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The fact that viruses cause human cancer dates back to the early 1980s. By
reprogramming cellular signaling pathways, viruses encoded protein that can regulate
altered control of cell cycle events. Viruses can interact with a superfamily of membrane
bound protein, receptor tyrosine kinase to modulate their activity in order to increase virus
entrance into cells and promotion of viral replication within the host. Therefore, our study
aimed at screening of inhibitors of tyrosine kinase using natural compounds from olive.
Protein tyrosine kinase (PTK) is an important factor for cancer progression and can be
linked to coronavirus. It is evident that over expression of Protein tyrosine kinase (PTK)
enhance viral endocytosis and proliferation and the use of tyrosine kinase inhibitors
reduced the period of infection period. Functional network studies were carried out
using two major PTKs viz. Anaplastic lymphoma kinase (ALK) and B-lymphocytic
kinase (BTK). They are associated with coronavirus in regulation of cell signaling
proteins for cellular processes. We virtually screened for 161 library of natural
compounds from olive found overexpressed in ALK and BTK in metastatic as well as
virus host cells. We have employed both ligand and target-based approach for drug
designing by high throughput screening using Multilinear regression model based QSAR
and docking. The QSAR based virtual screening of 161 olive nutraceutical compounds has
successfully identified certain new hit; Wedelosin, in which, the descriptor rsa (ratio of
molecular surface area to the solvent accessible surface area) plays crucial role in deciding
Wedelosin’s inhibitory potency. The best-docked olive nutraceuticals further investigated
for the stability and effectivity of the BTK and ALK during in 150 ns molecular dynamics and
simulation. Post simulation analysis and binding energy estimation in MMGBSA further

Edited by:
Balakumar Chandrasekaran,

Philadelphia University, Jordan

Reviewed by:
Rahul Singh,

Institute of Himalayan Bioresource
Technology (CSIR), India

Prasoon Thakur,
Institute of Molecular Genetics

(ASCR), Czechia
Daniel Uti,

Federal University of Health Sciences
Otukpo, Nigeria

*Correspondence:
Arabinda Ghosh

dra.ghosh@gauahti.ac.in
Debabrat Baishya

drdbaishya@gmail.com

†These authors have contributed
equally to this work

Specialty section:
This article was submitted to

Pharmacology of Anti-Cancer Drugs,
a section of the journal

Frontiers in Pharmacology

Received: 10 November 2021
Accepted: 24 December 2021

Published: 08 March 2022

Citation:
Ghosh A, Mukerjee N, Sharma B,

Pant A, Kishore Mohanta Y,
Jawarkar RD, Bakal RL, Terefe EM,
Batiha GE-S, Mostafa-Hedeab G,

Aref Albezrah NK, Dey A and Baishya D
(2022) Target Specific Inhibition of

Protein Tyrosine Kinase in Conjunction
With Cancer and SARS-COV-2 by

Olive Nutraceuticals.
Front. Pharmacol. 12:812565.

doi: 10.3389/fphar.2021.812565

Frontiers in Pharmacology | www.frontiersin.org March 2022 | Volume 12 | Article 8125651

ORIGINAL RESEARCH
published: 08 March 2022

doi: 10.3389/fphar.2021.812565

http://crossmark.crossref.org/dialog/?doi=10.3389/fphar.2021.812565&domain=pdf&date_stamp=2022-03-08
https://www.frontiersin.org/articles/10.3389/fphar.2021.812565/full
https://www.frontiersin.org/articles/10.3389/fphar.2021.812565/full
https://www.frontiersin.org/articles/10.3389/fphar.2021.812565/full
https://www.frontiersin.org/articles/10.3389/fphar.2021.812565/full
http://creativecommons.org/licenses/by/4.0/
mailto:dra.ghosh@gauahti.ac.in
mailto:drdbaishya@gmail.com
https://doi.org/10.3389/fphar.2021.812565
https://www.frontiersin.org/journals/pharmacology
www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology#articles
https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org/journals/pharmacology#editorial-board
https://doi.org/10.3389/fphar.2021.812565


revealed the intensive potential of the olive nutraceuticals in PTK inhibition. This study is
therefore expected to widen the use of nutraceuticals from olive in cancer as well as SARS-
CoV2 alternative therapy.

Keywords: SARS CoV-2, ALK, BTK, Wedelosin, Olive, MD simulation, QSAR

INTRODUCTION

Following the pandemic SARS-CoV-2 infection, an increasing
number of coronavirus disease-19 (COVID-19) cases have been
reported globally since December 2019. COVID-19 currently
lacks a specific treatment for SARS and associated multiorgan
failure. Liang and colleagues recently reported an elevated
likelihood of COVID-19 in cancer patients, which is linked to
a worse COVID-19 prognosis. Thus, worldwide bodies have
advised delaying or suspending anticancer therapies, raising
concerns about cancer progression. Targeted tyrosine kinase
inhibitors (TKI) are highly effective in treating oncogene-
dependent non-small cell lung cancer (NSCLC) (TKIs).
Withdrawal of TKIs may be harmful to this patient subgroup.
This is especially true when SARS-CoV-2 lung infection is
discovered in asymptomatic patients. We report two examples
of oncogene-driven NSCLC patients infected by SARS-CoV-2 who
maintained targeted therapy with ALK/ROS1 TKIs and recovered
without special antiviral therapies (Leonetti et al., 2020). In SARS-
CoV-2 pandemic the Growth factor receptors (GFRs) with
intrinsic protein kinase activity are in much consideration.
GFRs are relevant for the entry of multiple viruses, including
coronaviruses, which makes them a central topic of discussion
regarding the SARS-CoV-2 pandemic (Purcaru et al., 2021).

