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Mass spectrometry is an important analytical technology in metabolomics. After the
initial feature detection and alignment steps, the raw data processing results in a high-
dimensional data matrix of mass spectral features, which is then subjected to further
statistical analysis. Univariate tests like Student’s t-test and Analysis of Variances (ANOVA)
are hypothesis tests, which aim to detect differences between two or more sample
classes, e.g., wildtype-mutant or between different doses of treatments. In both cases,
one of the underlying assumptions is the independence between metabolic features.
However, in mass spectrometry, a single metabolite usually gives rise to several mass
spectral features, which are observed together and show a common behavior. This paper
suggests to group the related features of metabolites with CAMERA into compound
spectra, and then to use a multivariate statistical method to test whether a compound
spectrum (and thus the actual metabolite) is differential between two sample classes.
The multivariate method is first demonstrated with an analysis between wild-type and an
over-expression line of the model plant Arabidopsis thaliana. For a quantitative evaluation
data sets with a simulated known effect between two sample classes were analyzed. The
spectra-wise analysis showed better detection results for all simulated effects.

Keywords: metabolomics, statistics, hypothesis tests, multivariate analysis, mass spectrometry

1. Introduction

Mass spectrometry is an important analytical technology in metabolomics. XCMS (Smith et al.,
2006) is one of the available tools for processing mass spectrometry data. After the initial feature
detection and alignment steps, the raw data processing results in a high-dimensional data matrix of
mass spectral features as shown in Table 1, which is then subjected to further (statistical) analysis.

A typical question in metabolomics is biomarker discovery, where e.g., univariate hypothesis
tests like Student’s t-test (Student, 1908) and Analysis of Variances (ANOVA) can be used to detect
differences between two or more sample classes, e.g., wildtype versus mutant or disease versus
control. An example implementation is the diffreport() function in XCMS. Furthermore, some
statistical methods can deal with more complex experimental designs with dependencies between
samples (Davis, 2002; Sampson et al., 2013; Trutschel et al., 2015). But in all cases, one of the
underlying assumptions is the independence between individual metabolic features.
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TABLE 1 | A peak list of features of a two sample class MS experiment with feature group annotation mz is the mass-to-charge ratio, RT is the retention
time in seconds.

mz/RT MU 1 MU 2 . . .. . .. . . MU 6 MU 7 WT 1 WT 2 . . .. . .. . . WT 6 WT 7 p.uni group.anno p.multi 0.02
590.5/967 14.42 14.61 . . . 14.29 14.2 13.85 13.96 . . . 13.95 14.12 0.02 40
609.5/968 18.31 18.72 . . . 18.32 18.45 18.12 18.7 . . . 18.44 18.48 0.88 40
628.5/968 17.21 17.52 . . . 17.17 17.21 16.95 17.49 . . . 17.18 17.34 0.89 40
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

0.30

413.3/1106 14.92 13.23 . . . 14.72 14.57 14.52 14.92 . . . 14.52 14.27 0.65 82
538.5/1103 12.32 11.76 . . . 11.93 11.8 11.7 11.7 . . . 12.15 12.91 0.23 82
591.5/1101 15.51 15.2 . . . 15.36 15.06 15.72 15.78 . . . 15.07 15.74 0.02 82
592.5/1102 15.15 14.78 . . . 14.78 14.42 14.67 15.03 . . . 14.76 15.33 0.34 82
797.5/1104 18.28 17.96 . . . 17.72 17.58 17.83 18.42 . . . 17.2 17.91 0.15 82

Additionally, listed uni- and multivariate p-values results from univariate and multivariate tests.

However, in mass spectrometry, a single metabolite usually
gives rise to several mass spectral features, e.g., isotopes, adducts,
or fragments (Brown et al., 2009), which observed together and
show a common behavior across samples. Another issue is that
the redundant features aggravate the problem of multiple testing,
and causemore type I errors (Broadhurst andKell, 2006; Hendriks
et al., 2011).

