkj ¼ kjP�j P
þ
k =z

2 ¼ Q�j Q
þ
k corresponds to edge uncorrelated directed

graphs where in and out degrees of an edge are independent from each other. Such graphs can

be constructed using a simpler algorithm: one lists j and k-stubs of all nodes, and then j-stubs

are matched to k-stubs uniformly at random. We are interested in the general assortative case

described above because real financial networks appear to have negative edge-assortativity, in

that high degree banks attach preferentially to low degree banks [5].

A natural measure of edge-assortativity by degree is the edge-assortativity coefficient
rQ 2 [−1, 1] given by

rQ ¼
P

jkjk½Qkj � Q�j Q
þ
k �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P

jj2Q�j � ð
P

jjQ�j Þ
2

� � P
kk2Qþk � ð

P
kkQ

þ
k Þ

2
� �

r :
ð2Þ

This is of course the Pearson correlation for Qkj viewed as a bivariate probability distribution.

We will soon find some evidence that systemic risk of a network may be more strongly related

Fig 2. Stub-matching during the network construction process. The k-stub of an unmatched edge of

type (k = 2, j = 3) is matched to an unmatched k-stub of one node, while the j-stub of the edge is matched to an

unmatched j-stub of another node.

doi:10.1371/journal.pone.0170579.g002
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to a combination of edge- and node-assortativity (arising from the dependence between in-

and out- degrees of nodes). We therefore also define a measure we call the graph-assortativity
coefficient r 2 [−1, 1] given by

r ¼
P

jj0 jj
0½Bjj0 � B�j B

þ
j0 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P

jj2B�j � ð
P

jjB�j Þ
2

� � P
j0 j0

2Bþj0 � ð
P

j0 j0B
þ
j0 Þ

2
� �r ;

ð3Þ

where

Bjj0 ¼
X

k

Pjk

Pþk
Qj0k

is the joint distribution of the in-degree of pairs of nodes connected by an edge and

B�j ¼
P

j0Bjj0 ;B
þ
j0 ¼

P
jBjj0 are the marginals.

1.2 Contagion dynamics

To build a financial network with full accounting information, consistent with a given skeleton

graph, one specifies the external assets Yv and external liabilities Dv for each node v, and for

each edge ℓ of the network, an exposure size or weight wℓ. Then the interbank assets are Zv ¼
P

‘2E �v
w‘ and interbank assets are Xv ¼

P
‘2Eþv

w‘. The net worth or equity of a node v is defined

to be its total assets minus total liabilities:

gv ¼ Yv þ Zv � Dv � Xv : ð4Þ

In Fig 3, we show the schematic balance sheet. By limited liability, the solvency condition for a

bank v is γv> 0. We will always assume that the system is initially in an equilibrium state in

which all banks are solvent. Thus γv is a capital buffer that keeps the bank solvent when sub-

jected to balance sheet shocks up to a certain size.

The cascade dynamics that we specify below do not depend on full accounting information,

but only on the information about the buffers γ and edge weights w. The analytical results of

our paper hold for default buffers γjk that may depend on the node type (j, k), and the edge

weights wj that may depend on the edge in-degree.

Fig 3. Balance sheet of a bank v with 3 debtors and 2 creditors. The net worth (or capital buffer) γv of the

bank is its assets less its liabilities.

doi:10.1371/journal.pone.0170579.g003
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Insolvencies arise in a system initially in equilibrium only when a shock causes at least

one node to suffer a loss larger than its buffer γv. For simplicity, we suppose that such an ini-

tial shock to our system causes an initial set M0 of nodes to become insolvent (for example

by hitting their external assets), but leaves other banks’ balance sheets unchanged. The set

M0 is drawn randomly, with the fraction of type (j, k) nodes that are defaulted denoted

by r
ð0Þ

jk .

Under the zero recovery assumption that an insolvent bank can pay none of its interbank

credit obligations, each insolvent node v triggers all its out-edges to have zero value. This trig-

gering of edges to default is an instance of what we call an edge update step of the cascade: for

any set of defaulted nodes M we find a default edge set D which is composed only of edges

originating from nodes M.