GFRs auto-phosphorylates at Tyr residues by interacting with
extracellular growth factors (Carapancea et al., 2009). This auto-
phosphorylation causes cascade of reactions in various
downstream signalling pathways like JAK/STAT, Ras/ERK/
MAPK, which regulates the cell growth, metabolism and

differentiation (Schlessinger, 2000). Dysregulation of the
downstream signaling pathways may lead to cancer progression,
hence protein tyrosine kinase inhibitors are targeted to GFR in
most anticancer therapies. The epidermal growth factor receptor
(EGFR) belongs to ErbB family of protein tyrosine kinase
receptors, and aids the internalization of the viruses, hence can
be a potential entry point for coronavirus (Schlessinger, 2014). The
over expression of the EGFR in human cancers is well documented.
For years the tyrosine kinase inhibitors are used in clinical studies
to target the EGFR for the treatment of cancers like of non-small-
cell lung cancer (Liu et al., 2017). A recent study has reported the
overactive EGFR signalling in the lung tissue along with increased
level of inflammation following SARS-CoV infection
(Venkataraman et al., 2017).

A well-known PTK associated with EGFR is Anaplastic
lymphoma kinase (ALK) was identified in lymphoma, non-
small cell lung cancer is the most common ALK-positive
disease. It aids in the growth of the intestines and the nervous
system. Anaplastic lymphoma kinase (ALK), also known as
CD246 or Anaplastic lymphoma kinase (ALK). When ALK is
expressed in spitz tumours, the tumours have a typical amelanotic
look, and their development pattern is characterized by crossing
fascicles. Activated ALK is a transmembrane tyrosine kinase
receptor that dimerizes and auto phosphorylates the
intracellular kinase domain upon ligand interaction (Della
et al., 2018). The tyrosine kinase receptor anaplastic
lymphoma kinase (ALK) has been linked to the development
ofmany tumours. Clinical studies on another PTK, Bruton tyrosine
kinase (BTK) inhibition revealed the ameliorating cancer in SARS-
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CoV-2 patients (Kifle, 2021). Again, for the treatment of patients
with chronic lymphocytic leukaemia (CLL) and haematological
malignancies (HM), BTK inhibitor like ibrutinib is the most
advanced in clinical development (Aalipour and Advani, 2014;
Wang et al., 2015). HM is associated with BTK dysregulation, and
COVID-19 mortality has been found to be higher in HM patients
(Campbell et al., 2018; Pinato et al., 2020). These findings show a
direct relationship between protein tyrosine kinase dysregulation
and the severity of both cancer and COVID-19. Furthermore,
cytotoxic therapy for cancer treatment has side effects such as
leukopenia, which increases the patient’s risk of infection in the
COVID-19 pandemic, complicating cancer treatment (Anil et al.,
2020). Therefore, interests have been gained in discovering natural
kinase inhibitors that can be used to treat both cancer and
COVID-19.

Polyphenols, anthraquinones, alkaloids, and other
phytochemicals act as protein tyrosine kinase inhibitors, and
thus play an essential role in discovering and developing new
potential drugs (Wang et al., 2014). The bioactive compounds
epoxy-quino-phomopsins A and B from the endophytic fungus
Phomopsis sp isolated from Moruscathayana demonstrated strong
inhibitory properties against Bruton’s Tyrosine Kinase (nRTK)
with their kinase activity (Hermawati et al., 2021). The
computational analysis also revealed that compounds such
as sulawesins A and B have comparable inhibition potential
against Bruton’s tyrosine kinase (BTK) (Flamandita et al., 2020).
Recent reports suggested that consuming olive polyphenols
reduces the risk of developing cancer (Donaldson, 2004; Bach-
Faig et al., 2011). Olive tree (Olea europaea L.) belongs to suborder
Asteranae, order Lamiales, family Oleaceae, Genus Olea. Bioactive
compounds derived from olives have been shown to have a wide
range of bioactivities. Olive’s potential health benefits encourage
the identification and characterization of bioactive compounds
derived from it. The most comprehensive database, OliveNet™ is a

valuable resource of compounds found in the various matrices of
olives (Bonvino et al., 2018).