A first step to treat related features together is to group those,
which originate from the samemetabolite into compound spectra.
Several methods for such a grouping have been developed in the
last years (Ipsen et al., 2010; Alonso et al., 2011; Brown et al., 2011;
Scheltema et al., 2011; Varghese et al., 2012; Kenar et al., 2014). In
this paper, the grouping algorithm in the Bioconductor package
CAMERA (Kuhl et al., 2012) is used, which is comprised of several
steps, including compound spectra creation based on retention
time, calculation of known mass differences for isotope pattern
and adduct detection and a peak shape correlation analysis. This
grouping then results in compound spectra, which contain one or
more related features, which originate from the same metabolite.

A typical approach for the statistical analysis in GC/MS is to
select a single quantification ion for each compound (Luedemann
et al., 2008) for univariate tests, ignoring intensity information
for the remaining mass features in a compound spectrum. On
the other hand, multivariate methods like MANOVA are global
approaches and analyze all features together and can take correla-
tions into account. This has already been used in metabolomics
(Steuer et al., 2007; Saccenti et al., 2014). With MANOVA, the
simultaneous analysis of variables results in a better Type I error
correction because of the multidimensional confidence region. In
more detail, the differences in the mathematical theory between
univariate and the multivariaten comparison for more than two
groups (ANOVA versus MANOVA) are described in (Legendre
and Anderson, 1999). The multivariate approach benefits from
small signals, which contribute to the class differences, but would
not be detected univariate because the effect is too small compared
to the variance. However, the interpretation, which metabolites
have changed, remains challenging.

Often, inmetabolomics, the number of samples ismuch smaller
than the number of features to be analyzed. Therefore, correlation
and covariance structure is difficult to estimate, and requires an
initial variable selection step. Often, the complex models used
by global multivariate analysis are prone to the problem of over-
fitting with poor prediction and generalization.

In this paper, we compare the detection of differential features
on the individual- and metabolites on the compound spectra
level. We also introduce a multivariate analysis on the level of
compound spectra instead of a global multivariate approach to
determine differential metabolites, combining the benefits of uni-
and multivariate analysis for biomarker detection. An advanced
version of the XCMS diffreport() function is provided for
users. This paper is structured as follows: in the next section, the
metabolomics data used in this paper is briefly described, followed
by the conceptual details of the statistical method. The method
is applied to data from wild-type and over-expression plants.
Finally, the performance of the proposed methods is compared
to the univariate approach on a data set of known (simulated)
effects. The implementation is provided as an R vignette in the
Supplementary Material under the GPL license.

2. Materials and Methods

For the experiments, twometabolomics data sets fromArabidopsis
thaliana (A. th.) were used. The first is a subset of the study
available as MTBLS74, where 26 independent plant profiles and
a simulated effect were used. The method is then demonstrated
on a dataset of A. th. wildtype and a mutant line, available as
MTBLS169.

2.1. Metabolite Profiling of Arabidopsis thaliana
2.1.1. Plant Growth and Sample Preparation
The model plant Arabidopsis thaliana Col-0 was used as plant
material. For the genotype comparison Col-0 and the 90.32
mutant were used, a transposon-based activation tagged A. th.
line from the TAMARA population (Schneider et al., 2005). This
particular mutant has an over-expression of the AT5G55880 –
AT5G55890 genetic region with unknown function. Plants were
grown on soil in a growth chamber under controlled conditions
as biological replicates. The frozen leaf material of each plant was
ground and weighed using a cryogenics robot1 with a weighing
error ≤5%, and extracted with methanol. Full details are available
in Supplementary Material I, Section 1 and the protocol sections
of the MetaboLights studies.

1http://www.labman.co.uk/portfolio-type/ipb-cryogenic-grinder-and-feeder-
system
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2.1.2. Mass Spectrometry Analysis and Data
Processing
Metabolite intensities were recorded according to (Böttcher et al.,
2009). In brief, the chromatographic separation was performed on
a Waters Acquity UPLC system coupled to a Bruker micrOTOF-
Q mass spectrometer. Mass spectra were recorded in positive
ion centroid mode with a scan rate of 3Hz and a mass range
of 100–1000m/z. Full details are available in Supplementary
Material I, Section 1 and the protocol sections of the Metabo-
Lights studies. This experimental setup is able to routinely detect
semi-polar plant metabolites from major biosynthetic classes
including glucosinolates, indolic compounds, phenylpropanoids,
benzenoids, flavonoids, terpenes, and fatty acid derivatives
(Böttcher et al., 2011). In this paper, no metabolite identification
was performed, resulting in the lowest metabolomics standards
initiative (MSI) identification level (Sumner et al., 2007)MSI level
four (i.e., the features are only characterized by their mass and
retention time).

