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SUMMARY

Nowadays, radiative coolers are extensively investigated for the thermal man-
agement of solar cells with the aim of improving their performance and lifetime.
Current solutions rely onmeta-materials with scarce elements or complex fabrica-
tion processes, or organic polymers possibly affected by UV degradation. Here,
the potential of innovative cement-based solutions as a more sustainable and
cost-effective alternative is reported. By combining chemical kinetics, molecular
mechanics and electromagnetic simulations, it is shown that themost common ce-
ments, i.e., Portland cements, can be equipped with excellent radiative cooling
properties, which might enable a reduction of the operating temperature of solar
cells by up to 20 K, with outstanding efficiency and lifetime gains. This study rep-
resents a first step toward the realization of a novel class of energy-efficient,
economically viable and robust radiative coolers, based on cheap and available
cementitious materials.

INTRODUCTION

Reducing the operating temperature is a key challenge in solar cells technology. A lower temperature not

only increases the power conversion efficiency, by about 0:5 %=K in silicon-based devices (Skoplaki and

Palyvos, 2009), but also extends the system lifetime, by roughly 23=10 K (Dupré et al., 2017).

Motivated by the possibility of achieving significant gains in performance, researchers have proposed

several cooling solutions over the years which are based on diverse concepts (Chandrasekar et al.,

2015). Among these, radiative cooling has been attracting much attention lately, not only for the thermal

management of solar cells (Li et al., 2017,2021; Perrakis et al., 2020,2021; Safi and Munday, 2015; Wang

et al., 2020), but also for application in buildings (Hossain and Gu, 2016; Li and Fan, 2019; Zhao et al.,

2019). This technology stands out thanks to its remarkable potential in terms of energetic efficiency,

economical viability, environmental friendliness, and reliability, fostered by its completely passive nature,

effectiveness, systemic simplicity and absence of moving parts.

Radiative coolers are bodies designed to strongly emit thermal radiation within the atmosphere transpar-

ency window (AW) between 8 and 13 mm (see Figure S1) (Catalanotti et al., 1975). Radiation ejected through

this channel dodges the bounce-back effect of the atmosphere and reaches outer space without returning

to the sender. This uncompensated energy removal reduces the temperature of radiative coolers. More-

over, if strict spectral requirements are fulfilled, sub-ambient temperature can be reached even under

direct sunlight, as experimentally proven only recently (Raman et al., 2014).

Thanks to these characteristics, radiative coolers can act as effective heat sinks when thermally coupled to a

warming body, such as a solar cell. Indeed, the excess heat generated within the cell on sunlight absorption

is going to flow toward the colder radiative cooler. Then, the latter is going to permanently remove it from

the system in the form of thermal radiation through the atmospheric window. Remarkably, this process can

reduce the operating temperature of silicon-based devices by up to 18:5 K (Zhu et al., 2014), roughly lead-

ing to a 9 % efficiency gain (Skoplaki and Palyvos, 2009) and 360 % of lifetime (Dupré et al., 2017).

Different kinds of radiative coolers were discovered in the last few years (Hossain and Gu, 2016). Themost com-

mon ones are meta-materials made of vertically stacked thin films (Li et al., 2017; Raman et al., 2014; Kecebas

et al., 2017), or thick layers with a micro-patterned surface (Perrakis et al., 2021; Zhu et al., 2014; Hossain et al.,

2015; Kongetal., 2019). Yet, it is unclearwhether these technologiesareadaptable to large-scalemanufacturing,
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because of their reliance on scarce materials such as Ag or Hf (EuChemS, 2021), or complex deposition and

patterning methods. To overcome these issues, organic materials such as hierarchical porous polymers have

been proposed as a low cost alternative (Carlosena et al., 2021; Wang et al., 2021b, a; Li et al., 2019; Mandal

et al., 2018), but their use might be jeopardized by UV degradation (Zhao et al., 2019). This impasse is forcing

researchers into a trade-off between performance, cost, and reliability, and calls for prompt action to identify

alternative classes of radiative coolers capable of fulfilling all these requirements simultaneously.

Faced with this challenge, we have considered several options and identified (meta-)concretes as a very

promising class of cheap and scalable (meta-)materials. Conventional concrete is made by gluing together

aggregates such as sand or gravel with a cement paste (binder) (Allen and Iano, 2019). These aggregates

can be replaced with more ‘‘exotic’’ inclusions to form meta-concrete, a concrete-like meta-material that

can be equipped with unconventional properties (Mitchell et al., 2014). A first hint at the possible applica-

tion of these materials as radiative coolers is provided by their multi-scale porous structure (Dolado and

Van Breugel, 2011), which strongly resembles the one of the aforementioned hierarchical porous polymers.

Furthermore, there exist many recipes for the cement paste and many possible choices for the aggregates,

which lead to concretes with very different chemistry andmicro-structure (Aı̈tcin, 2000; Bensted and Barnes,

2002; Bohnet and Ullmann, 2003). As a matter of fact, these materials form an extremely broad class, which

can be used not only in buildings (Gagg, 2014), but also in clinical applications such as bone prostheses

(Kenny and Buggy, 2003) and tooth restoration (Chadwick and Evans, 2007). This characteristic provides re-

searchers with many knobs to tune properties. Finally, concretes are already being investigated in the

context of buildings as a structural material equipped with radiative cooling capacities (European Commis-

sion, 2021), with recent experiments confirming their strong thermal emissivity in the atmospheric window

(Lu et al., 2021) and high reflectance at sunlight wavelengths (Levinson and Akbari, 2002).