In this particular study, aim was to identify of novel
compounds from olive OliveNet™ database having efficient
activity against ALK and BTK kinases. Virtual screening was
carried out on ligand based QSAR approach and structure-based
docking approach were employed to find the best possible
compound for efficient target (ALK and BTK) inhibition.
Nevertheless, this study also encompassed the study of
structural stability of target and best compound complex from
olive with the help of molecular dynamics simulation studies. The
overall strategy is to discover novel compound as potent inhibitor
for ALK and BTK for future therapeutic purposes.

METHODOLOGY

Preparation of Protein and Ligand
Molecules
The OliveNet™ database was used to obtain the library of ligands by
screening the metabolites of Olea europaea (Bonvino et al., 2018).
The smiles notation and the three-dimensional structures of the
selected ligands were downloaded in SDF format from PubChem
database (Kim et al., 2019), further ligand structure files were
converted to PDB format using Open Babel software (O’Boyle
et al., 2011). The energy minimization of the ligands was
performed in UCSF Chimera software (Pettersen et al., 2004)
using Amber ff 14 sb force field. The receptor used in the study
are receptor tyrosine kinase, RCSB Protein Data Bank (PDB)
(Berman et al., 2000) was used to download receptors Anaplastic
lymphoma kinase (ALK) with (PDB id: 5FTO, Resolution: 2.22 Å)
and Bruton’s tyrosine kinase (BTK) with (PDB id: 5J87, Resolution:
1.59 Å). The structures were chosen from the protein data bank due
to the least missing residues while compared with the other available

FIGURE 1 | Presentation of Five least and five most active molecules.
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structures of ALK and BTK present in the database. The protein
structure was prepared by removing ligand, water molecules, metal
ions. Polar hydrogens were added and non-polar hydrogens were
merged. Finally, Kollman charges were added to the protein
molecule before converting to PDBQT format by AutoDock
Tools (v.1.5.6) of the MGL software package (Forli et al., 2016).

QSAR Modelling
Selection of Data-Set
A sequence of one hundred ninety-seven compounds, with stated
enzyme inhibitory concentration (Ki) have been selected for the
present work (Gilson et al., 2016). The Ki values extending from
0.146 to a hundred thousand nM had been converted to pKi
(pKi = –logKi) earlier than genuine QSAR evaluation for the ease
of managing of the data. Five least and five most active molecules
are depicted in Figure 1 to show the variation in bio-activity with
chemical features. Then, as a part of data curation, molecules with
ambiguous enzyme inhibition constant (Ki) values, duplicates,
salts, metal-based inhibitors, etc. were excluded (Consonni et al.,
2009; Dearden et al., 2009; Huang and Fan, 2011; Gramatica et al.,
2013; Cherkasov et al., 2014; Fujita and Winkler, 2016;
Gramatica, 2020; Zaki et al., 2021). The SMILES strings with
stated Ki and pKi values for all the molecules are presented in
Supplementary Table S1 in the supplementary material.

Molecular Structure Drawing and Optimization
Drawing of 2D- Structures of all the one hundred and ninety
seven molecules and their conversion to the corresponding 3D-
structures was achieved using free and open source softwares
ChemSketch 12 Freeware (www.acdlabs.com) and OpenBabel 2.
4, respectively. Thereafter, force field MMFF94 available in
TINKER (default settings) and Open3DAlign employed for an
optimization and molecular alignment, respectively.

Molecular Descriptor Calculation and Objective
Feature Selection (OFS)
The SMILES notations were converted to 3D-optimized
structures the usage of Openbabel 3.1 before calculation of
molecular descriptors (O’Boyle et al., 2011).

The success of a QSAR analysis considerably relies upon on
appropriate calculation of diverse molecular descriptors to extend
mechanistic interpretation, observed with the aid of their pruning to
minimize the risk of overfitting from noisy redundant descriptors.
To reap these goals, PyDescriptor was used to calculate greater than
30,000 molecular descriptors (Masand and Rastija 2017).

The huge pool of molecular descriptors includes 1D-to 3D-
molecular descriptors. Then, OFS was once performed using
QSARINS-2.2.4 to eliminate near constant, constant and quite
inter-correlated (|R| > 0.90) molecular descriptors. The ultimate
set is with 3,191 molecular descriptors, which nonetheless
consists of manifold descriptors main to coverage of a large
descriptor space (Gramatica et al., 2013).

Splitting the Data set Into Training and External sets
and Subjective Feature Selection (SFS)
To avoid information leaking, prior to comprehensive subjective
feature selection, the information set must be divided into training

and prediction (also known as external or test set) sets with
excellent composition and proportions (Masand et al., 2015).

The data set was separated into training (80% = 157
molecules) and prediction or external (20% = 40 molecules)
sets at random to avoid bias. The main aim of a training set
was to choose an acceptable number of molecular descriptors,
whereas the prediction/external set was solely utilised to validate
the model externally (Predictive QSAR). A genetic algorithm
unified with multilinear regression (GA-MLR) technique created
in QSARINS-2.2.4 was utilised to choose relevant descriptors
utilising Q2LOO as a fitness parameter to select relevant
descriptors. A sufficient number of molecular descriptors in
the model is a critical step in creating a good QSAR model
with no over-fitting and appropriate interpretability.