The measured MS data were converted to mzData with the
Bruker CompassXport software. The mzData are preprocessed
with the centWave feature detection algorithm (Smith et al., 2006;
Tautenhahn et al., 2008) to condense the raw data to feature lists,
and then aligned across samples to produce a matrix of N mass
features observed inM samples. The xcms processing parameters
are detailed in Supplementary Material I, Section 1, in particular,
with minfrac= 1 no NA values were present in theM×N matrix
to avoid any influence of a data imputation step in this evaluation.
An underlying assumption of the original Student’s t-test (and also
ANOVA) is that the mean intensities are normally distributed.
To transform the data toward more normally distributed values,
all intensities were logarithmized. The related features (rows in
the matrix) are grouped into compound spectra with the package
CAMERA. For the remaining analyses, this CAMERA grouping is
assumed to be correct. Furthermore, there is no dependency on a
CAMERA based grouping, and the proposed statistical treatment
can be applied to groupings from equivalent tools as well.

The raw data files, the preprocessed peak matrix, and the
protocol descriptions have been submitted to the MetaboLights
repository (Haug et al., 2013), and are available under the acces-
sion numberMTBLS742. Analogously, the second data set is avail-
able as MTBLS1693. All statistical calculations were performed
in (R Development Core Team, 2014). The complete processing
scripts are provided in the Supplementary Material I, Section 1.

2.2. Detection of Differential Features and
Metabolites
The analysis for differential metabolites requires to detect inten-
sity differences between sample classes. Here, in comparison
to univariate methods to analyze features, we propose several
multivariate methods to analyze compound spectra representing
metabolites. First, we introduce with a graphical illustration of the
different decisions from univariate and multivariate tests, then we
explain the several tests. All formulas of the test are shown in detail
in the Supplementary Material I, Section 3.

2http://www.ebi.ac.uk/metabolights/MTBLS74
3http://www.ebi.ac.uk/metabolights/MTBLS169

2.2.1. Univarate Tests
The univariate Student’s t-test (Student, 1908) assumes normal
distributed observations of independent features. The difference
of the intensity mean between the two classes is estimated for each
feature. While Student’s t-test assumes equal variances of the two
classes, the Welch’s t-test (Welch, 1947) is a variant that allows
different variances between the classes (Table S1 in Supplementary
Material I, Section 3).

The confidence interval (CI) determines the accuracy of this
estimation, and theCI size depends on the number of observations
and the standard error (SE) of the estimated difference between
means. The null hypotheses, Ho, is that no difference in means
exists, the alternative H1corresponds to a difference in means. If
the CI includes the origin (zero), then the difference is considered
not significant and Ho can be accepted.

If independent univariate tests for two features in a compound
spectrum are combined, the confidence interval becomes a rect-
angular confidence region as shown in Figure 1, or in general
for groups with p features a p-dimensional hypercube. Even if
multiple testing correction is done, the confidence region holds
a hypercube.

2.2.2. Multivariate Tests
The multivariate extension of Student’s t-distribution was intro-
duced by (Hotellings, 1931). The two-sample test of unequal
means with unknown and equal variances becomes in multiple
dimensions the Hotelling’s T2 (c.f. Table S1 in Supplementary
Material I, Section 3). For unequal covariancematrices, the exten-
sion of the Welch t-test, is the James test (Table S1 in Supplemen-
tary Material I, Section 3), introduced in James (1954).

These tests compare the difference of p-dimensional mean
intensity vectors in relation to their p× p covariance matri-
ces. Observations of features in a compound spectrum are then
assumed to be multidimensional normal distributed. For this
multivariate analysis, the confidence region has an ellipsoid shape.