Encouraged by these observations, we have transferred for the first time with this work the idea of cement-

and concrete-based radiative coolers from buildings to solar cells. In particular, we have investigated the

suitability of ordinary Portland cements (OPC) (Taylor, 2004), which are the most commonly used type of

binder, for their thermal management. Remarkably, we have discovered that they can be equipped with

dielectric properties suitable for the thermal management of solar cells and potentially capable of

providing outstanding gains in performance. These findings may represent a major breakthrough in radi-

ative cooling research, because the main elements found in these cements, such as Ca, Si, O, and H, are

among the cheapest and most available on Earth (EuChemS, 2021). At the same time, the stability and reli-

ability of cement- and concrete-based solutions is something that we experience every day. With this

article, we demonstrate that cements and concretes can also be equipped with the properties needed

for the effective radiative cooling of solar cells and can become the ultimate radiative coolers, capable

of fulfilling performance, cost and reliability requirements at the same time. These findings call for further

research aimed at realizing an ultimate photovoltaic system design and fabrication protocol.

To reach these conclusions, we have defined a multi-scale interdisciplinary simulation workflow that calcu-

lates the cement paste electromagnetic properties from scratch and uses them in a power balance model

to estimate the solar cell temperature reduction driven by its coupling to the cement-based radiative

cooler. The essentials of the workflow are depicted in Figure 1.

First, several cement micro-structures are generated by modeling the cement paste formation with

methods from chemical kinetics. At the same time, the IR dielectric properties of the basic components

of the heterogeneous cement paste are calculated by atomistic simulations. Next, these micro-structural

and dielectric data are combined into a suitable effective medium theory to convert the space-dependent

dielectric function into an equivalent homogeneous dielectric function. Then, this is plugged into an elec-

tromagnetic simulator to calculate the cement slab emissivity. Finally, this slab is ‘‘attached’’ to the solar cell

and the operating temperature of the resulting device is calculated by the detailed balance model.

More information on each of these methods and the corresponding findings is provided in the results and

discussion section, with additional details in the STAR methods section and the supplemental information.
RESULTS AND DISCUSSION

We start our discussion with the hypothetical planar structure depicted in Figure 2A, based on the typical

model used for the performance assessment of radiative coolers made of meta-materials (Perrakis et al.,
2 iScience 25, 105320, November 18, 2022



IR permittivity of cement paste components

Chemical kinetics (µic) Atomistic simulations (GULP)

Cement paste microstructure

H2O

Effective medium theory (Slovick)

Homogenized cement paste IR permittivity

Electromagnetic simulations (generalized TMM)

Cement slab absorbance/emissivity

Detailed-balance model

Solar cell operating temperature vs band-gap

Ideal mirror
Cement paste
Solar cell

Figure 1. Workflow for the assessment of cement-based radiative coolers for the thermal management of solar

cells
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2020, 2021; Safi andMunday, 2015; Zhuet al., 2014;Cagnoni et al., 2022). Thedevice consists of a stackmadeby

a reflector, a cement-based radiative cooler and a bifacial (Guerrero-Lemus et al., 2016) solar cell; the solar cell

top surface is facing the Sun. This structure could be realized, for example, by building a thin film solar cell onto

a cement-based substrate by sputtering, evaporation or solution deposition techniques. Experiments can be

found in the literature, where thin-film solar cells have been placed onto structural elements of buildings such

as roof tiles and concrete blocks (Águas et al., 2011; Iencinella et al., 2009; Hosseini et al., 2013).

By design, the solar cell and the radiative cooler are thermally coupled but mutually transparent. Indeed,

the former absorbs sunlight in the UV-visible spectral range, whereas the latter emits thermal radiation in

the IR spectral range, where the AW is found. Because absorbance and emissivity spectra of a body are

equal according to Kirchhoff’s law of thermal radiation (Balaji, 2014) (they will be used interchangeably

from this point onward), the solar cell and the radiative cooler do not exchange energy with each other
iScience 25, 105320, November 18, 2022 3
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Radiative cooler (cement paste)

Solar cell (Shockley-Queisser)

Atmosphere

Outer space
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Figure 2. Illustration of the detailed balance model employed

(A) Planar structure used to assess the suitability of a radiative cooler for the thermal management of solar cells. The

power density terms representing the channels through which the device, the environment and the end-user load

exchange energy are also depicted, together with the atmosphere radiation shielding effect outside of its transparency

window (AW).

