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Certain cancer therapy has been shown to induce immunogenic cell death in cancer cells
and may promote tumor progression instead. The external stress or stimuli may induce
cell death and contribute toward the secretion of pro inflammatory molecules. The release
of damage-associated molecular patterns (DAMPs) upon induction of therapy or cell
death has been shown to induce an inflammatory response. Nevertheless, the
mechanism as to how the DAMPs are released and engage in such activity needs
further in-depth investigation. Interestingly, some studies have shown that DAMPs can be
released through extracellular vesicles (EVs) and can bind to receptors such as toll-like
receptors (TCRs). Ample pre-clinical studies have shown that cancer-derived EVs are able
to modulate immune responses within the tumor microenvironment. However, the
information on the presence of such DAMPs within EVs is still elusive. Therefore, this
mini-review attempts to summarize and appraise studies that have shown the presence of
DAMPs within cancer-EVs and how it affects the downstream cellular process.
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INTRODUCTION

Cancer has emerged as a significant issue globally, and it is now one of the main causes of mortality
(1). The tumor microenvironment is heterogeneous consisting of cancer cells, stromal tissue, and
the extracellular matrix (2, 3). Over the last few decades, the complex interaction between cancer
cells and the host immune response has been extensively studied. The immune system plays a
critical role in the tumor microenvironment, such as affecting cancer development and progression.
One of the ways of eliminating cancer cells is by undergoing therapy such as chemotherapy,
radiotherapy, or targeted therapy. Although some of these modalities have been proven effective, the
after-effects of therapy may cause immunogenic cell death and eventually inflammation (4–7).

Cells undergoing cell death will secrete certain molecules into the environment that are immune-
stimulating and may induce further inflammation (8–11). To survive, cells have a detection system
that can sense possible danger and threats in their environment. In 1994, Matzinger (12) proposed
the “danger” theory that cells can recognize and destruct danger when it is presented upon them
without the need to distinguish self and non-self-threats (12). During an insult or intrusion, cells
will release these endogenous molecules from within their compartment that is called damage-
associated molecular patterns or DAMPs to alert the immune system (10, 13, 14). To note, PAMPs
or known as themicrobial pathogen-associatedmolecular patterns, such as formyl peptides or bacterial
DNA, that are expressed by pathogenic microbes will also alert and activate the immune system
(14). Likewise, dying cells also possess these “patterns” that act in a similar manner (10, 14, 15).
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These patterns coined, DAMPs can have different forms and be
derived fromvarious sources (14, 16). They can be expressed on the
plasma membrane, be excreted extracellularly, or even be the
breakdown products of certain pathways, and more recently, it
can be found in extracellular vesicles (14, 17, 18).As such, thismini-
review attempts to uncover some of the reported DAMPs derived
from cancer-derived vesicles and how the downstream effects.
DAMPs

DAMPs are molecules that are produced endogenously by cells
in response to stress (19, 20). In cancers, high tumor apoptosis
exerts stress and inflammatory signal that triggers the secretion
of DAMPs leading to immunogenic cell death (ICD) of cancer
cells (6). Unlike apoptosis, ICD is pro-inflammatory and requires
the involvement of phagocytic immune cells such as dendritic
cells (DC) and macrophages (4). It was found that the
combination of apoptosis DAMPs secretion and ICD in
response to specific anti-cancer agents such as chemo- and
radiotherapy drugs could bring into play a potent and effective
anti- tumor immunity, thus significantly becoming the target for
cancer therapy (7, 21, 22). Krysko et al. defined DAMPs as
molecules that perform non-inflammatory functions in living
cells and acquire immune-modulatory properties when released
on the cell surface (23). Work done by Apetoh et al. showed
direct interaction of High molecular Group Box-1 (HMBG1), a
well-known DAMP with Toll-like receptor-4 (TLR-4) on DCs
that affect their antigenic presentation in breast cancer patients
(24). On top of that, it was found that another type of DAMPs
such as adenosine triphosphate (ATP) also plays a critical role in
the degree of successful DC priming with cytotoxic T cells
through NLRP3-dependent caspase-1 activation complex (25).
As cancers are extremely adaptive, the failure of DAMPs to exert
complete and effective anti-tumor response could also generate
opposite mechanisms whereupon DAMPs are exploited by
cancers to promote cancer growth and survival (26). As
DAMPs could deliver effects on both anti-tumor and pro-
tumor activities, the effort to decipher the molecular
mechanism behind this is crucial.
EXTRACELLULAR VESICLES