Using the multivariate tests, this statistic requires at least
(p+ 1/2) replicates, where p is the number of features permetabo-
lite group, to estimate the unknown entries of each covariance
matrix. For typical experiments, p easily exceeds 20 for some
metabolite groups, but data sets with so many replicates are rare.

In the following, we additionally propose a variant of the multi-
variate methods, where only the diagonal entries of the covariance
matrix are estimated, with the rest fixed to zero. This simplifi-
cation ignores the correlation between features, but makes the
covariance estimation more robust in the case where a compound
spectrum consists of more features than samples are available to
modify the idea of spectra-wise analysis on small data sets. The
main axes of the ellipsoid confidence region are then parallel to
the coordinate axes. The details and comparison of all tests are
given in Table S1 in Supplementary Material I, Section 3.

2.2.3. Comparison of Results from Univariate and
Multivariate Tests
Depending on the univariate or different multivariate test statis-
tics different sets of metabolic compound spectra are detected
as differential. The Ho hypothesis is accepted if the assumed
difference in means of zero between sample classes falls within
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FIGURE 1 | Different decisions from univariate and multivariate
test to detect differential features or compound spectra. Each
gray rectangles marks the confidence interval of one test dimension, so
the intersection of two rectangles marks the combined confidence

region. The blue ellipse is the confidence region for a multivariate test.
There are six different possibilities (six different colored spaces) for the
position of the origin corresponding to the null hypotheses marked by a
red “+.”

the confidence interval or region. Several regions are shown in
Figure 1.

The table also shows the different possible results for com-
pound spectra with two features. In the simplest cases, both
approaches yield the same result: in case of Figure 1A, no fea-
ture is differential using the univariate tests, and the compound
spectrum as a whole is also not detected as differential by the
multivariate test. Similarly, in Figure 1F, all features of the com-
pound spectrum are differential in the univariate tests and the
compound spectrum is assigned as differential by the multivari-
ate test. But there are also cases, where the results completely
differ: In Figure 1C, all features of the compound spectrum are
differential in the univariate case, but the compound spectrum
is not assigned as differential by the multivariate test, while
in Figure 1D, none of the individual features is differential
but the whole compound spectrum is detected as differential
by the multivariate test. Finally, in Figures 1B,E, the two uni-
variate tests for the individual features decide differently, and
only one agrees with the multivariate test on the compound
spectrum.

2.3. Evaluation Data and Performance Measures
The distinction between differential and non-differential can be
described as a classification problem and then the typical perfor-
mance measures can also be used. For the evaluation, a ground
truth data set is required, where for each feature, it is known
whether it is differential or not. Then, the evaluation (Algorithm
1 in the Supplementary Material I) can assess the quality of
biomarker discovery with the different statistical tests by calcu-
lating the confusion matrix and the derived measures specificity
and sensitivity.

The ground truth used here is a real world data set with
simulated (and hence known) effect between two classes. The
data set of 26 A. th. Col-0 wildtype plants was randomly split into

two sample classes, designated as “wildtype” and “mutant,” with
13 samples each.

To simulate differential features, for each compound spectrum
an effect was sampled from a multivariate normal distribution
with a given mean (determined by the desired effect, e.g., 0.5) and
the covariance matrix that was estimated from the actual data in
the 13 observations in the original “mutant class.” These effects
were added to the features in the “mutant class.” This simulation
ensures that effects are sampled for each separate compound
spectrum (i.e., metabolite), rather than adding an effect to each
feature individually. Thus, all compound spectra (and all its
features) should be differential, and are the positive set of the
ground truth. For the negative set of the ground truth, an “effect”
of size zero was used.

For the simulation of the “mutant” class, only a subset of the
available compound spectra can be used, since the sampling of an
effect requires to estimate the covariance matrix of the compound
spectra from 13 samples, which in turn is only possible for those
compound spectra with a maximum of 12 features. For larger
groups, it is impossible to parametrize the normal distribution
used to simulate the fixed effect. Like wise, singletons (i.e., groups
with only one feature) were excluded from this evaluation as the
univariate and multivariate methods would give the same result.

