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ABSTRACT

A number of copy number variation (CNV) calling al-
gorithms exist; however, comprehensive software
tools for CNV association studies are lacking. We
describe ParseCNV, unique software that takes
CNV calls and creates probe-based statistics for
CNV occurrence in both case–control design and in
family based studies addressing both de novo and
inheritance events, which are then summarized
based on CNV regions (CNVRs). CNVRs are defined
in a dynamic manner to allow for a complex CNV
overlap while maintaining precise association
region. Using this approach, we avoid failure to
converge and non-monotonic curve fitting
weaknesses of programs, such as CNVtools and
CNVassoc, and although Plink is easy to use, it only
provides combined CNV state probe-based statis-
tics, not state-specific CNVRs. Existing CNV associ-
ation methods do not provide any quality tracking
information to filter confident associations, a key
issue which is fully addressed by ParseCNV. In
addition, uncertainty in CNV calls underlying CNV as-
sociations is evaluated to verify significant results,
including CNV overlap profiles, genomic context,
number of probes supporting the CNV and
single-probe intensities. When optimal quality
control parameters are followed using ParseCNV,
90% of CNVs validate by polymerase chain
reaction, an often problematic stage because of in-
adequate significant association review. ParseCNV is
freely available at http://parsecnv.sourceforge.net.

INTRODUCTION

Copy number variation (CNV) association is being increas-
ingly adopted in genetic investigations of disease suscepti-
bility loci (1,2). Large de novo CNVs were once considered

to be the cause of syndromes, but more complete CNV
maps now show that CNVs pervade the genome, and
small CNVs can also be disease causing (3). Thus, CNV
frequency difference between cases and control subjects
at specific loci is necessary to determine if a given CNV
plays a role in disease or impacts the expression of a
clinical trait. Conceptually, the most important variables
involved in CNV analysis include disease under study,
sample cohort, array data, CNV calling algorithm and
data interpretation using an algorithm implementing
CNV statistics. CNV calling andmethods of demonstrating
association have been hampered bymany challenges, which
have discouraged researchers from investigating CNVs.
ParseCNV is designed to simplify data processing and to
improve transparency to render CNV studies more access-
ible to researchers.
Many CNV calling algorithms have been developed, but

relatively few CNV association methods exist. As a result,
streamlined implementation of association methods is
lacking. CNV calling algorithms evaluate allelic intensity
and genotype states in the case of single-nucleotide poly-
morphisms (SNPs), whereas Comparative genomic
hybridization (CGH) signal is based on intensity alone.
Typically, both SNP and CGH arrays assess raw data
for CNVs at the genome-wide level with discrete genetic
determinants. The latter include CN=0, 1, 2, 3, 4 copy
number states captured by both SNP and CGH arrays,
together with AA, AB, BB genotype states for SNP arrays.
As the array probes have a Gaussian distribution, cluster-
ing algorithms are used to determine the expected value
for a given state based on a population from which vari-
ation of a given sample can be quantified as a LogR-Ratio
(LRR)/Log2-Ratio, together with B allele frequency for
SNP arrays (4). PennCNV (5) is a popular option for
SNP array analysis, implementing a hidden Markov
model algorithm. A number of other CNV calling
options are available, including QuantiSNP (6),
CNVCALL (7), CNVDetector (8), CGHCall (9) and
CNV-Seq (10), all of which are publicly available tools
and highly enabling to researchers.
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Although there are several available CNV association
methods in the public domain, including CNVtools (like-
lihood ratio trend test) (11), Birdsuite (regression sum
number copies each allele) (12), Plink (permutation-based
test) (13) and CNVassoc (latent class model) (14), all of
them have significant limitations, as they lack simple
standard input and integrative reporting functions,
which limits their discovery power, investigation potential
and validation success (Supplementary Note). Although
CNVtools and CNVassoc do both CNV calling and asso-
ciation, they make the actual CNV calls hidden to the user
and are batch dependent. Here, we demonstrate the
robustness of ParseCNV in producing high-quality CNV
regions (CNVR) calls by improving transparency and
accuracy of CNV association studies.