Extracellular vesicles (EVs) are a class of membrane-
encapsulated vesicles that are released by cells into the
secretory system. Several types of EVs have been discovered
depending on the biogenesis, function and size (27–29).
According to the revised guidelines from International Society
for Extracellular Vesicles (ISEV) committee, exosomes, or also
known based on its size as small extracellular vesicles (sEVs), are
a class of EVs derived from the formation of intraluminal vesicles
that are usually sized between 30-100nm. Microvesicles, on the
other hand, are a class of EVs that are released via the fusion of
the cellular membrane and are usually larger than exosomes.
Another class of EVs, called apoptotic bodies, are vesicles that are
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released by dying cells (27, 30). The heterogeneity of EVs has
been one of the main limiting factors in understanding the role of
EVs in cancer progression. Nevertheless, it has been shown by
multiple studies that cancer-derived EVs can modulate the
immune response through the regulation of immune cells such
as CD8+ T cells, CD4+ T cells or natural killer cells (31). Upon
response to therapy, cancer cells have shown to release a higher
level of EVs (32). These EVs were shown to induce an immune
response and may carry pro-tumorigenic cargo (32). Recently,
DAMPs have been reported to be present within EVs and may
affect the inflammatory balance within tumor sites. More
importantly, some studies have shown that tumor-derived EVs
are able to mediate toll-like receptor (TLR) signaling (33, 34).
Since studies on DAMPs within EVs are limited, we will include
all types of EVs including exosomes, small extracellular vesicles
and microvesicles.
DAMPS AND EVS

HMGB1 and EVs
Several immunostimulating molecules are discharged when cells
die including HMGB1, uric acid, ATP and heat shock proteins
(HSP) (14, 16, 35–37). HMGB1 is the most frequently
encountered DAMP in cells undergoing stress (14). This
protein, initially found in the 1970s, is a nuclear protein and
binds to chromatin (5, 38). HMGB1 is highly conserved and is
involved in various cellular processes such as DNA repair, gene
expression and replication (39–42). Upon inflammation or
cellular stress, HMGB1 binds to immune cell receptors such as
Toll-like receptor 2 (TLR2), Toll-like receptor 4 (TLR4), and
Receptor for advanced glycation end products (RAGE) (14, 43,
44). Apart from being released by cells infected with pathogens,
dying cells or cells undergoing necrosis are also able to secrete
HMGB1 (45). The release of HMGB1 may induce inflammation
upon binding to different immune receptors through the release
of cytokines such as tumor necrosis factor alpha (TNF-a) and
interferon gamma (IFN-g) (45). In cancer, the role of HMGB1
needs further understanding as dual roles of HMGB1 have been
reported (42, 46). Pro-tumorigenic roles of HMGB1 include
initiation of inflammation (47), enhance tumor cell
proliferation (48), promotes tumor invasion and metastasis
(49), enforces angiogenesis (50), involves in chemoresistance
(51) and promotes antitumor immunity (52). Nevertheless, there
have been reports that HMGB1 may also play a role as a tumor
suppressor (53, 54). The paradoxical roles of HMGB1 in cancer
have been of interest to many researchers over the years. What is
more interesting, HMGB1 has been reported to be present in EVs
as well. A study by Deng et al. showed that hepatocytes release
HMGB1 via vesicles after being stimulated by lipopolysaccharide
(LPS) (55). A follow-up study by the authors showed that
HMGB1 was indeed packaged in exosomes and released
extracellularly (56). The authors showed that HMGB1 was
released in exosomes via the TLR4 pathway (56). In a different
study, it was discovered that large burn injuries (LBI) were able
to secrete plasma microvesicles enriched with HMGB1 (57). The
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study found that the released HMGB1 formed complexes with
pro-interleukin-1-beta (pro-IL-1b) in both human and mouse
plasma, and this heterocomplexes were able to induce immune
dysfunction in LBI (57).