Each such defaulted edge ℓ now transmits a maximal shock wℓ to the asset side of the bal-

ance sheet of its end-node v�
‘

(the creditor bank). A solvent bank becomes defaulted if the total

shock received by the bank from all its defaulted debtors exceeds its buffer. Hence the insol-

vency condition on a (j, k)-type node v is

gjk �
X

‘2E �v

1f‘2Dg wj ;

where D is a set of defaulted edges, and the indicator function 1A of a set A is 1 on the set and

0 on its complement. We call this triggering of nodes to default a node update step of the cas-

cade: for the default edge set D we find a default node set M0
defined by the condition v 2M0

if and only if

#fE �v \Dg � Mjk :¼ dgjk=wje ; ð5Þ

where (j, k) is the type of node v. Here dxe denotes the ceiling function, i.e., the smallest integer

greater than or equal to x, and so Mjk is the threshold for the number of defaulted in-edges that

will cause a type (j, k) node to default.

To summarize, our banking system is specified by a skeleton random directed graph

(defined by the number of nodes N and the probabilities Pjk, Qkj for node and edge types), the

accounting information (bank default buffers γjk and interbank loan amounts wj) and the ini-

tial default probabilities r
ð0Þ

jk for each bank type (resulting in the randomly-drawn initial

shocked set M0). Given any realization of a shocked financial system so specified, the default

cascade will be an alternating sequence of edge and node updates, beginning with M0.

2 Analytical results

2.1 Expected cascade size

In this section, we calculate the expected fraction of defaulted nodes and edges in an asymptot-

ically large network. Given any realization of a shocked financial system as specified above,

with an initial shocked set M0, the default cascade can be thought of as a sequence of updates:

D1 D2 D3

%#%#% #
M0 M1 M2 M3 . . .

Inductively, we have nondecreasing sequences of sets for n� 1:

Dn :¼ defaulted edges triggered by nodes in Mn� 1; ð6Þ

A framework for analyzing contagion in assortative banking networks
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Mn :¼ defaulted nodes triggered by edges in Dn: ð7Þ

We define r
ðnÞ
jk as the probability that a type (j, k) node is in the default set Mn, and proba-

bilities s
ðnÞ
k and aðnÞj that respectively an edge with out-degree k and an edge with in-degree j

are in the default set Dn. To calculate these probabilities, we use a simple but powerful recur-

sive approach for solving cascade-type dynamics on random network models [17–19].

Consider a type (j, k) node and calculate its default probability r
ðnÞ
jk for n� 1. The node is

either initially defaulted with probability r
ð0Þ

jk , or it is initially not defaulted with probability

1 � r
ð0Þ

jk . In the latter case, it will default if it has sufficiently many defaulted in-edges. Each of

its j in-edges is defaulted with probability aðnÞj . From the locally tree-like property of the skele-

ton in the limit N!1, we deduce that the states of the in-edges of a node are independent

from each other. Therefore, the probability of exactly m out of j in-edges to be is the binomial

probability
j
m

� �

ðaðnÞj Þ
m
ð1 � aðnÞj Þ

j� m
. These m defaulted edges cause the default of the node if

m is at least Mjk = dγjk/wje (see Eq (5)). Hence, adding all probabilities together gives

r
ðnÞ
jk ¼ r

ð0Þ

jk þ ð1 � r
ð0Þ

jk Þ
Xj

m¼Mjk

j
m

� �

ðaðnÞj Þ
m
ð1 � aðnÞj Þ

j� m
: ð8Þ

Next, to calculate s
ðnþ1Þ

k , the probability that an edge with out-degree k is defaulted at step

n + 1, we take an edge with out-degree k and look at its source node which (by the definition)

has out-degree k. This is a type (j, k) node with conditional probability Pjk=Pþk and if so, it is

defaulted at step n with probability r
ðnÞ
jk . Hence,

s
ðnþ1Þ

k ¼
X

j

r
ðnÞ
jk

Pjk

Pþk
; ð9Þ

where the sum is over possible in-degrees j of the source node.

