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Abstract
Introduction  In addition to the well-documented factors 
that contribute to weaning failure, increased energy 
demands of the respiratory muscles during spontaneous 
breathing trials (SBTs) might not be met by sufficient 
increases in energy supplies. This discrepancy may 
deprive blood and oxygen of other tissues. In this context, 
restrictions in perfusion of splanchnic organs and non-
working muscles during SBT have been associated with 
weaning failure. However, alterations in perfusion of the 
brain during the weaning process are less well understood.
Objective and hypothesis  To investigate whether 
cerebral cortex perfusion evolves differentially during the 
transition from mechanical ventilation (MV) to spontaneous 
breathing between patients failing or succeeding the SBT. 
We hypothesise that patients failing the SBT will exhibit 
reduced cerebral cortex perfusion during the transition 
from MV to spontaneous breathing as compared with 
patients succeeding the SBT.
Methods and analysis  This single-centre, prospective, 
observational study will be conducted in a medical 
Intensive Care unit of University Hospital Leuven, Belgium 
in ready to wean patients. Blood flow index in the 
cerebral cortex (prefrontal area), inspiratory (scalene) and 
expiratory muscle (upper rectus abdominis) and a non-
working muscle (thenar eminence) will be simultaneously 
assessed by near-infrared spectroscopy (NIRS) using 
the tracer indocyanine green dye. Measurements will 
be performed on the same day during MV and during 
SBT. NIRS-derived tissue oxygenation index and cardiac 
output (by pulse contour analyses) will be recorded 
continuously. Twenty patients failing an SBT are estimated 
to be sufficient for detecting a significant difference in 
the change of cerebral cortex perfusion from MV to SBT 
(primary outcome) between SBT failure and success 
patients.
Ethics and dissemination  Ethics approval was obtained 
from the local ethical committee (Ethische Commissie 
Onderzoek UZ/KU Leuven protocol ID: S60516). Results 
from this study will be presented at scientific meetings 
and congresses and published in peer-reviewed journals.
Trial registration number  NCT03240263; Pre-results.

Introduction
Background and rationale
Weaning failure is associated with compli-
cations including increased morbidity and 
hospital mortality.1 The aetiology of weaning 
failure is often multifactorial including 
compromised respiratory mechanics, respira-
tory muscle dysfunction, heart failure, meta-
bolic and endocrine disorders and cognitive 
dysfunction,2 3 that by their interplay can 
contribute to excessive increase in respiratory 
muscle energy demands during the weaning 
process.4

Studies measuring the oxygen cost of 
breathing (VO2resp) during the weaning 
process, have demonstrated that VO2resp of 
weaning failure patients may account for up 
to 59% of their total VO2.

5 6 These studies 

Strengths and limitations of this study

►► The study constitutes the first attempt to investigate 
the role of cerebral cortex and respiratory muscles 
perfusion during spontaneous breathing trail in the 
pathophysiology of weaning failure.

►► Repeated measurements of cerebral cortex perfu-
sion will be performed by near-infrared spectros-
copy (NIRS)-indocyanine green (ICG), a validated, 
practical and non-invasive method.

►► Cardiac output, cerebral cortex, inspiratory and ex-
piratory muscles and non-working muscle perfusion 
will be assessed simultaneously during mechanical 
ventilation and spontaneous breathing trial.

►► A limitation of this study is that NIRS-ICG method 
cannot be used for measuring diaphragmatic perfu-
sion and thus to provide a more complete picture of 
perfusion regulation of the main inspiratory muscle.