MATERIALS AND METHODS

Upfront quality control

As multiple confounding factors can bias the detection of
CNV calls, it is essential to apply filters, using sample-
based quality metrics affecting CNV detection accuracy.
Several steps are taken upfront to remove samples with
outlier values for the CNV metrics, which can be briefly
conceptualized as low call rate, intensity noise, intensity
waviness, population stratification, high number of CNVs
and relatedness. In this regard, there are several important
sample quality metrics measures, specifically (i) sample
call rate/clustering quality; (ii) standard deviation of
allelic intensity (SD LRR); (iii) G/C base content
waviness factor (GCWF); (iv) count CNV; (v) majority
ethnicity cluster using principle components analysis
from Eigenstrat smartpca (15), multi-dimensional scaling
(MDS) (16) or population stratification correction by
covariate; and (vi) no duplicates.
For Illumina 550 k data and related Illumina chip plat-

forms, the key data quality metric thresholds we have
observed are call rate >98%, SD LRR <0.3, jGCWFj
<0.05 and count CNV <100. For Affymetrix 6.0 data,
these measures include call rate >96%, SD LRR <0.35,
jGCWFj <0.02 and count CNV <80. In addition, obser-
vations of quality metric modes from individual
laboratories and sample sources are advisable to deter-
mine appropriate Quality Control (QC) thresholds. The
distribution of these metric measures is constantly
reviewed to include only those who fall within a linear
mode of the quality metric outside exponential modes
for any given genotyping platform. Sample call rate/clus-
tering quality and standard deviation of allelic intensity
are crucial minimal sample exclusion metric measures that
have been established as a field consensus (17). By
providing the PennCNV log files (i.e. summary lines),
together with GenomeStudio/GenotypingConsole/Plink
missing call rates as input, ParseCNV generates images
of the distributions of these quality metrics values to
make informed decisions of the necessary data thresholds
needed (balancing the trade-off between sample number
attrition and study bias). Also, different CNV calling
programs provide different quality control fields; hence,
less standardization of input is possible. Among several

high-quality programs that are available, we find
PennCNV to provide the most complete quality metrics.

Input files

After generation of CNV calls, independent of algorithm,
CNV association is performed by the newly developed
ParseCNV algorithm. ParseCNV uses four standard
inputs: case CNV calls (PennCNV format is the default,
but any CNV calling method may be used), control CNV
calls (PennCNV format), fam file (Plink format) and
probe map file (Plink format) (Figure 1). Optional input
of raw signal files used as input to the CNV calling algo-
rithm allows raw genotype [B-allele frequency (BAF) if
available] and intensity (LRR or Log2-Ratio) (4) signals
of associated regions to be parsed with an image that is
automatically generated for review. Sample batches can be
defined to track their expected versus observed contribu-
tion to significant associations.

Probe-based CNV statistics

The general outline of data processing involves mapping
the individual-level CNV calls into population-level
probe-based CNV statistics followed by filtering signifi-
cantly associated population CNVRs. CNV calls are
mapped onto probe-based statistics defined by the probe
map file and calculated for significance based on Fisher’s
exact test (18). The Fisher’s exact test statistic consists of a
two by two contingency table (with cases deleted versus
cases not deleted and controls deleted versus controls not
deleted) and is evaluated separately for duplications. This
is a conceptual medium between associating all CN states
separately and all CNVs together (Figure 2). Singular
state and combined state statistics are also calculated for
reference. Probes without nominal significance (P< 0.05)
are discarded from further association testing.
Case-enriched significant probes are then separated from
control-enriched significant probes.

If a family based study is being done, the transmission
disequilibrium test is calculated and used to drive CNVR
definition. Quantitative trait association is also sup-
ported by running ParseCNV with the includePed
option, Plink association and InsertPlinkPvalues (part of
ParseCNV).

Merging probe-based statistics into CNVRs

Flexibility in probe aggregation incorporated into CNVRs
allows for boundary truncation variability problems
inherent in many CNV calling algorithms and dynamic
case/control overlap to be made, while refining the asso-
ciation region. The aforementioned probe-based statistic
output is then merged into CNVRs based on probe prox-
imity (<1MB) and comparable significance (±1 log
P-value) of neighbouring probes. One megabase allows
for extension of CNVRs over sparse probe coverage
regions. This can be tuned by command line option in
keeping with the average probe spacing of the data set
or can be made region-specific based on the distance of
5–10 proximal probes.

CNV boundary determination remains a challenge to
differentiate true boundary variations versus variability
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Figure 1. CNV Analysis Workflow. Pre-processing, file formats and post-processing. This general framework shows the stepwise procedure to
prepare input data to use and evaluate ParseCNV output. ‘. . .’ represents additional columns not shown.
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in the probe’s ability to differentiate CNV states. The dif-
ficulty is typically attributed to noisy probes within true
CNVs. Thus, certain fluctuation in CNV frequency of
cases versus control subjects is captured by the respective
P-values. Some case calls may stop and others start within
the CNVR, making P-value-based merging of probe-
based statistics highly flexible. Therefore, the next probe
with available data may be noisy, and any probe available
substantiating the similar P-value within 1 MB can be
used to extend the CNVR. Noisy probes cannot be
filtered out before CNV calling because of lack of
metrics with specificity for noise and not for true CNV
with both behaving similarly in classic probe-based call
rate metrics.
Many CNV detection and association tools have