Similarly, the probability that an edge with in-degree j is defaulted at step n + 1 is given by

aðnþ1Þ

j ¼
X

k

s
ðnþ1Þ

k

Qkj

Q�j
; ð10Þ

where Qkj=Q�j is the probability that the edge has out-degree k, given its in-degree is j. An edge

of type (k, j) is defaulted with probability σk and we sum over all possible k.

Starting with a given fraction of initially defaulted nodes r
ð0Þ

jk , we begin by computing the

collections s
ð1Þ

k ; a
ð1Þ

j using Eqs (9) and (10). Thereafter, we can iterate Eqs (8)–(10) to obtain the

values of r
ðnÞ
jk , s

ðnþ1Þ

k , aðnþ1Þ

j , for n� 1.

In the case of edge-uncorrelated directed networks when Qkj ¼ Qþk Q
�
j , the quantities aðnÞj no

longer depend on j and Eqs (8)–(10) simplify to

r
ðnÞ
jk ¼ r

ð0Þ

jk þ ð1 � r
ð0Þ

jk Þ
Xj

m¼Mjk

j
m

� �

ðaðnÞÞmð1 � aðnÞÞj� m ; ð11Þ

aðnþ1Þ ¼
X

j;k

k
z
Pjkr

ðnÞ
jk : ð12Þ

A framework for analyzing contagion in assortative banking networks
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2.2 The cascade condition

We can derive a cascade condition which implies that a generic infinitesimally small fraction

r
ð0Þ

jk of defaulted nodes will result in a cascade of finite size. Writing Eqs (8)–(10) in vector

form as

�aðnþ1Þ ¼ fGjð�aðnÞÞg ; ð13Þ

where �aðnÞ ¼ faðnÞj g, an infinitesimally small seed may only grow if the Jacobian matrix Djj0 ¼

@Gj=@aj0 j0 has an expanding direction, i.e., at least one eigenvalue with magnitude bigger than

1. In Sec. 3, we shall see that the cascade condition is indeed a strong measure of systemic risk

in simulated networks.

The derivatives Djj0 are easy to calculate. From Eq (8)

@r
ðnÞ
jk

@aðnÞj

�
�
�
�
�
aðnÞj ¼0

¼
Xj

m¼Mjk

j
m

� �

ðaðnÞj Þ
m� 1
ð1 � aðnÞj Þ

j� m� 1
ðm � aðnÞj jÞ

�
�
�
�
�
�
aðnÞj ¼0

¼
j

Mjk

 !

ð1 � aðnÞj Þ
j� MjkðaðnÞj Þ

Mjk� 1Mjk

�
�
�
�
�
aðnÞj ¼0

¼ j1fgjk�wjg:

ð14Þ

Combining Eqs (9) and (10), and substituting Eq (14), the linearization of Gjð�aðnÞÞ around zero is

Gjð�aðnÞÞ ¼
X

k

Qkj

Q�j P
þ
k

X

j0
Pj0kr

ðnÞ
j0k

�
X

k

Qkj

Q�j P
þ
k

X

j0
Pj0kj

01fgj0k�wj0 g
aðnÞj0 ;

ð15Þ

which yields

Djj0 ¼
@Gj

@aj0

�
�
�
�
�
0

¼
X

k

j0QkjPj0k1fgj0k�wj0 g

Q�j P
þ
k

: ð16Þ

Finite size cascades are possible when the spectral radius (the largest eigenvalue in absolute

value) of matrix {Djj0} exceeds one:

k D k> 1: ð17Þ

In the case of uncorrelated edge degrees (i.e., Qkj ¼ Qþk Q
�
j ), aj no longer depends on j and

the cascade condition is simply

X

j;k

jk
z
Pjk1fgjk�wjg > 1 ; ð18Þ

a result that has been derived previously in a rather different fashion [11, 20]. This formula

extends the percolation theory approach from undirected networks [21] to the case of directed

nonassortative networks. We will see in the next section that the percolation approach to the

cascade condition also extends to our directed assortative networks.