(B) Comparison between the main electromagnetic spectra involved in the operation of a solar cell equipped with a

radiative cooler. ESun
e;l is the normalized Sun spectral irradiance (AM1.5g), Eatm

e;l is the normalized atmosphere spectral

irradiance, and AW are the atmosphere transparency windows. It is shown that solar cell and Sun are electromagnetically

active in a spectral range different from the one of radiative cooler and atmosphere.

ll
OPEN ACCESS

iScience
Article
electromagnetically, but do so only with the Sun and the atmosphere, separately. These observations are

clarified in Figure 2B, where the most significant spectra are depicted (see Figure S1 for atmosphere trans-

mittance spectra).

According to the considerations above, the device can be modeled as a single body at temperature T,

whose electromagnetic properties are the ones of the solar cell in the UV-visible range and the ones of

the radiative cooler in the IR spectral range (Safi and Munday, 2015). Then, one can calculate the net power

density (power per top surface unit area) PnetðTÞ exiting the device as function of T and determine the oper-

ating temperature by solving PnetðTÞ = 0, which corresponds to the stationary state of the system. Pnet con-

sists of several terms, as depicted in Figure 2A:

PnetðTÞ = Pcell
rad

�
T ;Eg

� � PSun

�
ESun
e;l ;Eg

�
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

UV� visible spectrum

+ Pelec

�
T ;Eg

�
+ Pcool

rad

�
T ;Acool

U;l

�
� Patm

�
T0;A

atm
U;l ;A

cool
U;l

�
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

IR spectrum

+PconðT ; T0;hcÞ
(Equation 1)

PSun, P
cell
rad and Pelec are the power densities that the solar cell absorbs from the Sun, emits as radiation

and delivers to the end-user load at maximum power point (MPP), respectively; they have been calcu-

lated according to the Shockley-Queisser model (Shockley and Queisser, 1961). On the other hand,

Patm and Pcool
rad are the power densities that the radiative cooler absorbs from the atmosphere and emits

as thermal radiation, respectively. Finally, Pcon is an empirical term to account for conduction and

convection phenomena between the device and the environment. All these terms are widely

discussed in the literature (Perrakis et al., 2020,2021; Safi and Munday, 2015; Zhu et al., 2014). Therefore,

we refer the reader to the STAR methods section for their explicit formulas and we show here only

their parametric dependencies, to highlight which information must be known to obtain Pnet as a function

of T only.

In particular, some electromagnetic spectra must be supplied as a function of wavelength l and zenith

angle q (the system is invariant with respect to the azimuth angle). The first one is the Sun spectral irradiance

ESun
e;l ðlÞ, modeled using the global standard spectrum AM1.5g (ASTM International, 2022). The next one is

the atmosphere spectral directional emissivity Aatm
U;l ðl; qÞ, obtained according to the formula Aatm

U;l ðl; qÞ =

1 � Tatm
0;l ðlÞ1=cosðqÞ(Perrakis et al., 2020), Tatm

0;l ðlÞ being the zero-zenith spectral directional transmittance
4 iScience 25, 105320, November 18, 2022
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C D E

Figure 3. Simulation of the alite hydration process for an initial particle size distribution corresponding to N0 =

105 particles per ð100 mmÞ3
(A) Sketch of the hydration process of a single alite particle representing the model used in this work.

(B) Definition of the radii used to quantify the particles size in this work.

(C) Simulation snapshot of the initial cement powder.

(D) Simulation snapshot of the partially hydrated cement paste.

(E) Simulation snapshot of the fully hydrated cement paste.
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calculated for the summer season with the software LOWTRAN (Hirsch, 2016). The last one is the spectral

directional absorbance of the cement-based radiative cooler Acool
U;l ðl; qÞ, calculated according to the work-

flow outlined in the Introduction and depicted in Figure 1.

The results originating from this workflow are the core subject of this section. However, before moving to

their discussion, a few parameters of Equation 1 still need explanation. In particular, Eg is the band-gap of

the solar cell semiconductor, for which we have considered values in the range between 1 and 3 eV,

whereas T0 and hc are the ambient temperature (set to 293:15 K) and the conduction/convection coefficient

(set to 10:6 W m� 2 K� 1 to represent average winds (Perrakis et al., 2020)); different values of these two do

not affect our findings, hence they are not considered here.

Back to Acool
U;l , this can be readily determined by the transfer-matrix method (TMM) for a planar structure

made of layers with known homogeneous permittivity (Born and Wolf, 2019). However, as already antic-

ipated, common cement pastes are made of a heterogeneous mixture of chemical species arranged into

a complex multi-scale porous structure (Dolado and Van Breugel, 2011). This apparent incompatibility

can be lifted by resorting to a suitable effective medium theory (Choy, 2016), which enables us to sub-

stitute the microscopically inhomogeneous permittivity with a homogeneous one that provides equiva-

lent electromagnetic properties at the macro-scale. This procedure requires knowledge of the cement

paste micro-structure and of the complex permittivity of its homogeneous components, as well as a

proper choice of the homogenization (effective medium) model. We are now going to discuss these

aspects one by one.
Micro-structure of the cement paste

Common cement pastes are prepared by mixing a fine powder (clinker) with water. This mixture undergoes

a hydration process whose products form the cement paste, which gradually hardens over time. For OPCs,

the powder is made of alite, whose chemical formula is Ca3SiO5 (C3S in cement chemist notation), by up to