difficulties handling CNVR break points, and some algo-
rithms make the assumption of considering CNVR break
points as static, which is an oversimplification often
leading to false-negative results. For example, a static
CNVR may extend outside the boundary in some cases
with only partial overlap in control subjects, while having
pathogenic impact. Merging neighbouring probes based
on proximity and P-value supports dynamic CNVR
definition and is flexible for the CNV boundary variations
of complex CNVs (Figure 3). The most significant
sub-region is included when multiple significant proximal
extensions of the respective CNVR exist, to reduce
redundancy.

Review of association signals by quality tracking

Based on various parameters that have been referenced in
the CNV literature and review of many putative CNV
associations by informatics and polymerase chain
reaction (PCR) validation, we have amassed red flags for
evaluation of significant CNVRs for confidence. These
contributing CNV call features are automatically
annotated, are viewable in the University of California
Santa Cruz (UCSC) browser and are specifically tailored
towards reducing false-positive calls from the following
criteria:

(1) Many segmental duplications (i.e. nearly identical
DNA segments), representing genomic segments
that are difficult to uniquely hybridize probes to,
which could underlie false-positive CNV detection
(19).

(2) Overlapping multiple Database of Genomic
Variants (DGV) (20) entries, representing CNV
signals observed in ‘healthy’ individuals, suggesting
that a potential association result in the study at
hand may be false.

(3) Residing at centromere and telomere proximal
regions, as they often have sparse probe coverage
and only have a single flanking diploid reference to
base CNV calls.

(4) Harbouring high or low GC content regions that
bias probe hybridization kinetics even after
GC model correction is done by CNV calling
algorithms, producing false CNV calling and
biasing the result.

(5) CNVs captured with low-average number of probes,
contributing to association with low confidence. If
an association depends on a preponderance of small
CNVs, the likelihood of false-positive result is high.

(6) Locus frequently found in multiple studies, such as
T cell receptor, Ig, human leucocyte antigens and
olfactory receptor (OR genes). T cell receptors
undergo somatic rearrangement because of
Variable Diverse Joining (VDJ) recombination
causing inter-individual differences in the clonality
of T-cell populations (21); thus, they are not true
CNVs, necessitating exclusion.

(7) CNV regions with high population frequency (for
rare CNV focused studies) indicate that probe clus-
tering is likely biased because of a high percentage
of samples with CNV used in clustering definition,
thus biasing CNV detection.

(8) CNV peninsula of common CNV (sparse probe
coverage and nearby high frequency CNV) indicates
that within the range of contributing CNV
boundaries, there is a non-significant (P> 0.05) P-
value, which is notably different from the CNVR
association typically because of random extension
of common CNVs to neighbouring sparse or noisy
probes (Figure 3).

(9) The same inflated sample driving multiple CNV as-
sociations signals. Certain samples have many noisy
CNV calls arising in rare regions despite upfront
sample quality filtering.

Fisher’s Exact Test
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Case Not 
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Control 
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Figure 2. Possible statistical contingency table definitions to capture
CNV frequency difference in cases versus control subjects. The
middle statistical definition of deletions signifying loss of function mu-
tations and duplications signifying gain of function mutations is used
predominantly. This is in contrast to a view that all CNVs are similarly
detrimental put forth by the top statistical definition and the view that
all CNV states lead to a unique outcome put forth by the bottom
statistical definition.
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(10) Sparse coverage with large gap in probe coverage
exists within the CNV calls, indicating uncertainty
in the continuity of a single-CNV event, typically
because of dense clusters of copy number (intensity
only) probes with large intervening gaps.

(11) Low BAF AB frequency: (0.1, 0.4) or (0.6, 0.9) are
important for duplications, AB banding of BAF at
0.33 and 0.66 for CN=3 or 0.25 and 0.75 for
CN=4 are important observations given the rela-
tively modest gain in intensity observed in
duplications.

(12) Low-average confidence based on the hidden
Markov Model (HMM) confidence score of calls
contributing to a CNVR association in PennCNV
is a superior indication of CNV call confidence
compared with numsnps and length in studies
comparing de novo versus inherited CNV calls,
giving an indication of the strength of the CNV
signal or aggregate difference in probability
between the called CN and the next highest prob-
ability CN. Other CNV calling algorithms give dif-
ferent range confidence scores or lower values might
mean more confidence (i.e. call P-value); hence,
threshold may need modification. It is recom-
mended to be in a rawcnv file as column 8, that
is, ‘conf=20.659’ but not required.