►► The single-centre design may limit the external va-
lidity of the collected data.

http://bmjopen.bmj.com/
http://crossmark.crossref.org/dialog/?doi=10.1136/bmjopen-2019-031072&domain=pdf&date_stamp=2019-010-31
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provided the first evidence that during the transition from 
mechanical ventilation (MV) to spontaneous breathing 
trial (SBT), the intensely working respiratory muscles 
might compete with other organs for the energy avail-
able. In this context, it has been suggested that the respi-
ratory muscles may deprive blood and oxygen supplies of 
the brain, contributing to weaning failure.4

In support of this relationship, studies have demon-
strated an association between splanchnic area hypoper-
fusion during SBT (assessed by tonometry and by 
laser-Doppler flow) and weaning failure.7–9 Recently, 
it was shown that peripheral muscle oxygenation (ie, 
thenar eminence and vastus medialis muscle) measured 
by near-infrared spectroscopy (NIRS) during SBT was 
significantly lower in patients who failed liberation as 
compared with patients who were successfully liberated 
from MV.10–12 Interestingly, whether during the weaning 
process cerebral cortex perfusion is affected by the 
increased respiratory muscle metabolic demands is less 
well understood in weaning patients.

A key feature of this project is the simultaneous assess-
ment of perfusion and oxygenation in critical organs such 
as cerebral cortex, scalene muscle, rectus abdominis and 
thenar muscle (non-working muscle) along with measure-
ments of central haemodynamic responses in weaning 
patients. These aforementioned measures are essential 
for comprehensively investigating whether respiratory 
muscles compete for energy supplies with other organs 
and particular with an organ (ie, cerebral cortex) that 
might play a pivotal role during the weaning process. The 
advantage of simultaneously measuring cardiac output, as 
well as cerebral cortex, respiratory and peripheral muscle 
perfusion is that it will allow evaluation of changes in 
local tissue perfusion relative to changes in total energy 
supplies (ie, central haemodynamic responses) for each 
patient.

Furthermore, restrictions in blood and oxygen supplies 
to the cerebral cortex might affect the output of the 
respiratory centre. In animal models, it has been demon-
strated that after a reduction in carotid blood flow, a 
gradual decline in both electrical activation and pressure 
generation of the diaphragm developed.13 This insuffi-
cient ‘drive’ from the respiratory centre might reduce 
neuromuscular competence leading to weaning failure.4 
In addition, stress and anxiety responses, which have 
been shown to be associated with weaning failure,14 are 
regulated by the cerebral cortex.15 Limitations in cere-
bral cortex blood flow during the weaning process might 
exaggerate stress and anxiety symptoms, which in turn 
could contribute to uncoordinated breathing and tachy-
pnea,16 further increasing energy demands of the respira-
tory muscles. Furthermore, during SBT, inspiratory neck 
muscles recruitment pattern has been identified as a sign 
of respiratory distress.17 Evidence shows that patients who 
fail a weaning trial present greater electromyographic 
(EMG) activity of the inspiratory neck muscles that 
reached near maximal levels within the first 4 min of the 
SBT trial.18 Lately, a study investigated the contribution of 

the expiratory muscles to total respiratory muscles effort 
in weaning patients and demonstrated an increased EMG 
activity of the expiratory muscles from the onset to the 
end of SBT in the weaning failure group (from 13%±9% 
at the onset to 24%±10% at the end).19

The study is registered in a publicly accessible clinical 
trial database (​clinicaltrials.​gov) under the title: Inspira-
tory Muscle Training in Difficult to Wean Patients (see 
Study approval and registration section for more details).

Objective and hypothesis
The primary objective of this project is to assess changes 
in cerebral cortex perfusion during the transition from 
MV to spontaneous breathing and to determine whether 
these changes differ in patients who fail or succeed the 
SBT. We hypothesise that patients failing the SBT will 
exhibit reduced cerebral cortex perfusion during the 
transition from MV to SBT as compared with patients 
succeeding the SBT.

Methods and analysis
Patient and public involvement
No patient involved.