Building Regression Model and its
Validation
A good QSAR model that has been validated adequately using
multiple methodologies such as cross-validation, external
validation, Y-randomization, and applicability domain
(Williams plot) is useful for future use in virtual screening,
molecular optimization, and decision making, among other
things. The statistical parameters listed below are typically
used to validate a model, along with their recommended
threshold values (Chirico and Gramatica, 2011; Chirico and
Gramatica, 2011; Huang and Fan, 2011; Roy et al., 2011;
Martin et at., 2012; Cherkasov et al., 2014; Krstajic et al., 2014;
Consonni et al., 2019): R2

tr ≥ 0.6, Q2
loo ≥ 0.5, Q2

LMO ≥ 0.6, R2 > Q2,
R2ex ≥ 0.6, RMSEtr < RMSEcv, ΔK ≥ 0.05, CCC ≥ 0.80,Q2-Fn ≥ 0.60,
r2m ≥ 0.5, (1-r2/ro

2) < 0.1, 0.9 ≤ k ≤ 1.1 or (1-r2/r’o
2) < 0.1, 0.9 ≤ k’ ≤

1.1,| ro
2− r’o

2| < 0.3, RMSEex, MAEex, R
2
ex, Q

2
F1, Q

2
F2, Q

2
F3, and low

R2Yscr, RMSE and MAE. (The formulae for calculating these
statistical parameters are available in Supplementary Table
S1). In addition, Williams plot was plotted to evaluate the
applicability domain of QSAR model.

QSAR Based Virtual Screening
In QSAR based virtual screening, we have used 161 olive
neutraceuticals. Accordingly, 161 were used for QSAR-based
virtual screening. Erstwhile to molecular descriptor
calculations, the 3D-structures of the molecules were arranged
in the same way as modelling set. Then molecular descriptors
were calculated for the 161 olive database compounds and the
appropriately validated six parametric QSAR model was used to
envisage the biological property of novel compounds.

Virtual Screening of Natural Compounds
Using Molecular Docking
The structure based virtual screening of the compounds was
performed using autodock vina Ver 1.1.2 (Trott and Olson, 2010).
Binding sites of BTK and ALK for screening were predicted using
DoGSiteScorer (Volkamer et al., 2012) and information about the
binding site of native ligand. The size of the grid box was set to be
96 × 52 × 56 Å for BTK and 78 × 76 × 58 Å for ALK, centered
around identified binding site. The compounds with the best
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binding affinity (kcal/mol) corroborating ligand-based screening
in QSAR analysis were selected for the studies.

Molecular Docking for Validation of Docking
Score
The best hit Wedelosin from the QSAR modelling and virtual
screening were re-docked against Bruton’s tyrosine kinase (PDB id:
5J87) and Anaplastic lymphoma kinase (ALK) (PDB id: 5FTO). In
order to validate the docking, crystal structures were docked with the
native ligands entrectinib and N42 bound to X-ray structures of ALK
and BTK, respectively. In addition to former, for comparison and
better validation of docking at the binding cavity of ALK and BTK
proteins the common approved drugs crizotinib and ibrutinib were
also carried out, respectively. Protein and ligand preparation were
done using AutoDock Tools (v.1.5.6) (Forli et al., 2016). Gasteiger
charges were added to the ligand molecules prior converting to
PDBQT format. Online server DoGSiteScorer and the information
about the binding site residues of native ligand were used to construct
the grid box. The grid box of dimensions 96 × 52 × 56Å for BTK and
78 × 76 × 58Å for ALK with 0.375 Å grid spacing was constructed
using Autogrid 4.2. Semi flexible docking was done keeping the
receptor molecule rigid and ligands flexible. Molecular docking was
done via Autodock 4.2 (Morris et al., 2009) using the Lamarckian
GeneticAlgorithm (LGA) scoring functionwith number ofGA runs=
100, population size = 500 and maximum number of evaluations =
25,000,000. After docking, the RMSD clustering maps were obtained
by re-clustering command with a clustering tolerance 0.25 Å, 0.5 Å
and 1 Å, respectively, in order to obtain the best cluster having lowest
energy score with high number of populations.

Molecular Dynamics Simulation (MD) and
Free Energy Landscape Analysis
The MD simulations studies were carried in triplicate on dock
complexes for ALK and BTK with Wedelosin using the Desmond
2020.1 from Schrödinger, LLC. The triplicate samplings were made
using same parameters for each MD run in order to obtain
reproducibility of the results. The OPLS-2005 force field (Bowers
et al., 2006; Chow et al., 2008; Shivakumar et al., 2010) and explicit
solventmodel with the SPCwatermolecules were used in this system
(Jorgensen et al., 1983). Na + ions were added to neutralize the
charge 0.15 M, NaCl solutions were added to the system to simulate
the physiological environment. Initially, the system was equilibrated
using an NVT ensemble for 150 ns to retrain over the protein-
Wedelosin complex. Following the previous step, a short run of
equilibration and minimization was carried out using an NPT
ensemble for 12 ns The NPT ensemble was set up using the
Nose-Hoover chain coupling scheme (Martyna et al., 1994) with
the temperature at 37°C, the relaxation time of 1.0 ps, and pressure
1 bar maintained in all the simulations. A time step of 2 fs was used.
The Martyna-Tuckerman–Klein chain coupling scheme (Martyna
et al., 1992) barostat method was used for pressure control with a
relaxation time of 2 ps. The particle mesh Ewald method (Toukmaji
and Board, 1996) was used for calculating long-range electrostatic
interactions, and the radius for the coulomb interactions were fixed
at 9 Å. RESPA integrator was used for a time step of 2 fs for each