(13) Low-average length is a classical confidence scoring
parameter in the length of the CNV. If the CNV is
too small, it is sub-microscopic, and even if many
probes are tightly clustered, bias of local DNA
regions and probe overlap make confidence difficult.

Multiple testing correction

To inform the assessment process of statistical significance
of CNVR association and reject the null hypothesis of no
association of CNVs to the disease under study, various
CNV metrics are calculated including (i) the number of

probes with a nominal frequency of CNV occurrence (only
probes with some CNV detected are informative); (ii) the
number of probes with enrichment in cases versus control
subjects and vice versa (evidence of more case enriched
loci than control enriched loci above certain significance
thresholds); (iii) probes with <1% population frequency
of CNV (optionally for rare CNV studies); and (iv) the
number of CNVRs (multiple probes are needed to detect a
single CNV, and these do not count as separate events for
multiple-testing correction). These calculated values
provide a realistic number of statistical tests to correct
for. In practice, using the Illumina and Affymetrix high
density SNP arrays, we find P< 5� 10�4 uncorrected P-
values meet conservative multiple-testing significance
based on these criteria.

CNV validation by quantitative polymerase chain reaction

For experimental CNV validation using quantitative PCR
(qPCR), the sample input is 60 ml at 6.25 ng/ml (to run the
locus+four house-keeping genes in triplicate at 4 ml each
run). Twenty base forward and reverse primers were de-
veloped for each locus. Universal Probe Library (Roche,
Indianapolis, IN, USA) probes were selected using the
ProbeFinder v2.41 software (Roche, Indianapolis, IN,
USA). Quantitative PCR was performed on an ABI
7500 Real Time PCR Instrument or on an ABI PrismTM

7900HT Sequence Detection System (Applied Biosystems,
Foster City, CA, USA). Each sample was analysed in
quadruplicate either in 25 ml reaction mixture (250 nM
of probe, 900 nM of each primer, Fast Start TaqMan
Probe Master from Roche and 10 ng of genomic DNA)
or in 10 ml reaction mixture (100 nM of probe, 200 nM of
each primer, 1� Platinum Quantitative PCR
SuperMix-Uracil–DNA–Glycosylase with 6-Carboxy-X-
Rhodamine (ROX) from Invitrogen and 25 ng of
genomic DNA). The values were evaluated using
Sequence Detection Software v2.2.1 (Applied

CasesCases Cases
Multiple Significant CNVRs

ControlsControls

Random Boundary VarianceWell Behaving Static CNVRs

Controls

Control Encroachment

Controls

Cases

Central Consensus Var Extend

Controls

CasesCases

CNV Peninsula

Controls

Figure 3. Complex CNV Overlap and CNVR definition examples. Rectangles represent individual sample CNV call boundaries as provided by a
CNV calling algorithm. Each assayed point represented by the probe framework listed in the map file input determines the possible boundary
assignments. The CNVR definition assigned by ParseCNV is shown as a dashed box. Small variance in individual CNV call boundaries allows
extension of CNVR definition. CNV peninsula is shown as the most common false-positive result based on variable extension of CNV boundary
(typically the region common to cases and controls has many probes, whereas the case only extension has few probes).
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Biosystems, CA, USA). Data analysis was further per-
formed using either the �� threshold value (CT)
method or qBase. Reference genes, chosen from cordon-
bleu homolog (COBL), glucuronidase, beta (GUSB) and
alpha-synuclein (SNCA), were included based on the
minimal coefficient of variation, and then data were
normalized by setting a normal control to a value of 1.
The data output is 0.5 for deletions, 1 for diploid, 1.5

for duplications with standard error values from replicate
runs.
TaqMan� Copy Number Assay experiments were also

run on Applied Biosystems 7900HT Fast Real-Time PCR
System to validate the presence of CNVs. Applied
Biosystems CopyCallerTM Software performed relative
quantitation analysis of genomic DNA targets using the
real-time PCR data from TaqMan� Copy Number Assay
experiments. Two replicates were run with confidence
score >0.99 for CNV calls. Positive and negative
controls were used to confirm probe accuracy.

