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Introduction: Identifying optimal COVID-19 vaccine dose is essential for maximizing their impact.
However, COVID-19 vaccine dose-finding has been an empirical process, limited by short development
timeframes, and therefore potentially not thoroughly investigated. Mathematical IS/ID modelling is a
novel method for predicting optimal vaccine dose which could inform future COVID-19 vaccine dose
decision making.
Methods: Published clinical data on COVID-19 vaccine dose–response was identified and extracted.
Mathematical models were calibrated to the dose–response data stratified by subpopulation, where pos-
sible to predict optimal dose. Predicted optimal doses were summarised across vaccine type and com-
pared to chosen dose for the primary series of COVID-19 vaccines to identify vaccine doses that may
benefit from re-evaluation.
Results: 30 clinical dose–response datasets in adults and elderly population were extracted for four vac-
cine types and optimal doses predicted using the models. Results suggest that, if re-assessed for dose,
COVID-19 vaccines Ad26.cov, ChadOx1 n-Cov19, BNT162b2, Coronavac, and NVX-CoV2373 could benefit
from increased dose in adults and mRNA-1273 and Coronavac, could benefit from increased and
decreased dose for the elderly population, respectively.
Discussion: Future iterations of COVID-19 vaccines could benefit from re-evaluating dose to ensure most
effective use of the vaccine and mathematical modelling can support this.

� 2022 Published by Elsevier Ltd.
1. Introduction

COVID-19 is one of the largest global public health challenges
ever and has had a devastating effect, societally and economically
[1]. The push to develop COVID-19 vaccines is unparalleled with
over 20 vaccines now currently being rolled out globally and
approximately 300 candidate vaccines still in development [2].
These vaccines are a promising step toward ending the current
pandemic.

Essential to achieving maximal vaccine efficacy against COVID-
19, or any disease, is identifying optimal vaccination dose amount
(hereafter ‘dose’). However, as COVID-19 vaccines have been
developed at a rapid pace compared to conventional vaccine devel-
opment [3], it is likely that this has led to less evaluation of optimal
dose. This is evident in the development of ChAdOx1 nCoV-19 vac-
cine, whereby a mistake in the dosing administration interval led
to unexpected efficacy results, which could have provided poten-
tially better protection [4]. It is clear that not fully investigating
COVID-19 vaccine dose–response curves to identify optimal dose
could result in potential suboptimal protection and potentially
wasted vaccine resources.

Currently, dose finding in vaccine product development stud-
ies is primarily an empirical and essentially qualitative approach
[5]. Evaluation of a wide range of vaccine doses is time-
consuming and costly and therefore not rigorously conducted,
even under normal circumstances [5]. Unfortunately, this means
sub-optimal doses may be progressing to the latter stages of
development (examples of this can be seen in yellow fever
[6,7], meningitis [8] and malaria [9] vaccines). It is clear that a
more effective method is urgently needed to find optimal vaccine
dose.

Historically, the development of new drugs has encountered
similar issues with dose identification, but today benefits from sys-
tematic, extensive use of mathematical models that describe
within-host drug dynamics [10]. Model-Based Drug Development
mmun-
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(MBDD) is recognized as an efficient tool to accelerate and stream-
line drug development, by minimizing developmental time and
resources [11]. MBDD has been established for decades in the phar-
maceutical industry [12] and is often required by regulatory agen-
cies in all stages of drug development. As such, MBDD is regularly
used to establish optimal drug dose [13].

In contrast, until our recent work, there has been very few vac-
cine dose-finding studies using similar quantitative modelling
methods. To address this, we have launched the novel field of vac-
cine ‘Immunostimulation/Immunodynamic’ (IS/ID) modelling, an
adaptation of methods used in drug development to systematically
and quantitatively identify ‘best’ dose. We have shown its potential
in a novel TB vaccine [14,15] and Adenoviral-based vaccines [16–
18] and IS/ID modelling has been recognised by vaccine developers
and modellers as the future methodology to optimise vaccine
development [19–23].