We can understand the cascade condition more clearly by introducing the notion of vulnera-
ble node, that is any node that defaults if any one of its debtors (in-neighbours) defaults. In our
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specifications, a (j, k) node is thus vulnerable if and only if its capital buffer is less or equal to the

weight of its in-links, i.e., γjk� wj. The matrix element Djj0 has a simple explanation that gives

more intuition about the nature of the cascade condition: it is the expected number of edges with

in-degree j that emanate from a vulnerable node reached by following an edge with in-degree j0.

2.3 Frequency of global cascades and the giant vulnerable cluster

The cascade condition that tells us that global cascades are possible turns out to be equivalent

to the existence of a giant vulnerable cluster in the interbank network. When the cascade con-

dition is satisfied, the default of a single bank will result in a global cascade if the bank belongs

to the so-called in-component of the giant vulnerable cluster. Hence, the frequency of global

cascades is bounded from below (and as it turns out well approximated by) by the fractional

size of the in-component (see Chapter 13.11 of Ref. [22]).

Let us define the following (see Fig 4):

• V is the set of vulnerable nodes;

• S � V is the giant strongly connected set of vulnerable nodes (called the giant vulnerable
cluster);

• I � S is the in-component of the giant vulnerable cluster: the set of (possibly not vulnerable)

nodes that are connected to S by a directed path through vulnerable nodes;

• Gjk ¼ 1fgjk�wjg is the indicator function that gives 1 if type (j, k) nodes are vulnerable and 0

otherwise.

The default of any node in the in-component I will cause the default of the entire strongly

connected component S. We consider �b ¼ fbkg where bk is the probability that a node with k

Fig 4. Schematic structure of the network with arrows representing the propagation of default. The default of any bank

in the in-component I will trigger the default of all nodes in the strongly connected vulnerable cluster S, as well as the

vulnerable nodes in the out-component of S.

doi:10.1371/journal.pone.0170579.g004
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out-neighbours is not in the in-component I . Note that v 2 I c (i.e., the complement of I) is

equivalent to the condition that all the downstream nodes are in the set Vc [ ðV \ I cÞ, i.e., the

out-neighbours of v are either not vulnerable or they are vulnerable, but not in the in-compo-

nent of S. Thus, bk = (ck)k, where ck is the probability that an out-neighbor of an out-degree-k
node is in the set Vc [ ðV \ I cÞ.

To calculate ck, we note that an out-neighbor of a type (j, k) node is a (j0, k0)-type node with

probability Pj0k0Qj0k=P�j0 Q
þ
k . The probability that a (j0, k0)-type node is not vulnerable is 1 − Γj0 k0.

The probability that a (j0, k0)-type node is vulnerable, but does not belong to the in-component

is Γj0 k0 bk0 = Γj0 k0(ck0)k
0

. Thus, combining all probabilities together and summing over the possi-

ble types of nodes we get

ck ¼
X

j0 ;k0
Gj0k0 ðck0 Þ

k0
þ ð1 � Gj0k0 Þ

� � Pj0k0Qj0k

P�j0 Q
þ
k
: ð19Þ

Hence, �c ¼ fckg can be found as a fixed point of Eq (19), which we re-write in vector form as

�c ¼ fhkð�cÞg. Note that the equation �c ¼ fhkð�cÞg has a trivial fixed point �e ¼ ð1; 1; . . .Þ that

corresponds to the set I being empty. We now verify that the cascade condition kDk>1 is

equivalent to the condition that �e is an unstable fixed point, in which case there will be a non-

trivial fixed point 0 � �c1 < �e. A sufficient (and almost necessary) condition for �e to be an

unstable fixed point is that k ~D k> 1 where the derivative ~Dkk0 ¼ ð@hk=@ck0 Þj�c¼�e is given by

~Dkk0 ¼
X

j0

k0Qj0kPj0k0Gj0k0

Qþk P�j0
ð20Þ

One can verify directly that

~D ¼ LBAL
� 1

� �T
; D ¼ AB

for matrices

Ajk ¼
Qkj

Q�j
; Bj0k ¼

j0Pj0kGj0k

Pþk
; Lkk0 ¼ dkk0kP

þ

k

and from this it follows that the spectra, and hence the spectral radii of ~D and D are equal.