trajectory to calculate the bonded forces. The root means square
deviation (RMSD), radius of gyration (Rg), root mean square
fluctuation (RMSF) and number of hydrogen (H-bonds) and
Solvent accessible surface area (SASA) were calculated to monitor
the stability of the MD simulations. The free energy landscape of
protein folding on Wedelosin bound complex was measured using
Geo_measures v 0.8 (Kagami et al., 2020). Geo_measures include a
powerful library of g_sham and form the MD trajectory against
RMSD and radius of gyration (Rg) energy profile of folding recorded
in a 3D plot using matplotlib python package.

Molecular Mechanics Generalized Born and
Surface Area (MMGBSA) Calculations
During MD simulations of ALK and BTK complexed with
Wedelosin, the binding free energy (Gbind) of docked complexes
was calculated using the premier molecular mechanics generalized
Born surface area (MM-GBSA) module (Schrodinger suite, LLC,
New York, NY, 2017-4). The binding free energy was calculated
using the OPLS 2005 force field, VSGB solvent model, and rotamer
search methods (Piao et al., 2019). After the MD run, 10 ns intervals
were used to choose theMD trajectories frames. The total free energy
binding was calculated using Eq. 1:

ΔGbind � Gcomplex − (Gprotein + Gligand) (1)
Where, ΔGbind = binding free energy, Gcomplex = free energy of the
complex, Gprotein = free energy of the target protein, and Gligand =
free energy of the ligand. The MMGBSA outcome trajectories were
analyzed further for post dynamics structure modifications.

Dynamic Cross Correlation and Principal
Component (PCA) Analysis
During a 150 ns MD simulation, a dynamic cross correlation matrix
(DCCM) was constructed across all C-atoms for all complexes in
order to examine domain correlations. During a 150 ns simulation of
ALK and BTK complexedwithWedelosin, PCA analysis was used to
recover the global movements of the trajectories. To calculate the
PCA, a covariance matrix was created as stated. For conformational
analysis of the Wedelosin in bound complex, 10 alternative
conformational modes of the main component as movements of
trajectories were calculated, and a comparison of the mode PC1,
PC2, PC3 and the last modes PC9 and PC10 were investigated to
understand the convergence of trajectories. Geo measures v 0.8 was
used to calculate the free energy landscape of protein folding on a
Wedelosin -bound complex (Kagami et al., 2020). The MD
trajectory versus PC2 energy profiles of folding was recorded in a
3D plot using the matplotlib python package using Geo measures,
which includes a comprehensive library of g_sham.

RESULTS

QSAR
The statistical parameters associated with fitting, double
validation and Y-scrambling for de novo QSAR model with
threshold values for some of the parameters are presented below.
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QSAR Model (Divided Set: Training Set-80% and Prediction
Set-20%):

Q2
loo: 0.8066, R

2:0.8253, R2adj: 0.8184,R
2-Q2

loo: 0.0188, R
2-R2adj:

0.0069,Kxx: 0.2845, Delta K: 0.0918,RMSEtr: 0.6137, RMSEcv:
0.6459,RMSEex:0.6959, Sy: 0.6278, F:118.9309, Q

2-F1: 0.7784, Q2-
F2: 0.7782, Q2-F3: 0.7755, CCCtr:0.9043, CCCcv: 0.8941,CCCex:
0.8919,r2m av: 0.7169, r2m de: 0.0591,MAEtr: 0.4707,MAEcv:
0.4944,MAEex: 0.5620,RSStr: 59.5085, PRESScv: 65.9115, PRESS ex:
18.8848, R2

LMO:0.828, Q
2
LMO: 0.815, R

2
Yscr: 3.6912,Q

2
Yscr: 5.5179.

LOO Obs(x) Pred(y): R2:0.8067, R2o: 0.7679, Ko: 0.9920, Clos:
0.0481, Rm: 0.6479.

LOO Pred(x) Obs (y): R2: 0.8067, R2
o: 0.8066, Ko: 0.9995, Clos:

0.0002, Rm: 0.7977.
Calc. Obs(x) Calc(y):R2:0.8000, R2o:0.7955, Ko: 0.9813, Clos:

0.0056, R2m:0.7465.
Calc. Calc (x) Obs(y):R2:0.8000, R2o: 0.7801, Ko: 1.0093, Clos:

0.0248, R2m:0.6873.
(Threshold Values for some important statistical parameters:

R2 ≥ 0.6, Q2
LOO ≥ 0.5, Q2

LMO ≥ 0.6, R2 > Q2, R2ex ≥ 0.6, RMSEtr <
RMSEcv, ΔK ≥ 0.05, CCC ≥0.80, Q2-Fn ≥ 0.60, r2m ≥ 0.6, 0.9 ≤ k ≤
1.1, and 0.9 ≤ k’ ≤ 1.1 with RMSE≈0, MAE ≈0).