RESULTS AND DISCUSSION

A deletion and duplication CNVR report showing signifi-
cant association is provided, including 127 fields in a final
output file with 54 highly informative fields included in the
default output format and 11 fields in a brief report
(Table 1) to aid accessibility for ParseCNV users.
Besides P-value and odds ratios (ORs) for each CNVR
for all combined CNV state definitions (Figure 2),
contributing sample IDs, their CN states, closest gene,
gene description, pathway and the average number of
probes underlying contributing CNV calls are provided
for confidence scoring and biological interpretation.
Such tracking information to enable quality assessment
beyond initial sample-based quality filtering is not avail-
able in other CNV association software tools.
In addition to the main association results file,

contributing calls to each association are included for
trackability. Contributing calls allow for specific break
point assessment of individual samples and clear correl-
ation of relevant raw input (i.e. intensity and genotype
state). An UCSC custom track is created for graphical
review of individual CNV boundaries to assess CNV
overlap profiles (Figure 3). BAF and LRR value files for
each CNVR are created with all samples having CNV
contributing to association for review of the specific asso-
ciation region across many samples (Supplementary
Figure S1). Viewing probe intensity data across multiple
cases for an associated region allows for generalization of
robust signal qualities of a CNVR in a relatively quick
manner. An image is automatically generated showing in-
tensity and genotype raw values evaluated by the CNV
calling algorithm delimiting each CNVR and each
sample (Supplementary Figure S2). Ped files are created
separately for deletion and duplication to allow for add-
itional statistical output in Plink, including quantitative
trait association. We define deletion ped: CN=0 ! 1 1,
CN=1! 1 2, other! 2 2, and duplication ped: CN=4
! 1 1, CN=3! 1 2, other! 2 2, designed from lowest
to highest frequency in keeping with Hardy–Weinberg

Equilibrium. An accessory function InsertPlinkPvalues
allows for Plink generated output files to be imported
into ParseCNV for Plink P-value driven CNVR definition.
Full SNP-based statistics are generated in ParseCNV to
allow for specific locus queries regardless of significance.

Correction of the CNV association statistics for popu-
lation stratification can be achieved based on the Principal
component analysis (PCA) or MDS result. The deletion
and duplication CNV peds generated by ParseCNV are
run in Plink with PCA/MDS as a covariate for a logistic
statistical test. The additive model of population stratifi-
cation corrected P-values is then imported into ParseCNV
using InsertPlinkPvalues.

Uncertainty in CNV calls underlying CNV associations
is deeply evaluated by multiple lines of evidence to verify
significant results parsed for each significant result,
including CNV call overlap profiles, genomic context,
number of probes supporting the CNV call and single
probe intensities. CNV association results review follows
four steps (Figure 1).

First, CNV association review is facilitated by auto-
matic red flag annotations, which can be evaluated more
carefully by UCSC track review for spurious association.
Many segmental duplications, centromere, telomere, CNV
peninsula of common CNV, extreme GC content regions,
low-average number of SNPs for CNV calls contributing
to association, locus frequently found in diverse studies,
>1% population frequency and same sample driving
multiple CNV associations are all red flags for evaluation
(see ‘Materials and Methods’ section). The number of red
flags is scored automatically with their failing metric
values provided. We use UCSC reference files, which can
be updated or adapted to different genome builds, as
instructed.

Second, intensity signal is reviewed for specific associ-
ation regions across many samples, based on an automat-
ically generated image of BAF and LRR probe values.
Deletions are only accepted if they show clear drop in
intensity (majority are <0) and lack of heterozygous geno-
types (BAF 0, 1). Duplications are similarly accepted only
if they show AAB or ABB banding (BAF 0.33, 0.66) and
increase in intensity (majority are >0), although the latter
is not always clear-cut for duplications, which is the
reason duplications are often under called.

Third, probe-based intensity is reviewed for whole-
chromosome data of a sample with each associated
CNVR and population probe clusters, as done in
Illumina GenomeStudio and Affymetrix Genotyping
Console. This review establishes clear diploid (CN=2)
signal in flanking regions to limit noise likely to increase
bias of false-positive CNV calls. Intensity waves flanking a
region with genotype support of CNV can be spotted that
represent copy neutral loss of heterozygosity or run of
homozygosity, which are often overcalled as a deletion
by coinciding intensity waves.

Fourth, qPCR wet laboratory review for confirmation
of true-positive and true-negative results is critically im-
portant. These steps are done in order of increasing effort
per locus but the number of loci will be filtered down by
each step, thus providing incremental stringency and
re-review to establish confidence. Using ParseCNV with
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Table 1. Significant CNVR output fields description

Column Description

CNVR CNV region of greatest significance and overlap coordinates.
CountSNPs The number of probes available in the CNVR for this data set. In this case, contributing individual CNV calls

may be larger.
SNP Tag SNP for ease and clarity of reporting and replication.
DelTwoTailed Two-tailed Fisher’s exact P-value based on the contingency table Cases Del/Cases Diploid/Controls Del/

Controls Diploid as listed separately.
DupTwoTailed Two-tailed Fisher’s exact P-value based on the contingency table Cases Dup/Cases Diploid/Controls Dup/