Applying IS/ID models to COVID-19 vaccine dose–response data
should allow us to identify optimal dose which may ultimately
lead to more effective COVID-19 vaccines in terms of protection
and efficient use of product [18,21,22]. As there are multiple
COVID-19 vaccines within a vaccine type (e.g. Adenoviral, mRNA,
etc.) it is possible to aggregate IS/ID dose–response and optimal
dose predictions across vaccine type. Further to this, many
COVID-19 vaccine dose-escalation trials have stratified the vacci-
nation population by potential high-risk factors for COVID-19 dis-
ease (e.g. age), allowing for optimal dose predictions for each risk-
factor groups. Finally, by using IS/ID models to predict optimal
dose, we can identify if dose-sparing is possible for vaccines that
have progressed into the latter stages of development and there-
fore a dose has been selected. As many COVID-19 vaccines are
now fully rolled out and some in the process of being administered
as follow-up boosts, any potential for dose-sparing will be key in
bringing down cost of development and spreading the vaccines
further.

We aimed to predict, using IS/ID models, the optimal dose of
COVID-19 vaccines in humans using antibody dose–response data
from existing published COVID-19 vaccines. We did this by (i)
extracting published clinical antibody dose–response data for
COVID-19 vaccines, (ii) calibrating IS/ID models to the dose–re-
sponse data and predicting optimal dose across vaccine type by
subpopulation and (iii) identifying, for the primary series of
COVID-19 vaccines, vaccines where chosen dose may be sub-
optimal, by vaccine type.
Fig. 1. Representation of the saturating and peaked curves. A. Sigmoidal curve
equation (p > 1), B. Sigmoidal curve equation (p less than 1), C. Combined expo-
nential curve equation, D. Gamma PDF curve equation.
2. Methods

2.1. Objective 1: Extraction of clinical dose–response data for COVID-
19 vaccines

Our aim in Objective 1 was to identify publications that con-
tained COVID-19 neutralizing antibody (NAb) dose–response data.
NAb were chosen as they are currently believed to be important for
protection against COVID-19 [24–26]. We conducted a literature
review of the online databases Medline, using the search themes
relating to ‘‘Covid-19 or SARS-CoV-2” and ‘‘vaccine dose”. The liter-
ature was searched using these search terms between January
2020 and December 2021. The resulting publications were
screened, first, by abstract, followed by full text. Inclusion criteria
included the administration of multiple (2 + ) dose-levels of the
vaccine in the study and assessment of the NAb following vaccina-
tion. If multiple publications were found on the same vaccine data-
set (e.g. as an update to a preliminary dataset), the latest
publication was taken. NAb data presented in the paper were
extracted by eye if in a table and using WebPlotDigitzer [27] if in
graphical form.
2

2.2 Objective 2: Calibration of IS/ID models to clinical dose–response
data for COVID-19 vaccines to predict optimal dose across vaccine type
by subpopulation

Simple IS/ID models were used to describe the NAb dose–re-
sponse curve at the latest time point available in the data. We
chose IS/ID models that represented either a saturated or peaked
curve shape to account for the possibility that the dose–response
could saturate or decrease (as seen in TB vaccines [14]) at higher
dose levels. We chose a sigmoidal equation as the saturating curve
defined as.

Response ¼ Rmax

1þ R50
Dose

� �p
Where Rmax is the saturation maximum, R50 is the value

where the response is 50 % of the saturation maximum. The sig-
moidal equation is able to capture when there is a range of small
doses with zero response (p > 1) (Fig. 1A) or when the response
increases immediately after zero dose (p>=1) (Fig. 1B).

We chose a combined exponential curve to represent a peaked
curve defined as,

Response ¼ a � e�b�Dose � e�c�Dose� �
where a is a scalar and b < c. The combined exponential curve

provides flexibility in the degree in which the dose–response curve
decreases after the peak which other peaked curve equations can-
not (Fig. 1C). However, in the case where there is a small range of
doses with zero response, which the combined exponential curve
cannot capture, the following gamma probability density function
(pdf) was chosen,

Response ¼ S � rshape

C shapeð Þ � Dose
shape�1ð Þ � e�rate�Dose

� �

where S is a scalar multiplying the gamma pdf, rate is the
gamma rate parameter, and shape, the gamma shape parameter
(Fig. 1D).