All features are tested individually with the univariate tests,
corrected for multiple-testing with Benjamini–Yekutieli proce-
dure (Benjamini andYekutieli, 2001)within each compound spec-
trum, and all compound spectra are tested with the multivariate
tests.

For the comparison on the feature level, each feature in a com-
pound spectrum that is classified as differential by themultivariate
method is defined as a differential feature.

For different effects and test methods, all features are classified
whether they are differential or not, and a confusion matrix can
be constructed consisting of the number of true positives (TP),
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true negatives (TN), false positives (FP), and false negatives (FN).
These can be combined into sensitivity, specificity, false positive
rate (FPR), and false negative rate (FNR). Repeating the prediction
with different thresholds influence the performance, which can
be visualized as receiver-operator curves (ROC) and summarized
by the area under curve (AUC). The use of ROC curves in
metabolomics is also demonstrated in Broadhurst andKell (2006).

Finally, the evaluation can take place on the level of compound
spectra (or metabolites) instead of the feature level and so com-
pares different spectra-wise analysis approaches. This requires
the definition how to interpret the multiple individual univariate
decisions for a given compound spectrum. Here, all compound
spectra where at least one feature was classified as differential
by the univariate tests were defined as differential compound
spectra. In essence, this is a two-step approach where a test on all
univariate p-values is performed for each compound spectrum. So
on the compound spectra level we can only compare the different
spectra-wise analysis approaches, the two multivariate methods,
which group intrinsically and the two-step approach, which uses
the univariate method as the first step for spectra-wise analysis.

3. Results and Discussion

This section covers first an example for the detection of differences
between a wildtype and mutant genotype experiment. Then, the
analysis of the semi-synthetic ground truth dataset allows an
evaluation of the statistical methods with regard to sensitivity,
specificity, and area under ROC curves for multiple effects.

3.1. Analysis of an Experiment with Wildtype and
Mutant Plants
First, a real dataset is analyzed. One sample class is comprised of
seven A. th. Col-0 wildtype plants and a second class of seven
samples of an A. th. over-expression line, a transposon based
activation tagged A. th, line from the TAMARA population. Here,
the real effect is unknown, and only a few exemplary results are
described.

The data processing of the 14 samples results in a 2110× 14
feature matrix, where CAMERA detected 335 compound spec-
tra. The spectra with just a single feature are excluded from
this comparison since the results are identical for both statistical
analyses. 28% of all compound spectra have only one feature.
The remaining 72% were analyzed with the both univariate and
multivariate methods, except for one group with 126 features
resulting from the injection peak at the beginning of the chro-
matography. Overall, 1891 features in 241 feature groups were
analyzed.

Table 1 shows two selected compound spectra of an extended
diffreport with the two compound spectra no. 40 and no. 82, the
univariate p-value p.uni for each feature and the multivariate
diagonal James p-value p.multi for each compound spectrum.
The diagonal James test is used because of the small samples size
(much smaller than the compound spectra sizes) and the assumed
unequal covariance matrices between the two classes.

As shown in Figure 2 (left), 5 features are reported exclu-
sively by the univariate method, while the multivariate approach
detected 23 features exclusively, both at a significance level of
α = 0.01.

At the compound spectra level, Figure 2 (right) shows that 3
groups are found exclusively by the multivariate approach, which
corresponds to case D in Figure 1. All 3 compound spectra found
only by the multivariate method are compound spectra with only
two or three features.

On the other hand, 4 compound spectra (one of them is a
small group with only 2 features, the others have a size of 15, 17,
and 35) are found that were not differential in the multivariate
test, but where at least one feature was detected by the univariate
approach. This corresponds to either case C where all individual
features were differential, or case B where only some features were
differential. Here, all 4 compound spectra were of type B.

An underlying assumption is the correctness of the CAM-
ERA groupings, where each metabolite corresponds to one com-
pound spectrum. In reality, it can happen that features from
one metabolite are split into two (or more) compound spectra.