Values of fitting parameters (R2, R2
adj etc.) are well above the

approved thresholds which confirm the adequacy of number of
molecular descriptors in the models and statistical
acceptability of the QSAR models. Values of Q2

LOO, Q
2
LMO

etc. (Internal validation parameters) vouchsafed the
statistical robustness of the QSAR models. High values of
external validation parameters R2

ex, Q2F1, Q2F2, Q2F3 etc.,
highlights the external predictability of all the three models.
Model applicability domain (AD) is validated from Williams
plots for model (see Figure 2). Almost all the statistical
parameters have attained values well above the approved
threshold values and minimal correlation among the
selected molecular descriptors ruled out the possibility of
chancy QSAR model development (Supplementary Tables
S2, S3). These evidences support the models’ statistical
robustness and high external predictability.

QSAR Model (Divided Set: Training Set-80% and Prediction
Set-20%)

pKi = −5.006 (±0) + 0.159 (±0) * fringNaroC5B+ 0.459 (±0)
*N_hy1 + 0.679 (±0) * faroNsp2O5B+ 16.899 (±0) * rsa + 0.549
(±0) * fsp2Oacc6B+ 0.608 (±0) * faccsp2C4B.

FIGURE 2 | (A) Graph of experimental vs. Predicted pIC50 values for model; (B) Williams plot for model applicability domain of model.

FIGURE 3 | Depiction of the descriptor fringNaroC5B for the molecules
19 and 178 only.
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Mechanistic Interpretation of Descriptor
fringNaroC5B (Frequency of occurrence of aromatic carbon atoms
exactly at five bonds from the ring Nitrogen atoms) This descriptor
has acquired positive correlation with the binding coefficient for
BTK tyrosine kinase, therefore further increase in the value of the
present descriptor may enhances the binding affinity for the BTK
tyrosine kinase. This observation is supported by comparing the
compound 19 with the compound 178 (see Figure 3). The

observation is reinforced by comparing compound 19 (pKi = 9.1)
with compound 178 (pKi = 5.3) for which increase in the value of
fringNaroC5B from 0 for compound 178 to 2 for compound 178
resulting into increase in the pKi value by about 3.8 unit (about
thirty-fold increase in inhibitory potency for BTK tyrosine kinase
receptor). Compound 3 (fringNaroC5B = 4; pKi = 9.6) and
compound 94 (fringNaroC5B = 1; pKi = 6.7) is one more pair as
an example to support this observation.

FIGURE 4 | Display of the molecular descriptor N_hy1 for the molecules 12 and 80 only.
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Furthermore, when we have shifted the molecular descriptor
fringNaroC5B (R2 = 0.82) with the descriptor fringNringC5B
(frequency of occurrence of ring carbon atom exactly at five
bonds from the ring nitrogen atom). We notified that mere ring
carbon atoms are the better choice and crucial for enhancing the
binding affinity for BTK tyrosine kinase as portrayed from the
statistically significant correlation (R2 = 0.85) with the binding
affinity (pKi). Moreover, replacement of aromatic ring carbon
atom specifically with the unsaturated ring carbon atom will
significantly contribute to enhance the lipophilicity of the
molecule. Concurrently, when we have changed the molecular
descriptor fringNaroC5B with the molecular descriptor
aroC_ringC_5B (Occurrence of aromatic ring carbon atoms
within five bonds from the aromatic carbon atoms) will result
into substantial fall in the statistical performance of the developed
QSAR model (R2 = 0.76). Therefore, it is settled that distance
between aromatic carbon atom and ring nitrogen atom should be
five bonds to have better binding affinity for BTK tyrosine kinase.

N_hy1 (Number of nitrogen atoms with the partial charge <
−0.100 and > −0.199). The present descriptor shows positive
correlation with binding coefficient (Ki) in the developed QSAR
model, therefore further increase in the value of this descriptormay
plausibly enhances binding affinity against BTK tyrosine kinase
receptor. This is observed by comparing the pKi value of the
molecule 12(N_hy1 = 3; pKi = 9.24) with the molecule 80 (N_hy1
= 0; pKi = 6.95) (see Figure 4). The partial positive/negative charge
on the molecule has been enhanced by the addition of variety of
polar substituents. For backing the present observation, we have
shifted the value of the descriptor N_hy1 for the molecule 80 by
about 2 that may change the pKi value of the molecule 80 by about
2.29 unit (about twenty-fold increase in the inhibitory potency for
BTK tyrosine kinase receptor).