According to vesiclepedia (58), a database for protein/mRNA
enriched in extracellular vesicles, HMGB1 is present in EVs such
as exosomes and microvesicles from various sources. For
instance, HMGB1 protein was reported present in EVs derived
from breast cancer cells (59), bronchial epithelial cells (60),
chronic lymphocytic leukemia cells (61), colorectal cancer cells
(62, 63), glioblastoma cells (64), among others. These studies
show that while HMGB1 is secreted as free HMGB1, this protein
can also be secreted and packaged in vesicles as well. However,
the type of EVs that contain HMGB1 has not been reported
exclusively for one type of EV. The abovementioned studies
show that HMGB1 can be present in exosomes, general
extracellular vesicles as well as microvesicles. The exact
mechanism as to how HMGB1 is sorted into these vesicles is
still lacking information. The method of isolation of different
types of EVs may also influence the presence of HMGB1 in these
EVs. HMGB1 that is present within EVs has been shown to affect
other surrounding cells as well. Functionally, several reports have
also shown that EV-derived HMGB1 can participate in the
carcinogenesis process. A study by Li et al. suggested that
exosomal HMGB1 derived from esophageal squamous cell
carcinoma managed to differentiate monocytes into the pro-
tumorigenic Programmed cell death-bearing-tumor-associated
macrophages (PD1+ TAMs) phenotype (65). A different study
by Ye et al. showed that exosome-derived HMGB1 in
hepatocellular carcinoma can activate B cells (66). This
subsequently leads to the enhanced proliferation of TIM-1+
regulatory B cells by the TLR2/4 and Mitogen-Activated
Protein Kinase (MAPK) pathways (66). Additionally, it was
also shown that exosomal HMGB1 play a role in platelet-
driven cancer malignancy. It was reported that treatment with
anti-platelet drug, dipyridamole and aspirin inhibited tumor
progression in Lewis lung carcinoma (LLC) cell lines and
reduced the exosomal HMGB1 content. Similar finding was
displayed in a tumor-bearing mouse model where combined
treatment of dipyridamole and exosome-release inhibitor,
GW4869 significantly mitigated tumor growth (67). Exosomal
HMGB1 was also found to be involved in angiogenesis. A recent
studybyGao et al. showed that hypoxicbonemarrowmesenchymal
cells were able to release exosomal HMGB1 that further enhanced
angiogenesis via c-Jun N-terminal Kinase JNK/Hypoxia-inducible
factor (JNK/HIF) pathway (68). It is interesting to note that the role
of HMGB1 may differ depending on the form it is released. For
instance, a study byMaet al. showed that extracellularHMGB1had
opposing effects towards the expression of SAM and SH3 domain
containing protein 1 (SASH1) as compared to exosomal HMGB1
(69). Although it is well known that extracellular HMGB1 is able to
activate the inflammatory pathway via the TLR/RAGE receptors,
informationonEV-derivedHMGB1 is still lacking and this calls for
the need of further research. Since HMGB1 is a nuclear protein, it
can be assumed that HMGB1 is packaged within EVs andmay not
be present on the surface, but further verification is needed.
Therefore, the mechanism by which HMGB1 is able to stimulate
Frontiers in Immunology | www.frontiersin.org 3
immune response upon internalization of EVs still needs to
be determined.