Study approval and registration
This single-centre, prospective observational study will be 
conducted in a 16-bed medical ICU of University Hospital 
Leuven, Belgium in consecutive weaning patients. This 
study covers the first step in which candidates are iden-
tified for an interventional study entitled “Inspiratory 
Muscle Training in Difficult to Wean Patients” that has 
been registered to ​clinicaltrials.​gov. This interventional 
study aims to evaluate the effects of high-intensity inspi-
ratory muscle strength training in comparison with sham 
endurance training on weaning outcomes in difficult-to-
wean patients in the ICU. Patients who are not extubated 
shortly after the first SBT, during which this observational 
study collects data, will at a later stage be considered as 
potential candidates for the interventional study. As such, 
the intervention will not overlap with the here presented, 
preceding observational study. Written informed consent 
will be obtained from all patients. Unconscious patients 
and patients unable to follow the study information and 
thus to express their willingness will be excluded from the 
study (see online supplementary). All procedures will be 
performed in accordance with the ethical standards of the 
institutional review board of the UZ/KU Leuven and with 
the 1964 Helsinki declaration and its later amendments. 
The protocol is reported according to Strengthening the 
Reporting of Observational Studies in Epidemiology (see 
checklist in the online supplementary).

Methods of selection and monitoring of participants
The study will include patients during the first SBT. The 
decision to start an SBT will be made by the clinical team 
caring for the patient.20 The clinical team will evaluate 
patients’ ‘readiness to wean’ on a daily basis. Monitoring 

https://dx.doi.org/10.1136/bmjopen-2019-031072
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of the patients before, during and following the SBT 
will be facilitated by using an electronic record platform 
(MetaVision, iMD-Soft, Needham, Massachusetts, USA) 
of the patients SBTs and ventilation status completed by 
nurses and the clinical team as previously described.20

Assessing readiness to wean
Readiness to wean will be performed according to a local 
protocol as has been described elsewhere.20 Specifically, 
this evaluation will include the assessments of: (1) reso-
lution of the acute phase of the disease for which the 
patient was intubated, (2) adequate oxygenation (PaO2 
arterial oxygen/inspiratory oxygen fraction (PaO2/
FIO2%) of 150–200 requiring positive end-expiratory 
pressure (PEEP) ≤5 to 8 cmH2O and FIO2 ≤0.4 to 0.5), 
(3) absence of fever (temperature <38°C), (4) haemody-
namic stability (eg, heart rate ≤140 beats/min), (5) stable 
blood pressure, no or minimal vasopressors (dobutamine 
≤5 µg/kg/min, norepinephrine ≤0.1 µg/kg/min), (6) 
absence of myocardial ischaemia, (7) adequate haemo-
globin (eg, haemoglobin >70–80 g/L), (8) adequate 
mentation and (9) adequate cough.21 These criteria may 
be individualised by treating clinicians.

SBT evaluation
The SBT will be performed either with the use of a T-tube, 
low-level pressure support ventilation (≤8 cmH2O) or 
continuous positive airway pressure (≤5 cmH2O). The 
SBT will be performed for at least 30 min before being 
considered successful. The duration can be prolonged 
up to a maximum of 120 min. Patients will be in a semi-
recumbent position, and the FIO2% will be kept constant 
during the trial. The following criteria will be assessed 
for evaluating the success of the SBT: (1) adequate gas 
exchange (SpO2 ≥85%–90%, PaO2 ≥55–60 mm Hg, pH 
≥7.32 and increase PaCO2 ≤10 mm Hg), (2) adequate 
ventilatory pattern (respiratory rate ≤30–35/min, 
change during SBT in respiratory rate <50%, (3) haemo-
dynamically stable (heart rate <120–140/ beats/min, 
changes during SBT in heart rate <20%, systolic blood 
pressure <180–200 and >90 mm Hg and change during 
SBT in blood pressure <20%) and (4) subjective clin-
ical signs (no changes in mental well-being and comfort-
able, no sweating, no paradoxical breathing).1 These 
criteria can be individualised by the treating clinician 
who will decide whether or not to extubate the patient. 
The SBT will be immediately interrupted in case of poor 
tolerance. The reason(s) for an SBT failure will also be 
recorded.