Controls Diploid as listed separately.
ORDel The odds ratio for deletion.
ORDup The odds ratio for duplication.
Cases Del The number of cases with a deletion detected in this region by PennCNV.
Cases Diploid The number of cases without a deletion or duplication detected in this region by PennCNV.
Control Del The number of control subjects with a deletion detected in this region by PennCNV.
Control Diploid The number of control subjects without a deletion or duplication detected in this region by PennCNV.
Cases Dup The number of cases with a duplication detected in this region by PennCNV.
Cases Diploid The number of cases without a deletion or duplication detected in this region by PennCNV.
Control Dup The number of control subjects with a duplication detected in this region by PennCNV.
Control Diploid The number of control subjects without a deletion or duplication detected in this region by PennCNV.
IDsCasesDel The sample IDs of cases corresponding to the Cases Del column for clinical data lookup. To convert to list in

Excel: Data-TextToColumns-Delimited-Space then Copy-PasteSpecial-Transpose.
IDsCasesDup The sample IDs of cases corresponding to the Cases Dup column for clinical data lookup. To convert to list

in Excel: Data-TextToColumns-Delimited-Space then Copy-PasteSpecial-Transpose.
StatesCasesDel CN states listed corresponding to IDsCasesDel [1 (CN=0)/2 (CN=1)].
StatesCasesDup CN states listed corresponding to IDsCasesDup [5 (CN=3)/6 (CN=4)].
TotalStatesCases(1) The number of cases in Cases Del with a homozygous deletion or both copies lost.
TotalStatesCases(2) The number of cases in Cases Del with a hemizygous deletion or one copy lost.
TotalStatesCases(5) The number of cases in Cases Dup with a hemizygous duplication or one copy gained.
TotalStatesCases(6) The number of cases in Cases Dup with a homozygous duplication or two copies gained.
IDsDelControl The sample IDs of control subjects corresponding to the Control Del column for clinical data lookup.
IDsDupControl The sample IDs of control subjects corresponding to the Control Dup column for clinical data lookup.
StatesDelControl CN states listed corresponding to IDsDelControl [1 (CN=0)/2 (CN=1)].
StatesDupControl CN states listed corresponding to IDsDupControl [5 (CN=3)/6 (CN=4)].
TotalStates(1) The number of Controls in Controls Del with a homozygous deletion or both copies lost.
TotalStates(2) The number of Controls in Controls Del with a hemizygous deletion or one copy lost.
TotalStates(5) The number of Controls in Controls Dup with a hemizygous duplication or one copy gained.
TotalStates(6) The number of Controls in Controls Dup with a homozygous duplication or two copies gained.
ALLTwoTailed All CNV states considered together P.
ORALL All CNV states considered together OR.
ZeroTwoTailed Only CN=0 CNV state considered together P.
ORZero Only CN=0 CNV state considered together OR.
OneTwoTailed Only CN=1 CNV state considered together P.
OROne Only CN=1 CNV state considered together OR.
ThreeTwoTailed Only CN=3 CNV state considered together P.
ORThree Only CN=3 CNV state considered together OR.
FourTwoTailed Only CN=4 CNV state considered together P.
ORFour Only CN=4 CNV state considered together OR.
Gene The closest proximal gene based on UCSC Genes, which includes both RefSeq Genes and Hypothetical Gene

transcripts.
Distance The distance from the CNVR to the closest proximal gene annotated. If the value is 0, the CNVR resides

directly on the gene.
Description The gene description delimited by ‘/’ for multiple gene transcripts or multiple genes listed.
Pathway Annotated pathway membership of gene with reference compiled from Gene Ontology database, BioCarta

database and the Kyoto Encyclopedia of Genes and Genomes (KEGG) database (definition files in GeneRef
folder).

AverageNumsnpsCaseDel The average numsnp of CNV calls contributing to Case Del CNVR. Allows for much more informative CNV
size (confidence) filtering post hoc.

AverageLengthCaseDel The average length of CNV calls contributing to Case Del CNVR. Allows for much more informative CNV
size (confidence) filtering post hoc.

CNVRangeCaseDel Alternative larger CNV Range Case Del definition compared with minimal common overlap definition of
CNVR.

AverageNumsnpsControlDel The average numsnp of CNV calls contributing to Control Del CNVR. Allows for much more informative
CNV size (confidence) filtering post hoc.

AverageLengthControlDel The average length of CNV calls contributing to Control Del CNVR. Allows for much more informative CNV
size (confidence) filtering post hoc.

CNVRangeControlDel Alternative larger CNV Range Control Del definition compared with minimal common overlap definition of
CNVR.