Hence kDk>1 if and only if k ~D k> 1.

As long as the cascade condition is satisfied, the cascade frequency f is approximately the

lower bound given by the probability a random node has at least one out-neighbor that

belongs to I :

f ≳
X

k

ð1 � ðckÞ
k
ÞPþk : ð21Þ

3 Numerical results

In this section, we consider two examples of stylized interbank networks and show that the

analytical results obtained above match well to the Monte Carlo simulations when N, the num-

ber of nodes in the network, is sufficiently large. Unless specified otherwise, we adopt the

choice of parameters made for the model of Ref. [11]:

gjk ¼ g :¼ 0:035; wj ¼
1

5j
:
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3.1 A simple random network model

We consider networks constructed with nodes of types (3, 3), (3, 12), (12, 3), (12, 12) and

edges of the same types. For parameters a 2 [0, 0.5] and b 2 [0, 0.2] the following P and Q
matrices are consistent and specify a network with an average node degree z = 7.5:

P3;3 P3;12

P12;3 P12;12

0

@

1

A ¼
0:5 � a a

a 0:5 � a

 !

;

Q3;3 Q3;12

Q12;3 Q12;12

0

@

1

A ¼
0:2 � b b

b 0:8 � b

 !

:

ð22Þ

We first fix the value of a to be 0.5, which means that the in- and out-degrees of all nodes

are negatively correlated: nodes with in-degree 3 have out-degree 12, and vice versa. We exam-

ine three different values of the parameter b: the independent connections case b = 0.16, the

near maximally positive assortative case b = 0.01 and the near maximally negative assortative

case b = 0.19. Note that the independent edge condition has been assumed in the random net-

work models of [11, 23] and [20]. We also note that with b = 0, edges have maximally positive

assortativity and link nodes of out-degree 3 to nodes of in-degree 3 only, and nodes of out-

degree 12 to nodes of in-degree 12 only. In this case, the network consists of two disconnected

components.

We vary the net worth γ over the range 0 to 0.1, while the initial shock distribution is taken

to be r
ð0Þ

jk ¼ 1=N for all types (j, k), corresponding to the shocking of a single randomly-chosen

bank.

Fig 5 compares theory curves for cascade size (found by iterating Eqs (9) and (8) to conver-

gence) as well as the cascade frequency given by Eq (21) with results from numerical simula-

tions on random networks with N = 104, 103 and 200 nodes. The node correlation parameter is

fixed at a = 0.5, while the edge correlation parameter takes the values b 2 {0.01, 0.16, 0.19}.

Results are plotted as functions of the net worth parameter γ. In each case, 500 realizations are

used to find the extent of global cascades (a global cascade is defined, similarly to Refs. [11,

12], as one in which more than 5% of nodes default), and the frequency with which such global

cascades occur. As expected, the analytical approach accurately predicts the size of the global

cascades. Some discrepancies may be noted in Fig 5, where the theory does not predict some

global cascades, but note that these occur with only very small frequencies.

The cascade condition (17) predicts that the critical values of the cascade buffer parameter

γ are: γc = 0.017 for the parameters of Fig 5(a), and γc = 0.067 for the case of Fig 5(b). These val-

ues match very accurately to the locations of the dramatic transitions in the theory curve (and

in the expected size of cascades in numerical simulation): for γ values in excess of γc global cas-

cades are extremely rare, while for values less than γc the entire financial system is likely to fail

following a single bank’s default. These result indicate the potential usefulness of the cascade

condition as a measure of systemic risk.