If we shift molecular descriptor N_hy1 (R2:0.82) with the
descriptor N_MSA1 (number if nitrogen atoms having partial
charge in the range -0.100 to -0.199) will plausibly enhance the
statistical significance (R2= 0.87) of the developed QSAR model.
Based on this analysis, it can be recognized that the descriptor

N_MSA1 is the superior option to predict the binding affinity for
BTK tyrosine kinase inhibitors. The compound 2 (N_hy1 =2,
pKi = 9.84) and compound 195 (N_hy1 = 0, pKi = 4.1) is one
more pair of duos which support this remark.

faroNsp2O5B (Frequency of occurrence of sp2 hybridized
oxygen atoms exactly at 5 bonds from the aromatic nitrogen
atoms) The positive numerals for the present descriptor,
faroNsp2O5B in the created QSAR model will subsequently
enhances the binding affinity (Ki) for the BTK tyrosine kinase
receptor. We have compared the molecule 50 (faroNsp2O5B = 2,
pKi = 8.2)with the molecule 58 (faroNsp2O5B = 2, pKi = 7.7) to
witness the effect of the existing molecular descriptor on binding
affinity (Ki) (see Figure 5). Compound 4 (faroNsp2O5B = 1,
pKi = 9.51) and compound 91 (faroNsp2O5B = 2, pKi = 6.8) is
the additional such pair which reinforce this remark.

If we change the value of the molecular descriptor for molecule
58 by one unit, the pKi value will rise by about 0.5 unit (about 5-

FIGURE 5 | Depiction of the molecular descriptor faroNsp2O5B for the molecule 50 and 58 only.

FIGURE 6 | Presentation of the molecular descriptor fsp2Oacc6B for
the molecule 21 and 63 only.
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fold increase in the inhibitory potency for BTK tyrosine kinase
receptor). When the molecular descriptor faroNsp2O5B was
replaced with the molecular descriptor faroNO5B, the
statistical performance (R2 = 0.89) of the created QSAR model
was significantly altered (R2 = 0.89) (presence of oxygen atom
exactly 5 bonds from the aromatic carbon atom). As a result,
while adding an oxygen atom to a BTK tyrosine kinase receptor
increases binding affinity, faroNO5B is a better predictor of BTK
tyrosine kinase inhibitor binding affinity.

rsa (Ratio ofmolecular surface area to the solvent accessible surface
area). Because these descriptors have a positive coefficient in the
established QSAR model, increasing the value of rsa will most likely
increase the BTK tyrosine kinase binding affinity. This conclusion is
supported by comparing themolecules 52 (pKi = 8.1, rsa = 0.735) and
71 (pKi = 7.1, rsa = 0.696). If we change the value of rsa for molecule
71 to 0.3, the BTK tyrosine kinase inhibitory potency (pKi) increases
by approximately 1 unit (about 10-fold increase in inhibitory potency
for BTK tyrosine kinase receptor). The developed QSAR model’s
performance (R2 = 0.85) is statistically altered by replacing the
molecular descriptor rsa with the molecular descriptor notringC
MSA (molecular surface is of all non-ring carbon atoms). As a
result, the molecular surface area of non-ring carbon atoms must
be considered for future lead optimization of BTK tyrosine kinase
inhibitors. fsp2Oacc6B (Frequency of occurrence of acceptor atoms
exactly at 6 bonds from the sp2 hybridised oxygen atoms) Because this
chemical descriptor has a positive correlation with binding affinity
(pKi), increasing the descriptor value may increase the pKi value of
BTK tyrosine kinase inhibitors. The effect of the present descriptor can
be seen by comparing molecules 21 (fsp2Oacc6B = 1; pKi = 9.06) and
63 (fsp2Oacc6B = 0; pKi = 7.57). This finding is supported by
comparing the two molecules, 20 (fsp2Oacc6B = 1; pKi = 9.1) and
191 (fsp2Oacc6B = 0; pKi = 4.3) (See Figure 6).

We get a tenfold increase in the inhibitory potency (pKi) for
the BTK tyrosine kinase receptor if we increase the pKi value by
1.49 unit by shifting the value of the molecular descriptor by one
for the molecular 63.

The statistical performance of the existing QSAR model changes
when the chemical descriptor fsp2Oacc6B is replaced with another
molecular descriptor fsp3OringN6B (frequency of occurrence of ring

nitrogen atom exactly at 6 bonds from the sp3 hybridized oxygen
atoms) (R2: 0.88). As a result, with an ideal distance of 6 bonds between
the acceptor and oxygen atoms, the sp3 oxygen atom is the better
choice for increasing the potency of BTK tyrosine kinase inhibitors.

faccsp2C4B (Frequency of occurrence of sp2 hybridized
carbon atoms exactly at 4 bonds from the acceptor atoms)
This descriptor has attain positive numeral in the developed
QSARmodel and for the small increase in the value of the present
descriptor gave rise to amplification in the binding affinity (Ki)
for the BTK tyrosine kinase.