Weaning outcomes assessment
Weaning success will be defined as a patient remaining 
free of MV support for >48 hours after the successful SBT, 
including the use of non-invasive ventilation following 
the extubation.21 Weaning failure will be defined as either 
failure to pass the SBT or reinstitution of MV within 
48 hours of extubation.21

Exclusion criteria
The following exclusion criteria have been defined: pre-
existing neuromuscular disease, head or spinal cord 
injury above T8, any skeletal pathology that impairs chest 
wall movements such as severe kyphoscoliosis, congenital 
deformities or contractures, liver cirrhosis, patients with 
allergic reactions to iodine, oedema, trauma or haema-
toma skin lesions at the sites of NIRS measurements that 
could hinder placement of NIRS sensor probes, poor 
general prognosis or anticipated fatal outcome.

Study design, procedures, measurements and data collection
Diagnosis and comorbidities will be recorded on inclu-
sion in the study. The list of comorbidities considered 
includes cardiovascular diseases, chronic respiratory 
diseases, chronic renal failure, hypertension, diabetes, 
cancer and obesity.22 Measurements will be performed 
on the day clinicians will judge that the patient is ready 
to wean during two conditions: (1) on MV, immediately 
preceding the planned SBT, for a period of 30 min and 
(2) during the SBT for a maximum period of 120 min. 
The trial time schedule of the assessments that will be 
performed are presented in table  1. Specifically, T0 
represents baseline assessment, T1 indicates the last 
minute of the 30 min period on MV prior to the start of 
SBT, T2 indicates the last minute of SBT if prematurely 
terminated (<30 min). T3 represents the last minute of 
the first 30 min of SBT and T4 indicates the last minute 
of the SBT if prolonged (>30 and ≤120 min). Day x corre-
sponds to the day T0 +48 hours.

Study methodologies and procedures
Peripheral blood flow measured by NIRS
Blood flow index (BFI) of the brain, working respiratory 
and non-respiratory muscles will be measured by NIRS 
(HAMAMATSU Photonics KK) in combination with 
injections from venous of the tracer indocyanine green 
(ICG) dye23 (NIRS-ICG) (see online supplementary). 
Three sets of NIRS optodes will be transcutaneously posi-
tioned as follows: for the brain over the prefrontal cortex 
area (at an adequate distance to avoid interference with 
the midline sinus),24 on the scalene muscles and on the 
upper rectus abdominis. An additional probe (fourth) 
will be placed on thenar eminence muscle representing a 
non-working muscle site11 12 (see online supplementary).

NIRS-ICG-derived BFI, is valid and reproducible in 
detecting relative perfusion differences in the cerebral 
cortex during bedside assessment25–27 and inspiratory 
and expiratory muscles at rest and during progressively 
increase in respiratory muscle effort.28 This non-invasive 
monitoring of BFI is based on recording the changing 
levels of chromophores in the muscles and brain tissue, 
namely, oxygenated, deoxygenated and total haemo-
globin.25 NIRS also enables detection of other chro-
mophore tracers with absorption properties in the 
near-infrared spectrum.25 ICG is completely excreted by 
the liver and is cleared from the human circulation with 
a half-time of 3.2±0.6 to 3.4±0.7 min thus making ICG a 

https://dx.doi.org/10.1136/bmjopen-2019-031072
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Table 1  Time schedule and assessments of the study