The three curves were calibrated to the log Geometric Mean
Titre (GMT) and 95 % CI NAb data using nonlinear regression, by
the function nlsLM, in the software R [28]. To establish which of
the shapes best described the dose–response curves the
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goodness-of-fit measure, the Akaike information criteria (AIC) was
compared, where a lower AIC indicates a better fit [29]. The ‘best
fit’ model, with the lowest AIC was then used to make the optimal
dose prediction.

In the case where only two dose levels were available in the
study, placebo data (if available) or ‘zero response’ data at dose
zero, were added to enable calibration of the models. This was nec-
essary as all the models have three parameters, so require, at a
minimum, three data points to calibrate.

For a saturating dose–response curve, optimal dose is defined as
the smallest dose after which the curve plateaus, i.e. there is neg-
ligible increase in response if dose is increased beyond this optimal
value. For a peaked curve, optimal dose is defined as the dose
where an increase in dose leads to a decrease in response. For a sat-
urating curve, we used an ‘acceptance threshold’, which defined
what constituted a negligible increase in response. Optimal dose
is then the smallest dose at which further increasing dose will lead
to a negligible increase in response, i.e. below the acceptance
threshold. Fig. 2 below illustrates how optimal dose is identified
using an Acceptance Threshold (AT). Doses are increased by incre-
ments of dDose and the resulting increase in response is assessed
against the AT. The optimal dose (indicated by a red line in
Fig. 2) is the minimum dose at which an increase in dose of dDose
results in an increase in response less than the AT (boxed in Fig. 2).

For vaccines measured in ug, dDose was 10 % of the maximum
dose administered and the acceptance threshold was a less than
0.1 % increase in response. For example, if the maximum adminis-
tered dose was 10ug, dDose would be 1ug and optimal dose would
be the smallest dose for when an increase of dDose leads to a less
than 0.1 % increase in response. For a vaccine measured in Viral
Particles (VP) or Plaque Forming Units (PFU), dDose was 0.5log10
dose. For a peaked curve, the same acceptance threshold was
applied with the expectation that for further increasing dose
Fig. 2. Illustration and example saturating dose–response curve and identification
of optimal dose using the acceptance threshold. The red line indicates the smallest
dose at which the increase in response is below the acceptance threshold for an
increase of dDose. AT = Acceptance Threshold, dDose = Incremental increase in dose.
(For interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)
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beyond the optimal dose would not only lead to a negligible
increase in response, but eventually, a decrease in response.

NAb dose–response curve and optimal dose were predicted sep-
arately for each subpopulation where data on subpopulation
responses were available. Subpopulation was defined as where
the population was stratified into sub-groups, for example, by
age. The median and IQR of the predicted optimal doses were cal-
culated across vaccine type (overall and by subpopulation).

2.3 Objective 3. Identify, for the primary series of COVID-19 vaccines,
vaccines where chosen dose may be sub-optimal, by vaccine type

To identify, for the primary series of COVID-19 vaccines, vacci-
nes where chosen dose may be sub-optimal, we assessed if the
chosen dose lay within the IQR of the optimal doses predicted in
Objective 2 for each vaccine type and subpopulation. If the chosen
dose was above the IQR then future iterations of the vaccine could
benefit from decreased dose (dose-sparing), conversely, if the dose
was above the IQR, dose should be increased.
3. Results