CNVType Deletion or duplication CNVR significant in combined report.
Cytoband Cytoband genomic landmark designations.
redFlagCount Count red flag from association review (see text, briefly: Segmental Duplications, Database of Genomic

Variants, Centromere/Telomere, GC base content, Probe Count, Population Frequency, Peninsula, Inflated).
redFlagReasons The failing metrics for association review and their values.
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the robust quality tracking and confidence scoring
through red flags, our validation success rate has been
90% in studies of autism (22), schizophrenia (23), depres-
sion (24), obesity (25), immunodeficiency (26) and atten-
tion deficit hyperactivity disorder (ADHD) (27). Here, we
present the results of 409 attempted and 367 successful
validation assays from 7 disease studies with a range of
different genomic loci and CN states (Table 2 and Figure
4). Reviewing the failed loci has led to establishment of the
various red flag features presented. Over time, the valid-
ation success rate has improved as more rare and subtle
red flags were identified and refined. Validation of CNVs
with an independent method has remained a standard ex-
pectation because of false-positive results. With high-val-
idation success rate because of quality tracking and
confidence scoring of known confounders leading to
failed validations based on experience, we are confident
that the majority of significant loci with good confidence
scores can be interpreted for biological relevance to
disease without prolonged suspicion of a false-positive
CNV call until PCR validation is done.
To provide a simplified demonstration of the file input

format and output, we simulated data for four cases and
four control subjects with CNV calls derived from 10
probes, which after running ParseCNV results in a one
probe CNVR deletion and a three probe CNVR duplica-
tion with nominal significance because of the reported
ranges being observed in four cases and zero control
subjects along with other files for association and CNV
signal review (Figure 1).
As an example of a real data set using a case/control

publicly available data set, 785 autism cases and 1110
control subjects were assessed with 561 308 probes.
PennCNV called cases CN0=1 855, CN1=19 484,
CN3=11 393, CN4=1060 and control subjects
CN0=959, CN1=10 051, CN3=6236, CN4=579.
ParseCNV detected Del/Dup Probes P< 0.05 Case
Enrich: 696/1309 and Del/Dup Probes P< 0.05 Control
Enrich: 468/1313. Deletion CNVRs: 103 deletion
CNVRs and 59 duplication CNVRs were found (after
joining based on 1 MB probe neighbours and ±power
of 10 P-value) before selecting the most significant
CNVR in tightly clustering regions with varying signifi-
cance. ParseCNV then condensed these probe-based
statistics into 57 deletion and 33 duplication CNVRs
with nominal significance. These loci were reviewed
with red flag annotations, UCSC, raw intensity and

qPCR as previously described, resulting in 7 deletion
and 12 duplication CNVRs (22). We used this data set
to sample different settings of proximity (1MB) and sig-
nificance (±1 power of 10 P-value) (Figure 5). By this
sampling procedure, we show these defaults are justifiable
based on balancing CNVR extension to allow boundary
variability while maintaining unique loci except in rare
instances. The rawcnv, fam and map files can be freely
downloaded from http://parsecnv.sourceforge.net/ to rep-
licate the analysis.

To further emphasize the unique output features of
ParseCNV, we ran Plink on the same data set. Plink
detected the same number of cases and controls at each
probe and calculated correlating statistical significance
(not the same, as ParseCNV uses Fisher exact test, and
Plink uses permutation, Supplementary Figure S3).
However, CNVRs were not called by Plink; hence, part
of ParseCNV was used to reduce redundancy in the Plink
result. Four deletion CNVRs and four duplication
CNVRs were missed (not significant, P> 0.09) by Plink
because of the assessment of all CNV states together,
whereas the opposite state was enriched in control
subjects (Figure 6). All CNVRs called via Plink statistics
were also significant in ParseCNV results. Plink found 92
combined CNV state groups of probes, which were called
as CNVRs by a ParseCNV component script. With
combined CNV state statistics in ParseCNV, 79 CNVRs
resulted. Highly significant P-values using Fisher’s exact
test were more constrained with permutation, whereas
marginally significant with control frequency using per-
mutation were more constrained with Fisher’s exact test
(i.e. 5:1 case:control). Overall, the counts of CNV per
probe match exactly, and the P-values correlate highly
between ParseCNV and Plink, providing independent val-
idation of correctness (Supplementary Figure S3).
However, the lack of CNVR calling and quality tracking
in Plink makes for a strong contrast of Plink with
ParseCNV.