70 % (Taylor, 2004). Accordingly, we have considered a cement paste made by hydrating alite only, to

simplify the model while capturing all the essential features of OPCs.
iScience 25, 105320, November 18, 2022 5



Table 1. Initial number of particles per ð100 mmÞ3N0, volume fractions f and statistics (expectation values m and

standard deviations s) of the particle radii R of the simulated samples after full hydration

N0

ð100 mmÞ�3

fC3S

%

fCSH
%

fCH
%

m½RC3S�
mm

m½RCSH�
mm

m½RCH�
mm

s½RC3S�
mm

s½RCSH�
mm

s½RCH�
mm

102 5 61 23 3.32 12.51 21.94 2.80 1.82 2.49

103 5 62 24 0.71 5.20 11.33 1.34 1.89 2.00

104 4 63 24 0.11 1.85 5.04 0.42 1.12 1.18

105 4 63 24 0.01 0.58 2.27 0.12 0.52 0.58

106 4 64 24 0.00 0.17 0.86 0.03 0.21 0.56

107 2 66 25 0.00 0.10 0.36 0.01 0.09 0.28

The sumof the volume fractions is not unity because the remaining space consists of empty pores. The definition of the radii is

depicted in Figure 3B.
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The surface of the alite powder particles, which are typically assumed to be spherical (Navi and Pignat,

1996), dissolves on reaction with water. The dissolution products form shells of calcium silicate hydrate,

whose chemical formula is ðCaOÞ3ðSiO2Þ2ðH2OÞ4 (CSH in cement chemist notation), around the original

particles, or form new particles made of portlandite, whose chemical formula is CaðOHÞ2 (CH in cement

chemist notation), by nucleation and growth in the interstitial regions. This process is sketched in Figure 3A

and follows the volumetric formula (Pignat et al., 2005):

1:0 VC3S + 1:318 VH2O/1:57 VCSH + 0:596 VCH (Equation 2)

The resulting cement paste is made of a disordered ensemble of two kinds of domains, namely the ones

with a core of C3S and a shell of CSH, and the ones made of CH only, characterized by a pseudo-spherical

shape.

To generate plausible cement micro-structures, we have simulated the alite hydration process with the

open source package mic (Bishnoi and Scrivener, 2009a). In particular, we have applied the well-established

model from Pignat et al. (2005) to a specimen filled with a 0.4 water/C3S mass ratio, in line with common

cement recipes, and considered initial particle size distributions (PSDs) for the alite powder corresponding

to N0 = 102; 103; 104; 105; 106; 107 particles per ð100 mmÞ3, to unravel the interplay between properties and

micro-structure. The implementation of this model in mic is well described in the doctoral thesis by Bishnoi

(2008); for the reader’s convenience, we have reported a detailed description in the STARmethods section.

Table 1 reports information concerning the final chemical composition, characterized by the volume frac-

tions f, and the resulting particle size statistics, quantified by the expectation value m and the standard de-

viation s of the radii of the C3S cores, the CSH shells, and the CH particles; the definition of the radii is shown

in Figure 3B. Figure 3 also shows three simulation snapshots for N0 = 105 particles per ð100 mmÞ3, corre-
sponding to the initial cement powder (C), the partially hydrated cement paste (D) and the fully hydrated

cement paste (E). As expected, a larger value of N0 leads to smaller final sub-domains. More importantly,

the size of these sub-domains is comparable to the thermal radiation wavelengths. Therefore, micro-struc-

tural size effects are expected to impact the emissivity properties of the samples, hence providing a knob to

tune the dielectric response. Finally, it can be seen from the values of fC3S (% 5 %) that alite is consumed

almost completely on full hydration and can be neglected in the homogenization step.
Complex permittivity of the cement paste components

To apply effectivemedium theory, themicro-structural information obtained abovemust be combinedwith

the complex permittivity of the cement paste homogeneous components, namely C3S, CSH and CH.

Because atomic vibrations are responsible for the dielectric response in the IR spectral range where the

radiative cooler operates, we have resorted to molecular simulations to obtain this information.

We have performed these simulations with the General Utility Lattice Program (GULP) (Gale, 1997) accord-

ing to the force field method (Leach, 2001). Under this atomistic scheme, the interaction between atoms is

described by parameterized interatomic potentials so that the system energy can be traced back from their

positions. In particular, we have adopted a well-tested polarizable force field, which is known to describe
6 iScience 25, 105320, November 18, 2022
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Figure 4. Absorption spectra of the materials studied

(A) Calculated absorption coefficient of the homogeneous components of cement pastes made by hydrating alite

powder.

(B) Effective absorption coefficient of the generated cement pastes as a function of the mean particle (sub-domain) radii

ðRCSH;RCHÞ.
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correctly the structure and elastic properties of most cementitious phases (Manzano et al., 2009). Later,

we have calculated the complex permittivity of C3S, CSH and CH by following the method employed in

(Dolado et al., 2020) for studying the response of cement-based materials in the THz regime.