3.1. Objective 1: Extraction of clinical dose–response data for COVID-
19 vaccines

A total of 20 publications were identified (search conducted
11th June 2021) to be included in the analysis (Fig. 3) and from
those, a total of 30 datasets were extracted. A summary of the
dose–response data, grouped by vaccine type, can be found in
Table 1. Publications were available on adenoviral (n = 4) [30–
33], RNA/DNA (n = 6) [34–39], Inactivated (n = 6) [40–45], Subunit
(n = 3) [46–48] and nanoparticle (n = 1) [49] vaccines. For each vac-
cine type (except for the nanoparticle vaccine), dose–response data
were available for both adult (ages 18–55 year) and elderly popu-
lations (56–85 years, across all publications). For RNA/DNA, Inacti-
vated and subunit vaccines, data on 8 dose levels were available.
There was available data on four dose levels for adenoviral vacci-
nes and two for the nanoparticle vaccine. A detailed summary of
the search results, including the methods used to measure NAb
titres, can be found in Table S1.

3.2 Objective 2: Calibration of IS/ID models to clinical dose–response
data for COVID-19 vaccines to predict optimal dose across vaccine type
by subpopulation

Fig. 4 shows the results of the model calibration and prediction
of optimal dose for the adenoviral COVID-19 vaccines. All the Ade-
noviral curve shapes were best described using the saturating
model, except for data from [30,31] (Figure4.1 and 4.2). The pre-
dicted optimal doses ranged between 4 � 1010 to 7x1016 vp which
overlapped the higher end of the administered dose range of
2.2x1010 to 1.5x1011vp. The median predicted optimal dose across
all datasets is 6.1 � 1010 vp (IQR: 5 � 1010 – 6.1 � 1011 vp). In
adults, the median predicted optimal dose was 4.3 � 1011 vp
(IQR: 6.5 � 1010 – 1.8 � 1016 vp). In the elderly population it
was 4.5 � 1010vp (IQR: 4.2 � 1010- 4.8 � 1010vp).

Fig. 5 shows the results of the model calibration and prediction
of optimal dose for the RNA and DNA COVID-19 vaccines. The RNA
vaccines dose–response curves were described by both the saturat-
ing and peaked curve shapes. Although it is worth noting that the
mRNA-1273 vaccine datasets [34,35,38] were exclusively best
described by the saturating curve shape. The predicted optimal
doses ranged between 21ug to 225ug which overlapped with
administered dose range of 1 to 250ug. The median predicted opti-
mal dose across all datasets is 75ug (IQR: 21-90ug). The median



Fig. 3. Flowchart of data extraction and screening.

Table 1
Summary of the dose–response data, grouped by vaccine type. *Across all publications.

Vaccine Type No. of publications
/datasets

No. of total
participants*

Population stratification (Ns = No. of
datasets, Nt = No. of total participants*)

Distinct dose levels given* References

Adenoviral 4/6 800 Adults (18–55 years) (Ns = 4, Nt = 640)
Elderly (56–69 years) (Ns = 1, Nt = 60)
Elderly (70 + years) (Ns = 1, Nt = 100)

2.2 � 101⁰, 5 � 1010, 1 � 1011 or
1�5 � 1011 vp

(30–33)

RNA/DNA 6/10 917 Adults (18–55 years) (Ns = 5, Nt = 505)
Elderly (56–70 years) (Ns = 2, Nt = 320)
Elderly (71 + years) (Ns = 1, Nt = 20)
Elderly (65–85 years) (Ns = 2, Nt = 72)

1, 10, 20, 25, 30, 50, 100 or 250 lg (34–39)

Inactivated 6/9 1205 Adult (18–59 years) (Ns = 5, Nt = 836)
Elderly (60–64 years) (Ns = 1, Nt = 99)
Elderly (65–69 years) (Ns = 1, Nt = 99)
Elderly (70 + years) (Ns = 1, Nt = 99)
Elderly (60 + years) (Ns = 1, Nt = 72)

1.5, 2, 2.5, 3, 4, 5, 6, 8 or 10 lg
50,100 or 150 EU

(40–45)

Subunit 3/4 786 Adult (18–55 years) (Ns = 3, Nt = 726)
Elderly (55–75 years) (Ns = 1, Nt = 60)

3, 5, 9, 15, 25, 30, 45 or 50 lg (46–48)

Nanoparticle 1/1 50 Adult (18–59 years) (Ns = 1, Nt = 50) 5 or 25 lg (49)
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predicted optimal dose for adults and the elderly population is
63ug (IQR: 43-113ug) and 80ug (IQR: 21-90ug), respectively. The
DNA vaccine dose–response curve was best described by peaked
curve shape and the predicted optimal dose was 1.4ug.