HSP and EVs
Besides HMGB1, HSPs are commonly categorized as DAMPs as
well (70). HSPs act as chaperones to ensure the proper folding of
proteins (70, 71). These proteins are typically released when cells
are under stress and are usually overexpressed in tumor cells due to
the demand for cellular energy and the unstable environment (72).
It was shown that certain HSPs trigger a pro-inflammatory
response in mouse macrophage and human monocytes (73).
Upon encountering HSPs, T regulatory cells (Tregs), T cytotoxic
cells, natural killer (NK) cells, macrophages and DCs are activated
(74). Nevertheless, the roles of HSP as DAMPs are still debatable.
However, for the purpose of this review, we will consider HSPs as
DAMPs and discuss the presence of HSPs in EVs. The presence of
HSP-containing EVs released from cancer samples has been
reported by several groups (75–80). For instance, a report by
Gastpar et al. showed that HSP70 was present on the membrane
of tumor-derived exosomes from pancreatic and colon cancer cell
lines (81). The authors also showed that these exosomes were able
to stimulate migration and HSP70 reactivity in NK cells (81).
HSP70 has been reported to be released by tumor cells upon
external stress such as radio or chemotherapy (77, 82). Therefore, it
is presumed that under stressful conditions, the expression of
HSP70 on exosomes is also increased. Lv et al. showed that there
was indeed, a difference in the expression of HSP60, HSP70 and
HSP90 in exosomes derived from HepG2 cells after treatment with
chemotherapeutic drugs (83). Similar to the previous study, these
HSP-containing exosomes were able to increase NK cell cytotoxic
ability (83). A similar study by Elsner et al. suggested that HSP70-
positive exosomes from melanoma cells were able to enhance NK
cells cytolytic activity against YAC-1 cells (84). The increase of
HSP70 in exosomes has also been shown upon induction by heat
stress in murine models (85). Cho et al. showed that these heat-
induced exosomes containing HSP70 elicit a stronger T helper type
1 (Th1) immune response (85). The presence of HSP70 in tumor-
derived EVs has also been reported elsewhere. A study by Xie et al.
showed that exosomes containing HSP70 stimulate anti-tumor
immunity by enhancing the maturation of DCs and Th1 cells (86).
A recent pilot study by Chanteloup et al. reported that exosomal
HSP70 can be used to detect and monitor metastatic solid tumors
such as breast and ovarian cancer (75, 76). HSP60 has also been
shown to be released by tumor-derived exosomes (87, 88). A study
by Wyciszkiewicz et al. showed that certain HSPs such as AlphaB-
crystallin and HSP22 are present in exosomes from gynecological
cancers (89). The authors showed that although these HSPs were
present in both exosomes and serum, there is no correlation
between the two sources (89). Similar to HMGB1, extracellular
HSPs are not representative of exosomal/EV-derived HSPs in
terms of abundance and function. According to vesiclepedia (58),
HSPs, such as HSP90 were reported in cancer-derived EVs such as
bladder cancer cells (90) and breast cancer (59). Almost all the
reported studies show that HSPs are present within exosomes and
not in other types of EVs. However, these studies report different
techniques of isolation and characterization of exosomes and
may not be conclusive enough to state that HSPs are exclusively
October 2021 | Volume 12 | Article 740548
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found in exosomes. Nevertheless, though the presence of HSPs
has been reported in EVs, the exact mechanism as to how these
proteins induce an inflammatory/immune response is still
elusive. The localization of HSPs as to whether it is present
internally or on the surface of EVs warrants more studies (91).
A study by Tang et al. showed that HSP90a is present on the
surface of tumor-derived exosomes and is able to mediate
communication with other cells (92). However, an earlier study
by Clayton et al. showed that HSPs are also present in the lumen
of exosomes and may not interact with target cells through cell
surface receptors (93). Therefore, more in-depth studies are
needed to determine whether HSPs are able to act as DAMPs
and activate inflammation through certain receptors.