The corresponding absorption coefficient is reported in Figure 4A for all components. Details about mo-

lecular simulations and crystal structures can be found in the STAR methods section, whereas Figure S2 -

drawn with VESTA (Momma and Izumi, 2011) - and Table S1 report information on the unit cells. Remark-

ably, the broad absorption maximum of CSH, which is the component with the highest volume fraction (see

Table 1), overlaps significantly with the AW, as desired. At the same time, all the components exhibit sig-

nificant absorption outside the AW. This is an advantage for solar cell applications, where the supra-

ambient device operating temperature ensures that the radiative cooler is going to eject more energy

than the one received from the atmosphere also outside of the AW, hence enhancing the cooling perfor-

mance (Zhao et al., 2019). Finally, although the absorption coefficient (� 104cm� 1) is not as strong as the

one of typical thin-film absorbers (� 106cm� 1), the possible realization of thick geometries still allows us

to achieve high absorbance, hence removing this apparent weakness.
Complex permittivity of the cement paste

The ingredients required to estimate the complex permittivity of the generated cement pastes by a suit-

able effective medium theory are now available. Care should be taken because Bruggeman’s formula

(Bruggeman, 1935), which is the most commonly used model for heterogeneous materials, does not ac-

count for micro-structure size effects. Indeed, it is derived in the long-wavelength (LW) limit, i.e., under

the assumption that the particles size is much smaller than the wavelengths of interest. However, we

have seen above that the size of the cement sub-domains is comparable to the wavelengths around the

AW. Therefore, a model capable of capturing the main effects of micro-structure on the dielectric proper-

ties is needed to properly estimate the effective complex permittivity of our cement pastes. Accordingly,

we have used a recent model proposed by Slovick (2017) for a disordered ensemble of spherical particles

with a space filling matrix of infinitesimally small spheres. This is representative of our cement paste, made

of a high-density disordered network of CSH and CH spheres with a mean radius dependent on the alite

initial PSD according to Table 1, separated by empty interstices (pores). According to Slovick’s model,

the effective complex permittivity εeff of this system can be obtained by solving the equation:

fCSH
εCSH FðkCSH RCSHÞ � εeff

εCSH FðkCSH RCSHÞ+ 2 εeff
+ fCH

εCH FðkCH RCHÞ � εeff

εCH FðkCH RCHÞ+ 2 εeff
+ fair

1 � εeff

1+ 2 εeff
= 0 (Equation 3)

where f, ε and k are volume fraction, complex permittivity and complex wave vector, and FðxÞ = 2 ðsinx �
x cosxÞ=½x cosx + ðx2 � 1Þ sinx� (Belyaev and Tyurnev, 2018). It is worth noting that Equation 3 becomes
iScience 25, 105320, November 18, 2022 7
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Bruggeman’s formula in the LW limit becauseFðx/0Þ/1. Furthermore, by making no distinction between

background medium and inclusions, the formula is valid for any volume fraction, contrarily to Maxwell-

Garnett formula, which is valid only for a low volume fraction of the inclusions (Markel, 2016).

Figure 4B reports the obtained cement paste absorption coefficient as a function of the mean particle (sub-

domain) radii ðRCSH;RCHÞ. The spectra exhibit increased absorption at wavelengths comparable to the par-

ticles size, because of the multiple reflections occurring at the particle boundaries, leading to interference

effects and enhanced absorption lengths, similarly to the case of planar layers. As the particles become

smaller, the additional absorption band shifts toward the UV-visible range (shorter wavelength) and, even-

tually, size effects become negligible in the IR range, which can then be described in the LW limit (see the

case ðRCSH;RCHÞ = ð0:1; 0:4Þ mm). The eventual additional emissivity in the UV-visible range is not going to

impact the radiative cooler performance, because its radiated spectral power density is given by the prod-

uct of its emissivity spectrum (% 1) with the spectral power density radiated by a black-body (Balaji, 2014),

which is negligible in the UV-visible spectrum at terrestrial temperatures.

These results show that the absorption properties of the cement paste can be tuned bymodifying its micro-

structure and tailored to the spectral requirements of radiative cooling. As a matter of fact, a similar

approach has been applied to hierarchical porous polymers mentioned in the Introduction (Mandal

et al., 2018).

Although this is very promising, care should be taken. Indeed, modeling the cement paste micro-structure

as an ensemble of air-embedded spherical inclusions is a geometrical approximation because these are

eventually going to ‘‘collide’’ during growth and partially ‘‘deform’’. In addition, effective medium theories

assume that all particles are subject to the samemean field. Deviations might occur close to the percolation

threshold. These aspects should be investigated in future studies.

These results are extremely encouraging, but not enough. Indeed, a larger absorption coefficient does not

necessarily imply a stronger absorbance because it stems from a larger extinction coefficient that might

also increase the layer reflectance at the same time. Therefore, more radiation could be lost by reflection

before even entering the cement paste, hence leading to a reduced absorbance, as we shall see in a

moment.
Emissivity of the cement paste

We have used the effective complex permittivity εeff calculated above to determine the spectral directional

absorbance Acool
U;l ðl; qÞ of layers made of the generated cements by the transfer-matrix method. We have

considered cement slabs with a thickness of 100 mm. Indeed, based on the absorption coefficient values re-

ported in Figure 4B, nanometer-scale thicknesses, although experimentally feasible (Rheinheimer and Casa-

nova, 2012), are unsuitable to obtain large absorbance/emissivity because of the lack of absorption strength.