Timepoints
Baseline 
T0 MV T1 SBT T2 SBT T3 SBT T4

Day x 
T0+48 
hours

Enrolment

 � Eligibility screen •

 � Informed consent •

Demographics—baseline characteristics

 � Age, years •

 � Gender, male/female •

 � Body mass index, kg/m2 •

 � Diagnosis •

 � Comorbidities •

 � Duration on MV before SBT, days •

Tissues blood flow and oxygenation parameters

 � Cerebral cortex BFI, nMol/s and TOI*, % • • • •

 � Scalene muscles BFI, nMol/s and TOI*, % • • • •

 � Abdominal muscle BFI, nMol/s and TOI*,% • • • •

 � Thenar muscle BFI, nMol/s and TOI*, % • • • •

 � Cerebral cortex DO2 index, arbitrary units • • • •

 � Scalene muscles DO2 index, arbitrary units • • • •

 � Abdominal muscle DO2 index, arbitrary units • • • •

 � Thenar muscle DO2 index, arbitrary units • • • •

 � Cerebral cortex VC index, arbitrary units • • • •

 � Scalene muscles VC index, arbitrary units • • • •

 � Abdominal muscle VC index, arbitrary units • • • •

 � Thenar muscle VC index, arbitrary units • • • •

Haemodynamic parameters

 � Heart rate*, beats/min • • • •

 � Mean arterial blood pressure*, mm Hg • • • •

 � Cardiac output*, L/min • • • •

 � Systemic vascular resistance*, dynes/s/cm–5 • • • •

 � Norepinephrine/epinephrine, yes/no and dose, μg/kg/min • • • •

Respiratory parameters and ventilatory settings

 � Respiratory rate*, breaths/min • • • •

 � Tidal volume*, mL/min • • • •

 � Minute ventilation*, L/min • • • •

 � FIO2, inspiratory oxygen fraction*, % • • • •

 � PS, pressure support*, cmH2O • • • •

 � PEEP, positive end-expiratory pressure*, cmH2O • • • •

 � Neuromuscular activation index of the respiratory system 
(P0.1), cmH2O

• • •

Blood gas values

 � PaO2, arterial O2 partial pressure, mm Hg • • • •

 � PaCO2, arterial CO2 partial pressure, mm Hg • • • •

 � SaO2, arterial O2 saturation, % • • • •

 � Systemic arterial O2 content, mL O2/L • • • •

 � Systemic DO2, L O2/min • • • •

Continued
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Timepoints
Baseline 
T0 MV T1 SBT T2 SBT T3 SBT T4

Day x 
T0+48 
hours

 � pH • • • •

 � Hb, haemoglobin concentration, g/L • • • •

 � SpO2, stands for peripheral capillary O2 saturation*, % • • • •

Weaning outcomes

 � SBT outcomes, failure/success • • •

 � SBT duration, minutes • • •

 � Reason(s) for SBT failure • • •

 � Weaning outcome (failure/success) •

Measurements will be performed on the day clinicians will judge that the patient is ready to wean.
Systemic vascular resistance would be calculated using the following formula: [80 x (mean arterial blood pressure - central venous pressure/
cardiac output)]. Systemic arterial O2 content will be calculated using the following formula: [(1.34 x Hb x SaO2) + (0.003 x PaO2)]. Systemic 
DO2 will be calculated by multiplying cardiac output to systemic arterial O2 content. Tissues DO2 index will be calculated by multiplying 
tissues BFI to systemic arterial O2 content and will be presented in arbitrary units. Conductance to flow for each tissue will be calculated by 
dividing BFI with mean arterial blood pressure and will be presented in arbitrary units. Measurement of P0.1 -the negative airway pressure 
generated during the first 100 ms of an occluded inspiration- will be measured by the ventilator as an index of the neuromuscular activation of 
the respiratory system.39 Development of stress and anxiety manifested by rapid and unexplained increase in physiological measures such as 
heart rate, blood pressure and respiratory rate will be evaluated during the transition from MV to SBT and throughout spontaneous breathing 
attempt will be evaluated in all patients.40

*Asterisk denotes the parameters that will be assessed continuously on MV and during SBT period.
BFI, blood flow index; DO2, oxygen delivery; MV, mechanical ventilation; pH, hydrogen ion concentration; SBT, spontaneous breathing trial; 
TOI, tissue oxygenation index; VC, vascular conductance.

Table 1  Continued

suitable tracer for repetitive measurements even at short 
intervals without accumulation of dye.29 The number of 
ICG injections that will be performed in each patient 
will not exceed the number of three (see table 1). Each 
injection will contain 5 mg of ICG dissolved in 1 mL of 
sterile water (5 mg/mL) followed by a rapid 10 mL flush 
of isotonic saline. NIRS-ICG-derived BFI as a relative 
measurement of local tissues perfusion will be calculated 
by dividing the muscle ICG peak concentration (assessed 
by NIRS-ICG curve) by the rise time from 10% to 90% 
of peak.28 A representative example of BFI calculation is 
presented in figure 1. ICG concentration curves data will 
be exported by NIRS in document file format and stored 
on disk for off-line analysis (see online supplementary).