When families are available, inheritance rates of CNVs
can improve confidence of CNV calls. De novo events
should show consistent parent of origin across genotypes
of a given CNV. Trio and joint family based CNV calling
procedures in PennCNV can further improve the de novo
rate (28). Such metrics can be developed by retrospective
evaluation of raw data contributing to false-positive asso-
ciations and failing PCR validation. Waviness of the in-
tensity data can be ameliorated using the GC wave

Table 2. Quantitative PCR validation of CNVR associations

Project Validations
attempted

Cases Control
subjects

Loci Count
Del

CN 0 CN 1 CN 2 CN 3 CN 4 PCR
failed

Validation
failed

Success
rate

Autism 37 2195 2519 25 13 0 8 13 13 3 0 4 0.89
Schizophrenia 52 1735 3485 8 47 14 21 14 3 0 0 10 0.81
Obesity 104 2559 4075 35 36 0 31 45 27 0 10 5 0.95
ADHD 135 3506 13 327 12 57 0 35 56 37 7 7 11 0.92
AutSczAdhd 10 9 1 1 10 0 9 1 0 0 0 0 1
OldYoung 23 9392 7393 23 12 0 9 3 11 0 1 3 0.87
Progressive supranuclear
palsy

48 1855 6701 24 38 0 32 9 7 0 4 9 0.81
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correction model options (29). Individual CNV call
quality metrics include confidence score, number of
probes contributing to CNV call and physical CNV size.
CNV call filtering may create false association by
encountering a locus with control boundary truncation
just under the threshold, whereas case calls were
just above. If multiple versions or platforms are being
used with different probe sets, filtering for the intersection
set before CNV calling is recommended. If overlap is
minimal between different platforms, a discovery phase
with the largest subset can be done with replication in
other subsets using all probes available on the chip.
ParseCNV has the flexibility of handling multiple

different input files and is optimized to handle CNV
heterogeneity.
In conclusion, the above referenced probe resolution

statistics and dynamic CNVR definition applied in
ParseCNV will become increasingly important as the
number of CNVs identified in each individual, and the
resolution of variable CNV boundaries expands in dense
probe arrays and sequencing. With this increased reso-
lution comes additional multiple testing burden,
although multiple probes are needed to call a given
CNV and many probes may not detect any CNVs (con-
servative standard is P< 5� 10�4 [(22); see ‘Materials and
Methods’ section). Assessment of CNVs across the

0

0.5

1

1.5

2

2.5

1 11 21 31 41 51 61 71 81 91 10
1

11
1

12
1

13
1

14
1

15
1

16
1

17
1

18
1

19
1

20
1

21
1

22
1

23
1

24
1

25
1

26
1

27
1

28
1

29
1

30
1

31
1

32
1

33
1

34
1

35
1

36
1

37
1

38
1

39
1

40
1

Relative Gene Dosage

Autism Schizophrenia Obesity ADHD ASA|OldYoung  PSP
CN=4

CN=3

CN=2

CN=1

CN=0

Figure 4. Quantitative PCR validation of CNVR associations. Each sample with attempted validation for a specific CNV at a specific locus is
shown. The validation data output is 0.5 for deletions, 1 for diploid, 1.5 for duplications with standard error values from triplicate runs.

0

200

400

600

800

1000

1200

1400

Del
1bp

Dup
1bp

Del
1kb

Dup
1kb

Del
10kb

Dup
10kb

Del
100kb

Dup
100kb

Del
500kb

Dup
500kb

Del
1Mb

Dup
1Mb

Del
1.5Mb

Dup
1.5Mb

Del
2Mb

Dup
2Mb

C
o

u
n

t 
C

N
V

R
s 1E-8 0.2 0.4 0.6

0.8 1.0 1.2 1.4

1.6 1.8 2.0 2.2

2.4 2.6 2.8 3.0

Sampling Distance and Significance Merging Parameters Probes to CNVRs

default

p value variance

Figure 5. Sampling of different settings of distance (1MB) and significance (±1 power of 10 P-value). Based on 785 cases versus 1110 control
subjects and 561 308 probes data set. By this sampling procedure, we show these defaults are justifiable based on balancing CNVR extension to allow
boundary variability while maintaining unique loci, except in rare instances. The x-axis shows the CNVR typed and distance setting. The colour
shows the P-value variance setting. The y-axis shows the count CNVRs resulting from these settings.

PAGE 9 OF 12 Nucleic Acids Research, 2013, Vol. 41, No. 5 e64



genome has continued to improve (30–35). Recent reports
of the extent of discordance between different arrays and
CNV calling algorithms have been published (17). This
can be readily seen in the DGV entries with widely dispar-
ate CNV frequencies across different healthy populations.
This is why large cohorts of cases and control subjects
typed at a single facility are important with full tracking
of quality metrics for each CNVR provided by ParseCNV
rather than simply probe-based significance values.
Success frequency of qPCR CNV validation has continued
to improve by association signal review enabled by
ParseCNV.
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