This is clearly not an issue with cement-based solutions, for which very thick geometries are usually preferred.

As a matter of fact, we are opting for a rather thin cement layer, which corresponds to a worst case scenario

and makes our assessment stronger. Furthermore, this choice let us draw conclusions also about concrete,

where aggregates are going to break the cement paste continuity and make the effective thickness smaller.

Finally, this thickness has been experimentally achieved in the literature (Zhang et al., 2016).

Implementation-wise, we have adopted a generalized TMM capable of describing incoherent propagation

through layers having rough surfaces with Gaussian disorder (Katsidis and Siapkas, 2002; Centurioni, 2005).

This model is representative of cement slabs, typically characterized by randomly disordered surfaces with

roughness values from a few hundred nanometers to a few micrometers, depending on polishing (Apedo

et al., 2015). This kind of rough surfaces can provide an advantage in terms of emissivity, because they have

been shown to reduce reflection and increase absorption of an incoming electromagnetic wave by random-

izing its direction and enlarging the effective absorption length (light-trapping) (Yablonovitch, 1982; Ko-

walczewski et al., 2012; Cappelluti et al., 2018).

Our calculations are in agreement with these statements and show that a rougher surface slightly increases

the absorbance of our cement slabs. Because of their supplementary nature, these results on the effect of

surface roughness are shown in Figure S3 and only the worst case of a flat surface is considered in the main

text. The STAR methods section contains a detailed description of the generalized TMM used.
8 iScience 25, 105320, November 18, 2022



Figure 5. Spectral absorbance (angular-average) of the cement layer as a function of the mean particle (sub-

domain) radii ðRCSH;RCHÞ
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Figure 5 shows the angular-average of the spectral absorbance (emissivity) of the cement layer as a function

of the mean particle (sub-domain) radii ðRCSH;RCHÞ. As anticipated, the samples absorbance and absorp-

tion coefficient (Figure 4B) are not trivially related. For example, the sample with the largest sub-domains

exhibit a significantly smaller absorbance, which cannot be readily inferred from the absorption coefficient

but is because of an increased reflectance (see Figure S4). Interestingly, these results show that it is possible

to broaden the emission spectrum of the cement paste and approach the desired black-body-like IR emis-

sivity by decreasing the sub-domains size. However, if the particles become too small, the spectral absor-

bance departs again from target. Optimal CSH radii seem to be in the 0:5 � 2:0 mm range. Remarkably,

these results are in good agreement with recent experiments (Lu et al., 2021).
Radiative cooling performance

Finally, we have evaluated the cement paste radiative cooling performance by solving Equation 1 with

respect to T. In particular, we have determined the operating temperature of the device depicted in Fig-

ure 2A as a function of the band-gap of the solar cell semiconductor. We have also studied the scenario

where no radiative cooler is used, which provides a benchmark against which to compare to quantify the

effectiveness of the cement-based radiative cooler.

The obtained temperature vs band-gap curves are reported in Figure 6. Remarkably, our results suggest

that a radiative cooler made of a cement paste produced by alite hydration could significantly reduce

the operating temperature of a solar cell. For example, the temperature of Si-based solar cells is reduced

by approximately 20 K. According to the thumb rules reported in the introduction, this could correspond to

up to 9 % efficiency gain and 4-fold lifetime extension. In agreement with the absorbance spectra shown in

Figure 5, reducing the size of the cement sub-domains leads to superior cooling performance, as long as

the particles size does not become too small and the LW limit is approached. As stated in the previous sec-

tion, optimal CSH radii seem to be in the 0:5 � 2:0 mm range.
Conclusions and outlook

In summary, we have computed the thermal emissivity properties of cement pastes made by alite hydration

as a function of their micro-structure. Our results demonstrate that slabs made of these materials exhibit

strong thermal emission in the IR spectrum around the AW, in agreement with recent experimental work

(Lu et al., 2021). The emissivity spectrum approaches the one of an IR black-body if the size of the sub-do-

mains making up the micro-structure is properly engineered. This corresponds to the ideal IR spectral

target for radiative coolers applied to solar cells. Accordingly, we have also studied the thermodynamic
iScience 25, 105320, November 18, 2022 9



Figure 6. Solar cell temperature reduction by cement-based radiative cooling

The plot shows the operating temperature versus the solar cell semiconductor band-gap for the device depicted in

Figure 2A as a function of the mean particle (sub-domain) radii ðRCSH;RCHÞ, calculated by solving Equation 1. The cooler-

free case is also reported for comparison. The band-gaps corresponding to crystalline silicon (Si) and gallium arsenide

(GaAs), on which today’s best performing solar cells are based, are highlighted.
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efficiency limit of solar cells coupled with cement-based radiative coolers for the first time and found that

this solution exhibits outstanding potential, with a possible reduction of the operating temperature of sil-

icon-based solar cells by up to 20 K. This value could provide impressive performance gains in power con-

version efficiency (up to 9 %) and lifetime (up to 400 %).