S100 and EVs
S100 are a class of proteins known to bind to calcium and
regulate intracellular and extracellular processes (94, 95). There
are around 24 types of S100 protein members that can be divided
into three main subclasses depending on their function (96).
S100 proteins have long been recognized as DAMPs due to their
ability to elicit an inflammatory response (97, 98). In cancer, the
S100 proteins have been reported to be involved in
carcinogenesis. In a study done by Hiratsuka et al., S100A8
and S100A9 proteins are found to be involved in lung cancer
invasion and myeloid cell recruitment (99). S100 proteins have
been reported to be present in EVs as well. A study by Prieto et al.
showed that in chronic lymphocytic leukemia (CLL), S100A9
protein was present in the plasma exosomes (100). The authors
showed that the exosomes containing S100A9 were able to
activate the nuclear factor-kappa-light-chain-enhancer of
activated B cells (NF-kB) pathway in leukemic cells (100). Not
only that, in a different study by Li et al., the authors
demonstrated that the S100A9 protein was also present in
exosomes derived from follicular fluid of polycystic ovary
syndrome patients (101). These exosomes were also able to
promote inflammation via the NF-kB pathway (101). Although
the molecular mechanism of the activation was still unmapped,
this study, however, displayed an interesting finding in which the
levels of NF-kB pro-inflammatory cytokines were increased
upon incubation with S100A9-enriched exosomes (101).
According to vesiclepedia (58), the presence of members from
the S100 family was reported to be present in EVs from various
sources. For instance, the S100A7A protein was found in EVs
from colorectal cancer cell lines (62) and T cells (102). S100A5
protein was also found in colorectal cancer cell lines (103), and
S100A12 protein was found in EVs from brain cancer cells,
colorectal cancer cells, melanoma cells, kidney cancer cells and
more (59). Similar to other DAMPs, the presence of S100
proteins is also not exclusive to one type of EV. Although the
presence of S100 proteins has been reported in EVs, the actual
function of S100 as DAMPs within EVs remains to be elucidated.
Generally, free or extracellular S100 proteins are able to act as
DAMPs by binding to receptors such as RAGE or TLR, but
the mechanism of S100 within EVs still needs to be investigated.
The presence of S100 proteins in EVs and how this affects the
pathway leading to inflammation is still unknown.
Frontiers in Immunology | www.frontiersin.org 4
Micro RNA (miRNA)
Besides the abovementioned molecules, other components within
EVs that are also able to elicit an immune response is nucleic acid.
It is well-established that microRNAs (miRNAs), short-lengthed
nucleic aids, can be encapsulated within EVs. Some studies have
shown that these EV-bound miRNAs were able to induce an
immune response via the intracellular TLR pathway in several
diseases (104–107). In rheumatoid arthritis, for instance, exosome-
containing let-7b was able to differentiate macrophages into the
M1 phenotype via TLR7 (108). A different study was able to show
that miR-21 encapsulated in EVs was able to induce neurotoxicity
through TLR7 signaling as well (109). In cancer, a study by Fabbri
et al. demonstrated that exosome-derived miRNAs from lung
cancer cells were able to bind to TLR8 on macrophages and
activate the NF-kB pathway (110). This, in turn, led to the release
of pro-inflammatory cytokines such as TNF-a and interleukin-6
(IL-6) (110). Although the presence of miRNA in EVs such as
exosomes and microvesicles is well-established, there are still
limited studies on whether these encapsulated miRNAs are able
to stimulate TLR pathway, and subsequently activate
inflammation. Additionally, most of the reported studies had
purified EVs from sources that did not undergo any cellular
stress such as chemotherapy or radiation, and thus the role of
miRNA-EVs as DAMPs needs to be further determined. Figure 1
demonstrates the overall schematic representation of howDAMPs
are released within EVs and subsequently interact with target cells.
FUTURE RECOMMENDATIONS
AND CONCLUSION