In Fig 6, we consider the dependence on (a, b) of various theoretical quantities in the infi-

nite N limit. In the top panels, the critical value of γ and cascade size are seen to be discontinu-

ous, and certainly not related to edge-assortativity (which is monotonic in b). On the other

hand (see bottom panels), the frequency of cascades is continuously varying, and does appear

to correlate to some extent with the graph assortativity coefficient r given by Eq (3). We

observe in the two scatter plots of Fig 7 that in this model r is a better purely graph theoretic

predictor of systemic susceptibility than rQ.
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3.2 A hierarchical banking network

Bech and Atalay [6], and references therein, have observed that in the US Federal Funds net-

work, small banks tend to be net lenders, while large banks tend to be net interbank borrowers.

Moreover, in this important network, small banks tend to have very few counterparties while

large banks have many. Fig 8 illustrates a stylized interbank network that captures these obser-

vations, with banks divided into three tiers: small Tier-3 banks, medium Tier-2 banks and

large Tier-1 banks. We suppose that Tier-3 banks typically do not borrow from other banks,

Fig 5. Numerical simulation results (symbols) and theoretical results (curves) for the random network model of

Eq (22), on networks of N nodes with parameter a = 0.5, as functions of the net worth γ. The average size and

frequency of global cascades in simulations are shown by red circles and blue crosses, respectively. Theoretical results for

the expected cascade size (black solid curve) are from Sec. 2.1; those for the frequency of cascades (dashed magenta

curve) are from Sec. 2.3. Each column shows results for a different network size N, and the parameter b takes a different

value on each row of the figure. Since the (dashed magenta) frequency curves are independent of N they are only shown in

the first column.

doi:10.1371/journal.pone.0170579.g005
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Fig 6. Figure showing how various theoretical quantities of the network defined by Eq (22) depend on the parameters (a, b).

Top left: critical γ value. Top right: Expected size of cascades (from Sec. 2.2) when γ = 0.05 and r
ð0Þ

jk ¼ 10� 4. Bottom left: the graph

assortativity parameter r. Bottom right: frequency of cascades (from Sec. 2.3) when γ = 0.05.

doi:10.1371/journal.pone.0170579.g006

Fig 7. Scatter plots showing the correlation between the cascade frequency and r (left panel) and rQ (right panel) for the example

shown in Fig 6. Each point represents a pair of (a,b) values (taken uniformly at random from the range shown in Fig 6), for which we

calculate the cascade frequency and r (left panel), or the cascade frequency and rQ (right panel). Note that r is a better predictor of cascade

frequency than rQ in this example.

doi:10.1371/journal.pone.0170579.g007
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and deposit their excess funds in one or two Tier-2 or Tier-1 banks. Tier-2 banks may borrow

from two or three Tier-3 banks and one or two Tier-2 banks, while they lend (deposit) to sev-

eral Tier-2 or Tier-1 banks. Finally, we suppose that Tier-1 banks borrow from a handful of

Tier-3 banks, several Tier-2 and Tier-1 banks. Note that one needs our assortative model to

represent a tiered interbank network sketched in Fig 8, as the previously developed models

[11] are unable to do so. The following P and Q matrices realize these characteristics in our

Fig 8. Sketch of a directed assortative interbank network defined by Eqs (23) and (24). The network consists of 3 tiers of banks.

The connections among tiers are shown by the thick arrows and represent possible paths for the spread of defaults. The default of Tier-3

banks cannot cause any further bank defaults because Tier-3 banks have 0 out-degree. Tier-2 banks can cause the default of Tier-2 and

Tier-3 banks. The default of a Tier-1 bank may lead to the default of banks in any tier. Tier-1 banks consist of nodes of types (3,10) and

(5,16), Tier-2 banks of nodes (2,3) and (4,4), and Tier-3 banks of nodes (1,0) and (2,0).