FIGURE 2 | Venn diagram of differential features and compound spectra
in the wildtype-mutant experiment for the significance level of ααα=== 0.01.
Left: number of features detected by univariate and multivariate method. Right:

number of compound spectra detected by the multivariate method, compared
to the number of compound spectra where at least one feature was detected
univariately.
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In this case, the multivariate approach looses power, and in the
extreme case where a metabolite is split into many singleton
spectra achieves the same results as the univariate approach. The
opposite case, where two or more metabolites end up in the
same compound spectrum can also have a negative influence.
If, for example, a differential and a non-differential metabolite
are joined, the combined “differentiality” could turn out non-
significant and hide one of them.

In this experiment, the biological truth, i.e., which metabolites
and features are affected by the over-expression construct is not
known. For an objective evaluation, we created a semi-synthetic
dataset with simulated fixed effects.

3.2. Evaluation with Multiple Simulated Fixed
Effects
In this second experiment, the performance of the three statistical
analysis – univariate and multivariate with both Hotellings-T2

and the diagonal Hotellings-T2 – was compared on a dataset of
metabolite profiles from Arabidopsis thaliana. The xcms process-
ing results in a matrix of 1476 features, and the CAMERA group-
ing reveals 282 compound spectra. As explained above, for the
simulation of the “mutant” class, only a subset of 153 compound
spectra with 12 or less features can be used for the ground truth.

We combined the negative set (effect 0.0) with 686 features in
153 compound spectra with the positive set consisting of the same
686 features but with the added effect. For each effect, between
0.0 and 1.4, the final ground truth dataset thus contained 306
compound spectra with a total of 1372 features.

The following exemplifies the results for the fixed effect of
0.5, corresponding to a fold change of ≈1.5 in the original, non-
logarithmic data.

For a significance level of α = 0.05,Table 2 shows the summary
of the confusion matrix for all three approaches. The multivariate
approaches clearly achieve both a better sensitivity and FNR.

The Venn diagram in Figure 3 (left) shows the 242 features are
detected as differential by all three tests, 243 by both the univariate
and the T2 and 258 by both the univariate and the diagonal T2.

The Comparison of the univariate and the original T2 shows that
16 features are found only by the univariate and 328 features
only by the multivariate method. The same for the diagonal T2

shows that only 1 feature is found only by the univariate and
253 features only by the multivariate method. Furthermore, 200
features are found by both multivariate methods. It is shown that
the feature detection has more overlap between the two multi-
variate methods than between one of these with the univariate
approach. Now, we are especially interested in cases where the
multivariate methods identify compound spectra as differential,
while the univariate method detects none of the features in the
spectra, or cases where the univariate method detects features
whose associated compound spectra are missed by the multivari-
ate methods (Figure 3 right). Here, only 7 compound spectra are
detected by both multivariate methods, 29 by the original mul-
tivariate T2 and 25 by the diagonal multivariate method, where
any feature of this spectra is detected by univariate method. In
contrast, 5 compound spectra have at least one feature, which is
detected by the univariate test, but the compound spectra itself
are not identified by the multivariate T2 method and 1 com-
pound spectrum in comparisonwith the diagonalmultivariateT2.
83 groups are detected by all three tests, 84 by univariate and T2,
98 by univariate and diagonal T2 (Figure 3 right).

The ROC curve of the three feature detection approaches for
a specific effect of 0.5 (Figure S6 in Supplementary Material II)
shows the sensitivity and specificity for significance thresholds
other than α = 0.05, and confirms that the multivariate method
has a higher AUC.

TABLE 2 | Comparison of performance of univariate and multivariate tests
for a simulated effect of 0.5 and significance level of ααα=== 0.05.

Method FP (FPR) FN (FNR) TP (sensitivity) TN (specificity)

Univariate 0 (0%) 427 (62.2%) 259 (37.8%) 686 (100%)
T2 36 (5.2%) 151 (22%) 535 (78%) 650 (94.8%)
DiagT2 5 (0.7%) 180 (26.2%) 506 (73.8%) 681 (99.3%)

FIGURE 3 | Venn diagram of differential features and compound spectra
in the simulation experiment for the simulated effect 0.5 and
significance level of ααα===0.05. Left: number of features detected by univariate

and multivariate method. Right: number of compound spectra detected by the
multivariate method, compared to the number of compound spectra where at
least one feature was detected univariately.
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FIGURE 4 | Results of univariate and multivariate methods in feature
detection are compared on the feature level (upper). At the compound
spectra level (lower) the results of different grouping analysis approaches are

shown. For each simulation step, several added effects of 0.2, 0.3, . . ., 1.4, 1.5
on the “mutant” class, the mean and SE of the evaluated AUCs (results from
100 repetitions) are plotted.