Fig. 6 shows the results of the model calibration and prediction
of optimal dose for the Inactivated COVID-19 vaccines. The major-
ity of inactivated vaccines dose–response curves were best
described by the saturating curve shape with the exception of data
for the Inactivated whole-virus vaccine in adults [41] and Corona-
Vac in 70 + year adults [44] which were best described using a
peaked curve (Figure 6.2 and 6.9). For those vaccine measured in
ug, the predicted optimal doses ranged between 2 and 36ug which
4

overlapped the administered dose range 2.5 – 10 ug. The median
predicted optimal dose across all datasets is 7ug (IQR: 5-18ug).
The median predicted optimal dose for adults and the elderly pop-
ulation is 7ug (IQR: 5-14ug) and 9ug (IQR: 5-19ug), respectively.
For the Inactivated vaccine measured in EU [43], the predicted
optimal dose of 690 EU was above the maximum dose adminis-
tered (150 EU).

Fig. 7 shows the results of the model calibration and prediction
of optimal dose for the subunit and nanoparticle COVID-19 vac-
cines. All Subunit vaccines dose–response curves were best
described by the peaked curve shape with the exception of SCB-
2019 datasets [48] in adults which were best described by a satu-



Fig. 4. Predicted optimal dose for Adenoviral COVID-19 vaccines. Figure numbers correspond to datasets from publications as follows: 1. (30), 2. (31), 3. (33), 4–6, (32). The
black points and error bars correspond to the NAb Geometric Mean Titre and 95 % CI of the data. The blue line is the model-predicted NAb dose–response curve and the
vertical dashed line is the predicted optimal dose using the acceptance threshold. Dose on the x-axis is logged and transformed for ease of model calibration, but optimal
doses are transformed back to the original scale in figure. OD = Optimal Dose, vp = Viral Particle. (For interpretation of the references to colour in this figure legend, the reader
is referred to the web version of this article.)
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rating curve shape (Figure 7.3). The predicted optimal doses ranged
between 4.5ug – 290ug which overlapped the administered dose
range of 3 – 50 ug. The median predicted optimal dose across all
datasets is 21ug (IQR: 11-95ug). The median predicted optimal
dose for adults and the elderly population is 30ug (IQR: 20-
161ug) and 12ug (IQR: 12-12ug), respectively. The nanoparticle
vaccine dose–response curve was best described by peaked curve
shape. The predicted optimal dose was 12ug.

The model calibration results for each dataset can be found in
table S2.

3.3 Objective 3. Identify, for the primary series of COVID-19 vaccines,
vaccines where chosen dose may be sub-optimal, by vaccine type

The chosen dose for the primary series of COVID-19 vaccines,
(where this data was available) were compared to the aggregate
predicted optimal dose for the overall, adult and elderly popula-
tions from Objective 2 (Table 2).

For the Adenoviral vaccines, Ad26.cov (Janssen vaccine) and
ChadOx1 n-Cov19 (Astra Zeneca vaccine), the chosen dose,
5

5 � 1010 vp [50,51], was within the IQR of the predicted optimal
doses found in Objective 2 for the overall population. However,
the modelling suggests this dose may be too low in adults, with
the median optimal predicted Adenoviral dose in adults approxi-
mately a log higher (4.3 � 1011 vp). The median optimal predicted
dose in the elderly population was smaller than the chosen dose,
but only by 0.5log (4.5 � 1010vp). The modelling suggests, the dose
of both vaccines could be increased for adults, if safety permits.