doi:10.1371/journal.pone.0170579.g008
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model:

k : 0 3 4 10 16

Pjk ¼
1

100

40 0 0 0 0

30 10 0 0 0

0 0 0 5 0

0 0 10 0 0

0 0 0 0 5

0

B
B
B
B
B
B
B
B
B
B
@

1

C
C
C
C
C
C
C
C
C
C
A

j ¼ 1

j ¼ 2

j ¼ 3

j ¼ 4

j ¼ 5

ð23Þ

k : 0 3 4 10 16

Qkj ¼
1

240

0 9 12 11 16

0 18 24 22 32

0 0 0 6 12

0 9 12 11 16

0 0 0 20 20

8
>>>>>>>>>><

>>>>>>>>>>:

9
>>>>>>>>>>=

>>>>>>>>>>;

j ¼ 1

j ¼ 2

j ¼ 3

j ¼ 4

j ¼ 5

ð24Þ

Here the column index corresponds to possible out-degrees k 2 {0, 3, 4, 10, 16} and the row

index corresponds to possible in-degrees j 2 {1, 2, 3, 4, 5}. For example, P1,0 = 0.4 means 40%

of nodes have in-degree 1 and out-degree 0, and Q2,4 = 0.1 means 10% of edges start from

nodes with our-degree 4 and end at nodes with in-degree 2. The Tier-1 banks are composed of

types (3,10) and (5,16) nodes, Tier-2 banks of types (2,3) and (4,4) nodes, and Tier-3 banks of

types (1,0) and (2,0) nodes. One can check that the row and column constraints Q�j ¼ jP�j =z,

Qþk ¼ kPþk =z are satisfied with mean degree z ¼
P

kkP
þ
k ¼

P
jjP
�
j ¼ 2.

It will be instructive to compare the default cascades on such hierarchical network with cas-

cades on its edge uncorrelated version, i.e., on a network where in and out degrees of an edge

are independent. Thus, in the edge uncorrelated case, Qkj factorizes as

Qunc
kj ¼

jP�j kP
þ
k

z2
; ð25Þ

and using the values from Eq (23) one obtains

k : 0 3 4 10 16

Qunc
kj ¼

1

800

0 24 32 40 64

0 48 64 80 128

0 9 12 15 24

0 24 32 40 64

0 15 30 25 40

8
>>>>>>>>>><

>>>>>>>>>>:

9
>>>>>>>>>>=

>>>>>>>>>>;

j ¼ 1

j ¼ 2

j ¼ 3

j ¼ 4

j ¼ 5

ð26Þ

Observe that unlike Eqs (24) and (26) allows edges between all banks, irrespective of their

degrees, so there is no hierarchical structure of Fig 8 in this case.
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We consider directed networks generated according to P matrix Eq (23), and Q matrix Eq

(24) for edge correlated, or Eq (26) for edge uncorrelated case. For simplicity, we assume as

before that the default buffer γ is the same for all nodes, and link weights are given by 1/(5j),
where j is the link in-degree. We consider scenarios under which a single bank becomes

defaulted, thereby initiating a cascade of defaults.

In Fig 9 (top panels), we plot analytical and numerical results for the expected size of global

cascades and their frequency versus the default buffer γ. The analytical results for the frequency

and the expected cascade size were obtained using Eqs (21), (9) and (8) respectively. In general,

our theory predicts numerical results quite well. However, for some values of γ, the cascade

size is not captured accurately by the theory in the correlated case shown in Fig 9(a). This is

because Eqs (9) and (8), as many other theoretical approaches, assume infinite network size,

which is not the case here. Hence, for some parameters the theory may not perform well on

finite systems [24–26].

In the bottom panels of Fig 9, we show numerical distributions of cascade sizes for three dif-

ferent values of γ: 0, 0.045, and 0.06. When γ is sufficiently small, all nodes are vulnerable (i.e.,

their default will trigger the default of all downstream nodes) and the distribution of cascade

sizes is exactly the distribution of out-component sizes. Therefore, the results for γ = 0 repre-

sent the distribution of the fraction of nodes that can be reached starting from a randomly cho-

sen node. Interestingly, for γ = 0 and γ = 0.045 we see peaks at around 35% for correlated

networks in Fig 9(c), but these peaks are absent for edge-uncorrelated networks in Fig 9(d).