Considered the reliability and stability of these materials and the incredibly low cost of the raw elements

needed to produce them, cements and (meta-)concretes appear as ideal candidates to fulfill all the perfor-

mance, scalability and reliability requirements that would turn radiative cooling into an energetically efficient,

economical viable, environmentally friendly, and reliable technology for the thermalmanagementof solar cells.

Therefore, this new line of research deserves further exploration aimed at addressing the main open chal-

lenges for its practical implementation, which we briefly outline as a possible road-map. First, the electro-

magnetic properties could be improved even further by working on the cement chemistry and micro-struc-

ture, or by inserting suitable aggregates into the cement paste. Second, the heat transfer from the solar cell

to the cement slab needs to be fully characterized and optimized to ensure efficient thermal flow between

the two. Finally, a practical device should be designed based on multi-physics simulations and experimen-

tally fabricated and characterized to ultimately prove the effectiveness of this solution.

At this stage, we have no reason to believe that some of these aspects cannot be tackled by science and

technology. Indeed, both the chemical and the micro-structural landscapes of cements and concretes

can be tuned to a large extent by modifying the precursor materials or the preparation protocols, leading

to very diverse properties (Aı̈tcin, 2000; Bensted andBarnes, 2002; Bohnet andUllmann, 2003). Furthermore,

many techniques and configurations exist for the placement of cements and concretes (structural and non-

structural), from conventional building construction methods (Gagg, 2014), 3D printing (Zhang et al., 2019)

and spraying (Austin and Robins, 2010), tomachine-based thinning (down to 100 mm) (Zhang et al., 2016) and

nanometer thin-film deposition (Rheinheimer and Casanova, 2012). This flexibility enables one to envision

many options for the realization of the structure depicted in Figure 2A.As amatter of fact, thin-film solar cells

have already been placed onto building structural elements (roof tiles, concrete blocks) in previous
10 iScience 25, 105320, November 18, 2022
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experimental studies (Águas et al., 2011; Iencinella et al., 2009; Hosseini et al., 2013), althoughwith no regard

for radiative cooling, i.e., without optimization of the materials and system properties of interest, but in the

context of building-integrated photovoltaics. These works can provide a starting point for the practical im-

plementation of our attractive concept and pave the way toward more efficient photovoltaic systems.

Limitations of the study

Although the calculated material properties are consistent with experimental data from the literature, the

experimental realization of a solar cell with a cementitious radiative cooler is needed to confirm our compu-

tational predictions.
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METHOD DETAILS

Device power balance model

We have calculated the terms of Equation 1 by adopting a spherical coordinate system whose origin is on

the top surface of the device in Figure 2A. The zenith angle q is measured with respect to the direction

normal to this surface, while the system properties are invariant with respect to the azimuth angle. The

expressions are:
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where LBBe;U;l is the spectral directional radiance of a black-body at temperature T with an applied voltage V

(Würfel, 1982):

LBBe;U;lðl;T ;VÞ =
2 h c2

l5
1

exp

�
h c=l � q V

k T

�
� 1

JMPP and VMPP are the solar cell electric current density and output voltage at maximum power point (MPP),

respectively, calculated with the Shockley-Queisser model. l, U, h, c, k and q are wavelength, solid angle,

Planck’s constant, speed of light in vacuum, Boltzmann’s constant and elementary charge, respectively.

The other symbols have been defined in the main text. The reader is referred to the literature for more de-

tails concerning the definition of the radiometry quantities introduced above (Balaji, 2014).
Alite hydration model

Wehave simulated the alite hydration process depicted in Figure 3 by implementing themodel from Pignat

et al. (Pignat et al., 2005) into the open-source chemical kinetics package mic (Bishnoi and Scrivener, 2009a),

as done by Bishnoi in his doctoral thesis (Bishnoi, 2008). We have considered a cubic specimen of 100 mm

side length with periodic boundary conditions initially filled with a continuum of water and discrete C3S

spherical particles in a water/C3S mass ratio of 0.4 (Bishnoi and Scrivener, 2009b), in line with common

cement recipes. We have considered different initial particle size distributions (PSDs), which were provided

with the software, corresponding to an initial number of alite particles N0 within the 100 mm-side-length

cube equal to 102, 103, 104, 105, 106 and 107, so that we could investigate the role of micro-structure in

the determination of the radiative cooling properties. The rate of the hydration process, which is described

by the volumetric formula given in Equation 2 under a mass density of 3:15 g cm� 3 for C3S, 2:0 g cm� 3 for

CSH and 2:24 g cm� 3 for CH, is controlled by the decrease in size of the C3S particles. In turn, this is related

to the formation rate of CSH and CH. CSH shells form onto the C3S particles surface by the combination of

threemechanisms, namely a nucleation and growth mechanism, a phase boundary mechanism, and a diffu-

sion controlled mechanism. The corresponding equations are:

dRC3S

dt
= � 3 k1 t

2 exp
�� k1 t

3
�

dRC3S

dt
= � k2
dRC3S

dt
= � k3

RCSH � RC3S

where k1 = 1:143 10� 4 h� 3,� k2 equals theminimum of the right-hand-side of the first equation, and k3 =

0:01 mm2 h� 1 (Pignat et al., 2005; Bishnoi, 2008). At the same time, new CH particles form at an exponen-

tially decreasing nucleation rate in the interstitial regions of the hydrating cement paste according to the

formula

nðtÞ = nmax

�
1 � expð� a tÞ�

where nmax is set to one-fifth of N0 (Navi and Pignat, 1996) and a = 0:213 h� 1 (Jennings and Parrott, 1986).