For the RNA vaccine, BNT162b2 (Pfizer vaccine), the chosen
dose, 30ug [52], was within the IQR of the predicted RNA optimal
doses found in Objective 2 for the overall population and the
elderly population. However, the modelling suggests the dose
was too low in adults, with the optimal predicted RNA dose in
adults 33ug higher (63ug). The modelling suggests the dose could
be increased for adults and maintained for the elderly population.

For the RNA vaccine, mRNA-1273 (Moderna vaccine) the chosen
dose, 100ug [53], was above the IQR of the predicted RNA optimal
doses found in objective 2 for the overall population. Modelling
suggests this dose was too high in the elderly population, with
the median optimal predicted RNA dose in the elderly population



Fig. 5. Predicted optimal dose for RNA/DNA COVID-19 vaccines. Figure numbers correspond to datasets from publications as follows: 1. (34), 2. (35), 3. (36, 37), 4. (37), 5–6.
(38), 7. (35), 8–9, (37), 10. (39). The black points and error bars correspond to the NAb Geometric Mean Titre and 95 % CI of the data. The blue line is the model-predicted NAb
dose–response curve and the vertical dashed line is the predicted optimal dose using the acceptance threshold. OD = Optimal Dose. (For interpretation of the references to
colour in this figure legend, the reader is referred to the web version of this article.)
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20ug lower (80ug). The modelling suggests the dose could be
decreased in the elderly population and maintained for adults.

For the Inactivated vaccine, Coronavac, the chosen dose, 3ug
[40,53], was below the IQR of the predicted optimal doses found
in Objective 2 for the overall population, adult and the elderly pop-
ulation. The modelling suggests the dose should be increased for all
age groups.

For the Inactivated vaccine, BBV152, the chosen dose, 6ug [53],
was within the IQR of the predicted optimal doses found in objec-
tive 2 for the overall population, adult and the elderly population.
The modelling suggests the dose could be maintained for all age
groups.

For the nanoparticle vaccine, NVX-CoV2373 the chosen dose,
5ug [53], was below the median predicted optimal doses found
in Objective 2 for adults. The modelling suggests the dose could
be increased.
4. Discussion

Given the urgent need for COVID-19 vaccines to end the current
pandemic, it is vital that these vaccines are optimised to reach the
population in the most efficient and effective way possible.
Immunostimulation/Immunodynamic (IS/ID) modelling is a novel
method which, when applied to antibody dose–response data,
can aid in optimising dose selection for COVID-19 vaccines. We
used modelling to predict optimal dose for published COVID-19
in adults and the elderly population summarised over vaccine type.
We predicted that to provide optimal immunogenicity in adults,
6

adenoviral vaccines Ad26.cov, and ChadOx1 n-cov19, mRNA vac-
cine, BNT162b2, inactivated vaccine, Coronavac and nanoparticle
vaccine, nvx-cov2373 may desire to be increased in dose in future
iterations of development. In order to provide optimal immuno-
genicity in the elderly population, mRNA vaccine, mrna-1273
may need to increase dose and inactivated vaccine, Coronavac,
may need to decrease dose.

There are key strengths to this work. The application of the sim-
ple IS/ID models to COVID-19 vaccine dose–response data can pro-
vide valuable insight into the shape of the COVID-19 vaccine dose–
response curve, which is conventionally, only empirically investi-
gated [21]. Quantitative analysis of the dose–response curve shape
allows us to interpolate between empirical dose–response data
and can be used to inform dosing decisions on similar or emerging
vaccines not only for COVID-19 but related pathogens.

By using simple IS/ID models that do not take into account the
biological mechanism as a result of vaccination, we could predict
optimal dose regardless of the NAb measure chosen in the study
(e.g. PRNT, microneutralization (MN) assay). Our method of pre-
dicting optimal dose using a pre-specified acceptance threshold
which was assessed against proportion of the dosing range in the
study meant each optimal dose prediction was standardised for
each dataset. This meant that the differences in NAb measure
across studies did not impact the prediction of optimal dose and
allowed us to aggregate optimal dose predictions across vaccines
developed by different groups, regardless of any difference in lab-
oratory methods.