Peripheral oxygenation measured by NIRS
Measurements of tissues oxygenation index (TOI) will 
be performed continuously on MV and during SBT by 
the same NIRS device as used for the measurement of 
BFI (figure  1). NIRS-derived TOI is a real-time and 
rapidly responsive absolute index of fractional local 
tissue oxygenation. This non-invasive index is the ratio of 
microvascular oxygenated (HbO2) to total tissue haemo-
globin concentration (tHbO2) expressed as percentage 
[(HbO2/ tHbO2) * 100] and reflects the dynamic balance 
between local tissue oxygen supply and utilisation30 and 
therefore tissue capacity to match oxygen supplies rela-
tive to its metabolic demands.31 TOI data will be averaged 
over 60 s immediately before ICG injection (see online 
supplementary).

Haemodynamic status
Cardiac output will be assessed continuously by pulse 
contour analyses using a sensor (Pulsioflex Monitor, 
Pulsion Medical Systems SE) connected to an existing 
arterial catheter32 (see online supplementary). The 
calculation of cardiac output is performed beat-by-
beat by simply multiplying the stroke volume that is 
calculated by arterial pressure waveform analysis with 
the recorded heart rate32 (see online supplementary). 
Pulse contour analyses method has been validated 
against cardiac output calculations using gold-standard 
methods.33–38 The results show that this method can 
provide a clinically acceptable cardiac output trend 
assessment in haemodynamically stable ICU patients. 
Cardiac output and heart rate data will be averaged 
over 60 s during each BFI determination (see online 
supplementary).

Respiratory parameters and ventilator settings
At the different time points (see table  1), blood gases 
will be obtained (ABL 625; Radiometer, Copenhagen, 
Denmark) in addition to ventilator settings, such as 
inspiratory oxygen fraction (FIO2), PEEP and amount of 
pressure (PS), and measured variables including respira-
tory rate, tidal volume and minute ventilation. The latter 
will be collected from the individual electronic patient 
records (MetaVision, iMD-Soft, Needham, Massachusetts, 
USA).

https://dx.doi.org/10.1136/bmjopen-2019-031072
https://dx.doi.org/10.1136/bmjopen-2019-031072
https://dx.doi.org/10.1136/bmjopen-2019-031072
https://dx.doi.org/10.1136/bmjopen-2019-031072
https://dx.doi.org/10.1136/bmjopen-2019-031072
https://dx.doi.org/10.1136/bmjopen-2019-031072
https://dx.doi.org/10.1136/bmjopen-2019-031072
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Figure 1  Left panel: a typical screenshot from NIRS device of the output of one two-channel near-infrared spectrophotometer 
(NIRS), showing the indocyanine green (ICG) dye signal (yellow) following intravenous ICG injection marked by the red arrow. 
Green trace (tissue oxygenation index (TOI)) is oxygenation signal and O2Hb, oxyhemoglobin; cHb, total haemoglobin; HHb, 
deoxyhemoglobin signals are also presented. Right panel: upslope differences of ICG, indicating greater perfusion under 
the probe 1 (cerebral cortex, frontal area) than in probe 2 (scalene muscles). Solid lines represent the baseline and peak ICG 
concentration points while dotted lines represent the rise time from 10% to 90% of peak, respectively. Peak ICG concentration 
is converted from µMol to nMol (multiplied by 1000). The rise time expressed in seconds between 10% and 90% of ICG 
concentration peak is indicated, and probe 1 and probe 2 BFI results are shown. BFI, blood flow index.

Primary and secondary outcomes
The primary outcome of the present study is the differ-
ence in changes in cerebral cortex BFI from MV to spon-
taneous breathing between SBT success and SBT failure 
patients. Secondary outcomes include the differences 
in changes in respiratory, and thenar muscle perfusion, 
changes in cerebral cortex, respiratory and thenar muscle 
TOI, ventilator settings, changes in breathing pattern 
parameters, haemodynamic parameters and blood gas 
parameters. Additionally, the difference in changes in 
cerebral cortex BFI from MV to spontaneous breathing 
between weaning success or failure will be studied.

