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Abstract: Peroxisome proliferator activated receptor-α (PPAR-α) is a ligand-activated 
transcription factor which plays important roles in lipid and glucose metabolism. The aim 
of this work is to find residues which selectively recognize PPAR-α agonists and 
antagonists. To achieve this aim, PPAR-α/13M and PPAR-α/471 complexes were 
subjected to perform molecular dynamics simulations. This research suggests that several 
key residues only participate in agonist recognition, while some other key residues only 
contribute to antagonist recognition. It is hoped that such work is useful for medicinal 
chemists to design novel PPAR-α agonists and antagonists. 
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1. Introduction 

Peroxisome proliferator activated receptors (PPARs) are DNA-binding transcription factors 
belonging to the nuclear hormone receptor super family [1–4]. To date, three distinct PPAR subtypes 
have been identified namely PPAR-α, PPAR-β (also known as PPAR-δ) and PPAR-γ [5–7]. Among 
these subtypes, PPAR-α is a key regulator of lipid and glucose metabolism. Activation of PPAR-α can 
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increase high density lipoprotein, decrease triglycerides, increase insulin sensitivity and reduce adiposity. 
Therefore, it becomes an attractive target for treating type II diabetes and its complications [8–12]. 
Due to this reason, the structures of PPAR-α have been intensively studied at the atomic level in recent 
years and several X-ray crystal structures of PPAR-α have been determined (Figure 1). The results 
suggest that the active site of PPAR-α consists of three parts: arm I, arm II and entrance regions [13] 
(Figure 2). 

Figure 1. The overall structures of peroxisome proliferator activated receptor-α  
(PPAR-α)/ligand complexes. (A) PPAR-α/13M complex; and (B) PPAR-α/471 complex. 
PPAR-α backbone is shown in ribbon (Helix: white; Strand: yellow; Coil: blue). Agonist 
and antagonist are shown in sphere (Carbon atom: purple; Oxygen atom: red; Nitrogen 
atom: blue; Fluorine atom: green). 

 

Based on the obtained crystal structures, lots of researches have been conducted on PPAR-α 
agonists [14–16]. Besides agonists, the antagonists are also useful because of the need for fully 
understanding the pharmacology of PPAR-α. Thus, new research efforts have been made to explore the 
potential utility of PPAR-α antagonists [1]. And several PPAR-α antagonists have been reported [17–19]. 

In order to develop more potent PPAR-α agonists and antagonists, it is necessary to find key 
residues which only contribute to agonist (or antagonist) recognition. Previous research suggests that 
agonists form polar interactions with S280, Y314, H440 and Y464, which are responsible for agonist 
recognition [13]. Besides these residues, other polar residues in the binding pocket can also form 
strong polar interactions with ligands and participate in agonist (or antagonist) recognition. 
Considering that apolar interactions are crucial for molecular recognition, we deduce that some 
hydrophobic residues also play important roles in agonist (or antagonist) recognition. Thus, the aim of 
this work is to find whether some other residues can be involved in agonist (or antagonist) recognition. 
So far, the systematic researches on this issue are limited, which may hinder rational design of more 
potent PPAR-α agonists and antagonists. To achieve this goal, the researchers must determine the 
interaction strength between ligands and residues in PPAR-α, which cannot be compared by only 
inspecting the crystal structures. Under this condition, molecular dynamics simulation is a useful tool 
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to achieve this goal. Thus, conventional molecular dynamics simulations of PPAR-α in complex with 
an agonist 13M, as well as an antagonist 471 were performed (Figure 3). It is hoped that these findings 
can provide useful information to help medicinal chemists design more potent PPAR-α agonists  
and antagonists. 

Figure 2. The active site of PPAR-α. (A) PPAR-α/13M complex; and (B) PPAR-α/471 
complex. Residues in PPAR-α are only shown with backbone atoms. Agonist and 
antagonist are shown in stick with purple carbon atoms. The arm I region is shown in stick 
with blue atoms. The arm II region is shown in stick with orange atoms. The entrance 
region is shown in stick with green atoms. For the sake of clarity, only the polar hydrogen 
atoms are displayed. 
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Figure 3. Chemical structures of PPAR-α agonist 13M and antagonist 471. 