Their growth occurs randomly but constrained by the amount of product available according to the hydra-

tion reaction rate.
Molecular simulations and crystal structures

To obtain the IR dielectric properties of the cement paste components, we have performed molecular sim-

ulations with the General Utility Lattice Program (GULP) (Gale, 1997) according to the force field method

(Leach, 2001), by adopting a well-tested polarizable force field, which is known to describe correctly the

structure and elastic properties of most cementitious phases (Manzano et al., 2009).

For the atomistic structure of the almost amorphous CSH, we have employed the model proposed in (Do-

lado et al., 2020) and (Duque Redondo, 2018), which corresponds to a very large system whose exact stoi-

chiometry is ðCaOÞ254ðSiO2Þ152ðH2OÞ306. For the crystalline structures of C3S and CH, we have relaxed the

experimental unit cells measured in (Mumme, 1995) and (Desgranges et al., 1993), respectively. The
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stoichiometry and the final simulation cell parameters are disclosed in Table S1. The unit cells drawn with

the software VESTA (Momma and Izumi, 2011) are depicted in Figure S2.

Later, we have calculated the complex permittivity of C3S, CSH and CH by following the method

employed in (Dolado et al., 2020) for studying the response of cement-based materials in the THz regime.

The method resorts to expressing the dielectric tensor in terms of the oscillator strengths of the vibrational

modes as

εijðuÞ = εijð+NÞ+ 4 p

V

X
m

Um
ij

u2
m � u2

where u is the angular frequency, V is the unit cell volume, m is the phonon mode rank, and um are the

mode-specific frequencies. The oscillator strength tensor for each vibrational mode m depends on the

Born effective charges qB and the eigenvector eij for that mode according to

Uab =

 XN
i

qB
iaj eijffiffiffiffiffiffi
mi

p
! XN

i

qB
ibj eijffiffiffiffiffiffi
mi

p
!

with mi denoting the ion masses. In the practical computational implementation, we have used a small

damping term d of 10 cm� 1 by the substitution u2/uðu + i dÞ. Finally, we have averaged the principal com-

ponents of the dielectric tensor, i.e., we have taken εðuÞ =
P3

i = 1εiðuÞ=3, in agreement with the disordered

micro-structural nature of cements, which lifts off any preferred orientation.
Generalized transfer-matrix-method

We have used a generalized form of the transfer-matrix method capable of describing incoherent propa-

gation and rough surfaces. In particular, the surface height variation is supposed to follow a Gaussian prob-

ability distribution with a given root-mean-square value (RMS) (Katsidis and Siapkas, 2002; Centurioni,

2005).

The amplitude E of the electric fields propagating from left to right (+ ) and right to left (� ) on the left (L)

and right (R) sides of the layer are related by the formula:0
@

E +

L



2

EL
�

2
1
A = ðDL P DRÞ

0
@

E +

R



2

ER
�

2
1
A

where DL and DR describe the field propagation across the left and right interfaces between the layer and

vacuum, respectively, and P across the layer. Their formulas are

D =
1

jtlrj2
�
1 � jrrlj2
jrlrj2 jtlr trlj2 � jrlr rrlj2

�

P =

 

exp ð� i dÞ

2 0

0


exp ði dÞ

2

!

with

rlr = r ð0Þlr exp

"
� 2

�
2 p RMS Nl

l

�2
#

tlr = tð0Þlr exp

"
� 1

2

�
2 p RMS

l

�2

ðNr � NlÞ2
#

d = 2 p
N d cosq

l

The subscripts l and r denote left and right sides of the interface, while lr means from the left to the

right side of the interface. A graphical representation of the quantities introduced can be found in

Figure S5.
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r
ð0Þ
lr and t

ð0Þ
lr are the Fresnel reflection and transmission coefficients of a smooth planar surface (for which we

have used the average between the s and p polarization values), N is the complex refractive index, d is the

layer thickness, and q is the refraction angle.

The spectral directional reflectance, transmittance and absorbance are readily obtained, respectively, from

the following formulas:

RU;lðl; qÞ =
ðDL P DRÞ21
ðDL P DRÞ11
TU;lðl; qÞ =
1

ðDL P DRÞ11
AU;lðl; qÞ = 1 � RU;lðl; qÞ � TU;lðl; qÞ
The (hemispherical) spectral reflectance, transmittance and absorbance are simply the angular average of

their spectral directional counterparts. For example, the spectral reflectance is calculated as follow for a

system with azimuthal invariance such as the device depicted in Figure 2A:

RlðlÞ = 2

Z p=2

0

dq RU;lðl; qÞ cosðqÞ sinðqÞ
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