There were weaknesses to our work. To best predict optimal
dose by vaccine type and subpopulation, our aggregated optimal



Fig. 6. Predicted optimal dose for Inactivated COVID-19 vaccines. Figure numbers correspond to datasets from publications as follows: 1. (40), 2. (41), 3. (45), 4. (42), 5. (43),
6. (44) 7. (42), 8–9. (44). The black points and error bars correspond to the NAb Geometric Mean Titre and 95 % CI of the data. The blue line is the model-predicted NAb dose–
response curve and the vertical dashed line is the predicted optimal dose using the acceptance threshold. OD = Optimal Dose, EU = European Units. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version of this article.)
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dose predictions were based on limited studies and datasets in
most cases. It would not have been appropriate to ignore vaccine
type to increase power for subpopulation prediction, given the dif-
ference in COVID-19 vaccine types currently in development. Sim-
ilarly, the limited range of dose-levels and sample sizes per study
meant the 95 % confidence interval of the model parameters was
wide or not predictable. This means the uncertainty in the esti-
mated model parameters is high and that the optimal dose predic-
tion is based only on the GMT of the data. However, we believe that
the dose–response trend this represents can still be a valuable
guide to identifying optimal dose. Unfortunately, this is a challenge
not just for IS/ID modelling, but for current empirically-based vac-
cine development in general, as usually only a very limited number
of doses are investigated in clinical trials. Despite this, vaccine dos-
ing decisions are still empirically made based on this same limited
data.

We choose to use only Neutralising Antibodies (NAb) to repre-
sent the immune response to COVID-19 which have been sug-
gested as important for protection against COVID-19 [24–26].
However, a correlate of protection for COVID-19, which is likely
to be more complex than only NAb, not yet been identified. As
an example, T cells were not considered in this work even though
they have been shown to contribute to the COVID-19 immune
response [54]. This means that by only considering the NAb
dose–response curves we are unlikely to have found the true ‘opti-
mal immunogenic dose’. However, given NAb are a strong indica-
tion of response and have been, so far, a routine and more
abundant measure of COVID-19 vaccine immunogenicity, we
believe we our methods have predicted a reasonable estimate of
7

optimal dose. A more complex QSP or immune response ‘network
model’ could provide better understanding of optimal immuno-
genic dose for multiple immune response readouts, but with lim-
ited data, this was not possible for this work.

We used the latest timepoint available in the published dataset
to make optimal dose predictions on the most mature immune
response possible. However, the latest time point was variable
across the studies, ranging from 28 to 70 days resulting in aggre-
gated optimal dose predictions based on different levels of
response maturation. NAb responses taken at early and late time
points may not be comparable, as affinity maturation may lead
to delayed increases. To overcome this issue, we could have pre-
dicted optimal dose at the timepoint common to all datasets,
28 days. However, under this condition we would not have been
able to capture the effect of the boost immunization (administered
at day 28 for most of the vaccines), which has been critical to
increase protection in real world trials.

The acceptance threshold was arbitrarily chosen and changing
this value will change the prediction of optimal dose. However, this
value was considered conservative and ensured the plateau of the
saturating dose–response curve was sufficiently flat, resulting in a
robust optimal dose prediction.

To our knowledge, there are few published studies using math-
ematical models to predict COVID-19 vaccine dose and none that
have used all available published dose–response datasets for
COVID-19 vaccine dose prediction.

Giorgi et. al. use a Quantitative Systems Pharmacology (QSP)
model to predict the percentage COVID-19 responders over time
by dose after vaccination with mRNA vaccine, mRNA-1273. Their



Fig. 7. Predicted optimal dose for Subunit and Nano COVID-19 vaccines. Figure numbers correspond to datasets from publications as follows: 1. (46), 2. (47), 3–4. (48), 5. (49).
The black points and error bars correspond to the NAb Geometric Mean Titre and 95 % CI of the data. The blue line is the model-predicted NAb dose–response curve and the
vertical dashed line is the predicted optimal dose using the acceptance threshold. OD = Optimal Dose. (For interpretation of the references to colour in this figure legend, the
reader is referred to the web version of this article.)