Upon cellular stress or cell death, cancer cells will release a
variety of molecules in response to the stimuli. Extracellular
vesicles containing DAMPs have been hypothesized to induce an
inflammatory response via the TLR/NF-kB pathway but are still
in need of further verification. Table 1 summarizes some of the
reports that have shown the presence of DAMPs within EVs.
However, most of these studies collect EV from samples that
were not subjected to any treatment-induced stress. As such, we
are not able to establish whether these DAMPs are significantly
released upon stress or not. It has been well known that EVs
released from cancer cells are able to modulate immune
responses (31). Nevertheless, whether these modulations are
induced through the regulation of DAMPs contained within
the EVs remains to be elucidated. Additionally, little is known on
whether DAMPs present in the EVs may induce the same
response as free/extracellular DAMPs, and whether EVs
provide more physiological benefits such as higher stability or
longer half-lives. Additionally, the heterogeneity of EVs also
plays a role in further understanding the role of EVs-DAMPs in
inflammation. For instance, we are still unsure as to whether a
certain subpopulation of EVs may carry certain DAMPs over
other types of EVs. Most of the reported studies report either
exosomes, extracellular vesicles and microvesicles as the source,
which strengthens the fact that further studies are needed to
determine whether DAMPs are secreted selectively. More
October 2021 | Volume 12 | Article 740548
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importantly, the techniques used to isolate and characterize EVs
such as exosomes vary from one study to another. It is imperative
that studies pertaining to EVs adhere to the recommendation of
the International Society of Extracellular Vesicles (ISEV) to
ensure reproducible outcomes (111). Apart from that, the
terminology used to describe EVs must follow the standards
recommended by ISEV (111). Furthermore, the information on
the localization of DAMPs within the EVs is also critical as this
determines on which TLR or receptor is stimulated. Also,
whether certain stimuli/therapy may induce the release of
certain EV-derived DAMPs differently than the free DAMPs is
still unknown. Most of the reported studies suggested that EV-
derived DAMPs promote the pro-tumor environment.
Nevertheless, the balance between pro- and anti- inflammatory
and tumor responses regarding the release of DAMPs still needs
further understanding. There are still some important questions
Frontiers in Immunology | www.frontiersin.org 5
that need to be answered in terms of the role of DAMPs within
EVs, especially on how these molecules affect the tumor
microenvironment and eventually cancer progression.
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TABLE 1 | A list of some of the reported studies that have shown the presence of DAMPs within EVs.

DAMPs Type of EVs Disease Source Reference

HMGB1 Exosome Esophageal squamous cell carcinoma cell lines Cell culture medium (65)
Exosome Hepatocellular carcinoma cell lines Cell culture medium (66)
Exosome Lewis lung carcinoma (LLC) cell lines and mice model Cell culture medium

and blood
(67)

Exosome Glioma cells Cell culture medium (69)
HSP60, HSP70 and HSP90 Exosome HepG2 hepatocellular carcinoma cells Cell culture medium (83)
HSP70 Exosome Melanoma (84)
HSP60 and HSP70 Exosome NCI-H292 (human mucoepidermoid bronchial carcinoma), A549 (human lung

adenocarcinoma) and K562 (human erythroleukemia) cell lines
Cell culture medium (88)

HSP90 Extracellular vesicles Bladder cancer cell lines Cell culture medium (90)
HSP90a Exosome Breast cancer cell lines Cell culture medium (92)
Alpha crystalline and HSP22 Exosome Gynecological cancers Serum (89)
S100A9 Exosome Chronic lymphocytic leukemia Plasma (100)
S100A9 Exosome Polycystic ovary syndrome Follicular fluid (101)
S100A7A Exosome LIM1863 colon carcinoma cell-derived organoids Cell culture medium (62)
S100A5 Microvesicle Colorectal cancer cells Cell culture medium (103)
S100A12 Extracellular Vesicles Brain cancer cells, colorectal cancer cells, melanoma cells, kidney cancer cells Cell culture medium (59)
S100A4 Extracellular vesicles Bladder cancer cell lines and bladder cancer patients Cell culture medium

and urine
(90)
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FIGURE 1 | Schematic representation of how DAMP-containing EVs operate upon cellular stress. The localization of DAMPs can be internally or on the surface of
EVs. Upon contact with target cells, the TLR pathway may be activated by DAMPs via the surface or endosomal route and subsequently trigger inflammation.
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