The next question was the behavior of the methods for dif-
ferent effects. The AUC was used as a summary metric of the
performance. Figure 4 shows that the multivariate T2 as well
as the diagonal T2 method has a better AUC for the feature
detection compared to the univariate approach for all effects of
0.2, 0.3, . . ., 1.4, 1.5. To improve the generalization, the sampling
of the “mutant” data was repeated 100 times for each effect. Espe-
cially for smaller effects, the benefit of the multivariate approach
is visible and also that the simplified diagonal T2 approximates to
the original T2 for larger effects.

The results Figure 4 (bottom) show no particular differences
between the different compound spectra level (or grouping)
approaches, thus the main benefit results from a joint analy-
sis of compound spectra, while less differences are observed
between the joint analysis methods. In Supplementary Material
I all methods including James and diagonal James are compared
in Figure 2 on the feature level, and Figure 3 on the compound
spectra level. In a repeated sensitivity analysis (Supplementary
Material III) we show that for small effects and large compound
spectra Hotelling’s-T2 has an advantage over the other grouping
approaches.

4. Conclusions

In mass spectrometry-based metabolomics data, metabolites
(which are the objects of biological interest) will usually give
rise to multiple spectral features. In recent years, methods were
developed to group these related features into compound spectra.
However, the statistical analysis was still based in either individual
univariate tests or global multivariate analysis.

We have extended the feature-wise univariate statistic tests to
a compound spectra-wise analysis. Using traditional multivari-
ate hypothesis tests, like the Hotelling’s T2 or James test, the
confidence interval becomes a multidimensional ellipsoid that
resembles the joint probability for metabolites to be differential
more realistically.

On real data of a comparative wildtype-mutant experiment
design, the results of the univariate and multivariate tests have
an overlap, while some features are detected exclusively by the
univariate or multivariate test.

On the synthetic data where the actual effect was known, on
the feature level, the resulting AUCs for the multivariate analysis
of compound spectra were better than in the univariate case,
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we recommend to analyze the data compound spectra-wise for
biomarker discovery in mass spectrometry metabolomics data.
On the compound spectra level the advantage of T2 over the other
spectra-wise approaches is most prominent for noisy data and/or
if very small effects should be detectable.

If the CAMERA grouping erronously splits a metabolite into
several compound spectra the results of all spectra-wise analyses
will approach the multivariate results, and false negatives can
occur if a differential and a non-differential metabolite are joined
by the compound spectra grouping.

While CAMERA was used in this study, the approaches are
readily applicable to any data where individual features from a
metabolite are grouped together. In particular, this should allow
the analysis of GC/MS data, where the established data analysis
typically relies on deconvoluted spectra or mass spectral tags, and
where the selection of quantifier ions would have to be repeated
for each sample matrix or sample type. The presented approach
does not require the selection of representative ions.

The proposed joint analysis of features of a metabolite group as
a spectra-wise analysis is the key idea and bridges an important
gap between hypotheses tests on individual features on the one
hand, and global multivariate methods, which might be more
difficult to interpret on the other.
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Presentation 1 | The Supplementary Material I file contains details about
the mass spectrometry setup and data processing (Section 1), additional
results of the simulation experiment (Section 2), and moreover the formula
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Presentation 2 | The Supplementary Material II file shows the ROC curves
for the simulation experiment.

Presentation 3 | The Supplementary Material III file shows repeated figures
of the simulation experiment for different datasets.
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repository as accessionMTBLS742 andMTBLS1693. The providedR-functions
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which contains an example analysis on the dataset seven measurements of an
Arabidopsis thaliana versus 7 measurements of the over-expression line. The Rdata
object MTBLS169.Rdata contains the preprocessedMS peak lists and annotations.
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