 

2. Results and Discussion 

2.1. Backbone Stability 

The root mean square deviation (RMSD) for backbone Cα atoms respect to initial structures of 
production dynamics was calculated. It can be observed form Figure 4 that the RMSD values for 
PPAR-α/13M complex fluctuate around 0.1 nm in the period of 20–50 ns, while the values for  
PPAR-α/471 complex stabilize at about 0.25 nm. These results indicate that both systems reach 
equilibrium within 20 ns and the trajectories of the last 30 ns can be used to perform hydrogen bond 
and energy decomposition analyses. 

Figure 4. The root mean square deviation (RMSD) of Cα atoms for different systems. 
13M: PPAR-α/13M complex; 471: PPAR-α/471 complex. 

 

2.2. Hydrogen Bond Analysis 

Stable hydrogen bonds are crucial for molecular recognition. Residues which form more stable 
hydrogen bonds with agonist than with antagonist will be considered to only participate in agonist 
recognition. On the contrary, residues which form more stable hydrogen bonds with antagonist than 
with agonist will be considered to only participate in antagonist recognition. Considering that the 
hydrogen bond stability cannot be compared by inspecting the crystal structures, molecular dynamics 
simulations must be used. Table 1 lists the hydrogen bond probability of ligands with some residues in 
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PPAR-α. It can be seen that all of the five residues form more stable hydrogen bonds with 13M than 
471, which suggests that Q277, T279, S280, Y314 and H440 only take part in PPAR-α agonist 
recognition. Among these hydrogen bonds, the hydrogen bonds of 13M with Q277 and T279  
(Figure 5A) cannot be seen from the crystal structure. Based on this finding, we advise medicinal 
chemists to make designed PPAR-α agonists form hydrogen bonds with Q277 and T279. However,  
it must be noted that the hydrogen bond stability is not enough to determine which residues can 
differentiate agonist and antagonist because this analysis only in some extent reflect the electrostatic 
interactions. To more fully explore the interaction strength of residues with agonists and antagonists, 
the interaction energies must be calculated. 

Table 1. The probability (%) of hydrogen bonds between PPAR-α and ligands. 

Residues 
Ligands 

13M 471 
Q277 31.1 0.0 
T279 78.5 0.1 
S280 99.7 19.1 
Y314 100.0 0.0 
H440 88.8 73.3 

Figure 5. Snapshots of PPAR-α/ligand complexes at 50 ns (A) PPAR-α/13M complex;  
and (B) PPAR-α/471 complex. Agonist and antagonist are shown in stick with purple 
carbon atoms, while residues of PPAR-α are shown in stick with green carbon atoms.  
The hydrogen bonds are shown in black lines (For the sake of clarity, only the polar 
hydrogen atoms are displayed). 

 

2.3. Energy Decomposition Analysis 

Considering that both of the 13M and 471 occupy the arm I, arm II and entrance region,  
the interaction energies of residues in these regions with 13M and 471 cannot be judged by inspecting 
the crystal structures. So the energy decomposition analysis must be carried out. The calculated results 
are shown in Figure 6. Residues which only exhibit strong interactions with 13M will be considered to 
have selectivity for agonist recognition, while residues which only exhibit strong interactions with 471 
will be considered to have selectivity for antagonist recognition. 

In arm I region, the interaction energies of 13M with Q277, S280, Y314, H440 and Y464 are 
stronger than 471 (Figure 6A), which indicates that these residues selectively recognize agonists.  
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In contrast, 471 binds I317 and I354 more tightly than 13M (Figure 6A). This suggests that the two 
residues can selectively recognize antagonists. The previous researches have reported that S280, Y314, 
H440 and Y464 are responsible for agonist recognition [13], which are consistent with our studies. 

In arm II region, the interactions of 13M with C275 and V332 are much stronger than 471, 
indicating that the two residues only make contributions to agonist recognition (Figure 6B). Unlike 
C275 and V332, the non-bonded interactions between 471 and I272 are stronger than 13M, which 
suggests that this residue can only be responsible for antagonist recognition (Figure 6B). 

In entrance region, the difference in interaction energies of ligands with T279 and L321 is 
significant (Figure 6C). 13M binds these two residues more tight than 471. Therefore, it can be 
inferred that T279 and L321 only contribute to agonist recognition. 

Figure 6. The average total interaction energies of agonist and antagonist with residues in 
(A) Arm I region; (B) Arm II region; and (C) Entrance region. 