For γ = 0, the approximately 0.12 weight at 35% cascade size in Fig 9(c) is mainly due to

Tier-2 seeds. Tier-2 seeds cannot cause the default of Tier-1 banks because of the hierarchical

Fig 9. Results for network defined by Eqs (23) and (24) (left panels) and its uncorrelated version defined by Eqs

(23) and (26) (right panels). Initially a single bank chosen at random from the network of N = 12000 nodes is defaulted. To

obtain analytical results we set r0
jk ¼ 1=N (for all j and k). Top panels show the analytical and numerical results for the

expected size of global cascades and their frequency versus the default buffer γ. Bottom panels show numerically

calculated distributions of cascade sizes for different values of default buffer γ. To obtain numerical results we averaged

over 104 realizations of random seeds, and a global cascade occurs if it occupies over 5% of the network.

doi:10.1371/journal.pone.0170579.g009
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structure of the network (see Fig 8), and the resulting cascade size is 35%, which is the size of

the giant component of Tier-2 and Tier-3 subgraph. The 100% cascades in Fig 9(c) can be trig-

gered exclusively by a Tier-1 seed node because only Tier-1 nodes can have the entire network

as their out-component (see Fig 8). A Tier-1 node triggers a relatively large number of

defaulted edges, that almost certainly results in a 100% cascade. (With very small probability a

Tier-1 seed can result in no cascade, e.g., when it is connected exclusively to Tier-3 nodes, or

lead to a 35% cascade, e.g., when it is connected only to Tier-2 nodes.) There are 10% Tier-1

nodes in the network, and hence 100% cascades have probability of approximately 0.1 in Fig 9

(c). Likewise, the main contribution to the 0.78 no-cascade peak in Fig 9(c) is made by Tier-3

(sink) nodes which take 70% of the network. The extra 0.08 weight to the no-cascade peak is

due to Tier-2 nodes which hit exclusively Tier-3 (sink) nodes, and hence fail to trigger a

cascade.

Summarizing the above, the three peaks observed in Fig 9(c) appear because of the hierar-

chical structure of the interbank network, encoded in the edge-correlation matrix Q of Eq

(24). This implies that (i) Tier-3 nodes never trigger a cascade, (ii) only Tier-1 seeds can trigger

100% cascades, and (iii) within the subnetwork of Tier 2 and 3 nodes, there is a giant compo-

nent which occupies 35% of the network; some but not all Tier-2 seeds hit this component.

By comparing the frequency and expected cascade size shown on left and right panels of Fig

9, we see that the edge-correlated interbank structure is more resilient to defaults than the

edge-uncorrelated one. This example is of interest to finance, because it shows a new type of

robust fragility. Only big banks can bring the entire system down, while medium banks can

trigger their subnetwork to collapse. This type of behaviour cannot be observed in edge-uncor-

related models [11].

4 Conclusion

In summary, we have described here an analytical framework which can predict the systemic

risk of a networked system of financial institutions. The qualitative type of networks one can

address has been extended compared to most existing work, in particular by the inclusion of

the non-independent connections between nodes. In this more general setting we find the cas-

cade is described by a vector-valued fixed point problem that reduces to well-understood scalar

problems in special cases. We also observed that graph assortativity can strongly affect the

course of contagion cascades, and hence showed the importance of incorporating assortativity

in numerical and analytical treatments of banking network models. Our analytic framework

will enable extensive studies of alternative network topologies. In such studies the cascade con-

dition and cascade frequency provide two easily computed and useful measures of systemic

risk by which to compare different network topologies. However, the daunting range of net-

work variables means that both analytical and numerical studies must be carefully framed to

address specific issues, for example, to uncover other key determinants of systemic risk, and to

deal with finite-size deviations from the infinite-N theory. Finally, we anticipate that future

work can show how the approach described here may be further extended to include partial

recovery models (such as Ref. [23]) and stochastic balance sheets.
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