Data management and sources of bias
Data will be collected in anonymously digital formats 
ensuring sharing on a collaborative basis, long-term access 
and preservation of the data. Only the researchers of this 
project will take care of the handling of the data during 
and after the end of the project. The treating clinician 
who decides on the duration of the SBT for each patient, 
and judges whether or not to extubate the patients will be 
blinded to the specific NIRS data obtained. Researchers 
who will perform the analysis of the NIRS-derived param-
eters will be blinded to weaning outcomes. Missing data 
will not be imputed. The distribution of the missing data 

will be explored to identify the possible impact on the 
results of the study.

Sample size calculation
Based on the hypothesis of the study, the sample size was 
calculated taking into account (1) previously reported 
change in cerebral cortex BFI during the transition from 
MV to SBT and (2) the prevalence of SBT failure. Specif-
ically, an expected effect size (Cohens d) of 0.467 was 
calculated from the mean difference of cerebral cortex 
BFI (ie, 6.70 nMol/sec) and the corresponding pooled 
standard deviation (ie, 14.0 nMol/sec), from a previous 
study that investigated interhemispheric differences in 
cerebral cortex BFI in critically ill patients.27 Accordingly, 
using this effect size, the critical sample size is calculated 
to be 20 SBT failure patients on the basis of using an 
analysis of variance (ANOVA) as the statistical analysis 
method. Anticipating that approximately only 1 out of 5 
patients (20% rate)1 is expected to fail the SBT, an esti-
mated number of 100 (ie, 20*5) patients in total is consid-
ered to be included in order to identify the 20 weaning 
failure patients.

Statistical analysis
Continuous variables will be presented as mean values 
with SD if normally distributed or as a median with IQR 
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if not. Categorical values will be presented as numbers 
and proportion. For comparisons between SBT success 
or failure group, continuous variables will be compared 
using Student’s t-test or Mann-Whitney U test based on 
the distribution of the variables. Categorical values will be 
compared using χ2 or Fisher's exact test, as appropriate. 
Two-way ANOVA will be applied to examine the interac-
tion among respiratory, haemodynamic, blood gases and 
peripheral circulation and oxygenation responses and 
different time points (ie, T1-T4, see table 1) between SBT 
success and SBT failure group. One-way ANOVA with 
repeated measures will be used for the comparison of the 
different time measurements (ie, T1-T4, see table 1) for 
each group. Independent association between changes in 
cerebral cortex BFI from MV to different time measure-
ments during SBT and SBT outcomes (failure, success) 
will be explored by logistic regression analysis. Further 
exploration of independent associations between SBT 
outcomes (failure, success) and all respiratory, haemo-
dynamic, blood gases and peripheral circulation and 
oxygenation variables will be also explored by logistic 
regression analysis. Finally, multiple logistic regression 
analysis including all significant independent predictors 
(after checking them for collinearity) will be performed 
to identify determinants of SBT outcomes. Data will be 
analysed using the SPSS Software, version 21. Statistical 
significance will be defined as p<0.05. Additionally, anal-
ogous analyses will be performed for weaning outcomes 
(failure, success).

Ethics and dissemination
The local Ethics Commission approved this study protocol 
(S60516) and the results will be submitted for publica-
tion in peer-reviewed journals and in research congresses 
scientific meetings as abstracts, posters or oral presenta-
tions. Any protocol amendments will be submitted to the 
same local Ethics Commission and communicated to the 
trial registry. Written informed consent will be obtained 
from all patients. There is no intention of using a profes-
sional writer and authorship will be based on the collabo-
ration of each member of the research group.

Trial status
After obtaining ethical approval from the local ethics 
committee pilot measurements were initiated in 
December 2018. Enrolment into the study was started in 
January 2019. Based on the number of patients have been 
enrolled in the study from January 2019, we expect to 
recruit 25-30 patients per year. Data collection and anal-
yses are estimated to be completed in September 2023.
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