 

3. Experimental Section 

3.1. System Preparation 

The X-ray crystal structures of PPAR-α/13M (PDB code: 3VI8) [20] and PPAR-α/471 (PDB code: 
1KKQ) [21] complexes were obtained from the RCSB Protein Data Bank. Crystal water molecules 
within 4 Å of ligands were kept. For PPAR-α/471 complex, only the A chain was kept. And the  
co-repressor in PPAR-α/471 complex was also removed because this work is only to explore the 
interactions of PPAR-α with ligands. Finally, the hydrogen atoms were added by Maestro (Schrodinger 
LLC, New York, NY, USA). 
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3.2. Molecular Dynamics Simulations 

Molecular dynamics simulations were performed using Gromacs 4.5.3 program [22–25]. The force 
field for proteins was Amber FF99SB [26,27], while for agonist and antagonist was General Amber 
Force Field (GAFF) [28]. The systems were immersed in a SPC (simple point charge) water [29] box 
of 1.0 nm from the solute surface. The sodium ions were then added to neutralize the systems. The 
Particle Mesh Ewald (PME) method [30–32] was used for correcting electrostatic interaction. The 
LINCS algorithm [33,34] was employed to constrain all bonds involving hydrogen atoms. Periodic 
boundary conditions were also used. The non-bonded cutoff distance was set to 1.0 nm. The 
temperature was kept at 300 K with V-rescale temperature coupling [35]. The time step was 1.0 fs. The 
trajectories were sampled every 10 ps in molecular dynamics simulations. Steepest descent energy 
minimization was first performed to give the maximum force below 1000 kJ·mol−1·nm−2 in order to 
remove the steric clash. After that, the complexes were then equilibrated by 100 ps position restraint MD 
simulations with 1000 kJ·mol−1·nm−2 constant force on the heavy atoms of proteins and ligands under 
NVT (constant number of molecules, volume and temperature) condition. The X-ray crystal structure 
of PPAR-α/13M complex missed residues 231–237 and 263–264. But these residues are far away from 
the binding sites of agonist 13M. Therefore, the impact of the missing residues on agonist binding  
is limited. Considering this, 1 ns equilibrium simulation and 50 ns production run with restraints on the 
Cα atoms of residues 230, 238, 262 and 265 (restraint force constant = 1000 kJ·mol−1·nm−2) were 
sequentially carried out under NVT condition. Unlike PPAR-α/13M complex, no missing residue was 
found in PPAR-α/471 complex. So no position restraints were applied in the above 1 ns equilibrium 
simulation and 50 ns production run under NVT condition. 

3.3. Hydrogen Bond Analysis 

To define the presence of hydrogen bond, an acceptor–donor distance within 0.35 nm, and an 
acceptor–hydrogen–donor angle within 30° was used [36]. The probability of hydrogen bond was 
calculated using the following equation [37]: 

𝑃hbond =
𝑁existence
𝑁total

 × 100% (1) 

where Phbond was the probability of hydrogen bond. Nexistence was the number of frames that 
investigated hydrogen bonds existed. Ntotal was the total number of collected frames in production 
phase. The probability of each hydrogen bond was calculated in terms of a percentage that varied from 
0% to 100%, where a percentage of 100 indicated that the hydrogen bond was highly stable and a 
percentage of 0 indicated an unstable hydrogen bond. Three thousand snapshots isolated from the last 
30 ns production runs with an interval of 10 ps were employed for hydrogen bond analysis. 

3.4. Energy Decomposition Analysis 

The electrostatic (Eelec) and van der Waals (Evdw) interaction energies of some residues in PPAR-α 
with ligands were calculated according to the Amber force field equation. The total interaction 
energies between residues in PPAR-α with ligands are the sum of Eelec and Evdw. All energy 
components are calculated using the same snapshots as the hydrogen bond analysis. 
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4. Conclusions 

In conclusion, the hydrogen bond and energy decomposition analyses suggest that S280, Y314, 
H440 and Y464 only participate in agonist recognition, which is accord with the previous reports [13]. 
What is more, our research suggests that C275, Q277, T279, L321 and V332 are only involved in agonist 
recognition, while I272, I317 and I354 only contribute to antagonist recognition. It is advised that 
medicinal chemists can make strong non-bonded interactions (such as hydrogen bonds, salt bridges and 
π–π stacking interactions) with the above residues when they design PPAR-α agonists and antagonists. 
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