Table 2
Chosen dose for the vaccines that are currently in phase III or above, comparison to the aggregate predicted optimal dose for the overall, adult and elderly populations and
recommendations for further testing of doses for these vaccines.

Vaccine Type Vaccine name (alias) Current phase of development Chosen dose Comparison of chosen dose to aggregate
predictions of optimal dose in objective 2

Overall Adult Elderly

Adenoviral Ad26.cov (Janssen vaccine) In use in the UK 5 � 1010 vp (50) Within IQR Below IQR Above IQR
ChadOx1 n-Cov19 (Astra Zeneca vaccine) In use in the UK 5 � 1010 vp (51)

RNA/DNA BNT162b2 (Pfizer vaccine) In use in the UK 30ug (52) Within IQR Below IQR Within IQR
mRNA-1273 (Moderna vaccine) In use in the UK 100ug (53) Above IQR Within IQR Above IQR

Inactivated Coronavac In Phase III 3ug (40, 53) Below IQR Below IQR Below IQR
BBV152 In Phase III 6ug (53) Within IQR Within IQR Within IQR

Nano NVX-CoV2373 In Phase III 5ug (53) Below IQR NA NA
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results show that, early on, there is little difference in the percent-
age of those who responded (using median convalescent serum
concentration as a threshold measure) between the 30ug and
100ug dose of the vaccine regardless of age. However after approx-
imately a year, responders decreases [22]. Empirical data support
this as lower doses mRNA-1273 of 25 lg had as high antibody
immune responses as those who were given the dose chosen Phase
III dose, 100ug [54]. This suggests mRNA-1273 doses could be
equally as effective at a lower dose, a finding our predictions
support.

Empirical data for mRNA vaccine BNT162b2 show that antibody
responses appear to wane six months after second vaccination,
especially in adult men [55] which could be a result of under-
dosing. Although we did not stratify our analysis by gender, our
predictions support this by suggesting a higher dose of BNT162b2
in adults could be more immunogenic.

In our previous work, we have used mechanistic models in a PK/
PD style framework to characterise the immune response over
time, the effect of vaccine dose on the response dynamics as well
as the variation in vaccine response across a population [15,56].
Mechanistic models can provide valuable understanding of the
underlying biology of immune responses to vaccination. Applica-
tions of mechanistic models to vaccine data could potentially be
shared to inform model-predicted dose–response for similar or
emerging vaccines, reducing the need for empirical data [21]. We
were not able to apply these methods in this work as only data
on early responses were available. Mechanistic modelling in a
pharmacometric framework of COVID-19 vaccine dose-responses
could be conducted when more longitudinal data is available.

There are other areas for future research. Most importantly, the
modelling predictions in this work should be validated and
strengthened with further data. This should be done in a clinical
setting to show that our predictions are reflective of reality. It is
likely that since the initial literature search was conducted, more
datasets have become available given the pace at which COVID-
19 vaccines have been developed. More optimal dose predictions
from emerging COVID-19 vaccine data will strengthen the predic-
tions made in this analysis.

There are many other applications of IS/ID modelling that can
accelerate development for vaccines not only against COVID-19 but
other pathogens. These could include; cross-species and cross-
disease dose translation (e.g. ‘borrowing’ dose–response information
for similar diseases like MERS or SARS tomake further predictions for
COVID-19 vaccines); further work on the optimal COVID-19 vaccine
dosing regimen (timing of vaccination)[22] and the effect of a third or
fourth boost; and how we can use model-based adaptively designed
vaccine trials to reduce the time taken to explore the full range of
doses. These applications are common in drug-development and
should be explored further in vaccines.

In general, IS/ID modelling offers a promising solution to accel-
erate how we develop all vaccines [23]. This is especially true of
vaccines developed under urgent circumstances, like in the case
of COVID-19 where the timely application of IS/ID modelling can
vastly improve our ability to protect the global population, saving
lives.
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