This can be illustrated by comparing the molecule 46
(faccsp2C4B = 4, pKi = 8.38) with the molecule 71
(faccsp2C4B = 0, pKi = 7.11). (see Figure 7). The basic
difference which occurs amid two molecules is sp2 hybridized
carbon which seems to be imperative for the enhancing the binding
affinity for BTK tyrosine kinase receptor. If we shift the value of the
molecular descriptor by 4 for the molecular 71 will results into
increase the pKi value by 1.27 unit (about tenfold increase in the
inhibitory potency (pKi) for the BTK tyrosine kinase receptor).
Moreover, increase in the carbon atom content in the molecule
may gave rise increase in the lipophilic character of the molecule,
therefore sp2 hybridized carbon atom is important for the future
optimization of the lead molecule. Concurrently, when we have
shifted the molecular descriptor faccsp2C4B with the molecular
descriptor faccsp2C3B (frequency of occurrence of sp2 hybridized
carbon atom exactly at 3 bonds from the acceptor atoms) will
significantly drop the statistical performance (R2 = 0.75) of the
created QSAR model. Therefore, we can infer that the optimum
distance between the acceptor atom and sp2 hybridized carbon
atom must be 4 bonds to enhance the binding affinity for the BTK
tyrosine kinase receptor. Additionally, the molecular descriptor
faccsp2C4B is the better selection to predict the binding affinity for
BTK tyrosine kinase receptors.

Structure Based (Dock) Virtual Screening
High throughput structure based virtual screening of 161 olive
metabolites were analyzed in dock-based approach against ALK
and BTK protein. The binding site residues for specific docking
were determined from the native ligand in X-ray crystallography

FIGURE 7 | Portrayal of the molecular descriptor faccsp2C4B for the molecular 46 and 71 only.
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structures associated with the ALK and BTK protein using
DogSiteScorer. Moreover, structural superimposition of ALK
and BTK with respective co-crystallized ligand and Wedelosin
are displayed in Supplementary Figures S1A,B, respectively, for
validation of binding sites. In ALK protein the binding site of the
native ligand predominated with amino acid residues LEU1122,
GLY1123, PHE1127, VAL1130, ALA1148, LEU1196, GLU1197,
LEU1198, MET1199, ALA1200, GLY1201, GLY1202, ASP1203,
ARG1253, ASN1254, CYS1255, LEU1257, GLY1268, ASP1269
within 5 Å space. Whereas, for BTK the residues at the binding
site were determined as ARG97, LEU11, LYS26, ILE95, PHE44,
ILE9, ASP43, GLU96, GLU76, LYS27, TYR42, ARG28, PRO75.
within 5 Å space. The best molecules from QSAR based virtual
screening, Wedelosin, Oleanolic acid, Corosolic acid, Ursolic
acid, Maslinic acid and Pomolic acid also showed significant
binding energies < -8.0 (kcal/mol) when processed in structure-
based ligand screening displayed in Table 1.

Molecular Docking for Validation of Docking
Score
The best molecule Wedelosin from virtual screening having
lowest binding energy was subjected to molecular docking
with ALK and BTK receptors. In addition to that, docking
with co-crystallized ligand, approved drugs showed in
Figure 8. All the dock scores displayed to having low RMSD
tolerance 0.25 Å and binding energy fall maximum within that
RMSD cluster. Free energy of binding of Wedelosin with ALK
exhibited (ΔG) −8.6 kcal/mol, inhibitory concentration (Ki)
2.55 µM, ligand efficiency −0.26, total internal energy -0.45 kJ/
mol, and torsional energy 0.3 kJ/mol. Whereas, the redocked
co-crystallized ligand entrectinib exhibited binding energy
−8.2 kcal/mol, inhibitory concentration (Ki) 6.75 µM, ligand
efficiency −0.16, total internal energy −0.23 kJ/mol, and
torsional energy 0.6 kJ/mol. On the other hand, the approved
displayed low affinity for the ALK receptor with binding
energy −7.6 kcal/mol, inhibitory concentration (Ki) 55.75 µM,
ligand efficiency −0.06, total internal energy −0.11 kJ/mol, and
torsional energy 1.6 kJ/mol. The principal residues making the
binding pocket around Wedelosin is comprised of Glu1210,
Gly1121, Phe1271, Asp1270, Glu1167, Leu1196, Val1180,
Met1199, Gly1123 by van der Walls interaction force; residues
Gly1202, Ser1206 possess Carbon Hydrogen bonding; residues
Val1130, Leu1256, Ala1148, Lys1150 undergoes Alkyl bonding;
Asp1203, Leu1122, Gly1269, Glu1197 possess Conventional

TABLE 1 | Binding energies of ligands with ALK and BTK as determined from
structure based ligand screening.

Compound Binding energies with
ALK (kcal/mol)

Binding energies with
BTK (kcal/mol)

Wedelosin −8.6 −8.04
Oleanolic acid −8.4 −7.7
Maslinic acid −8.3 −7.6
Corosolic acid −8.2 −7.4
Ursolic acid −8.4 −7.2
Pomolic acid −8.2 −7.01

FIGURE 8 | (i) Best docked pose of (A) Wedelosin, (B) entrectinib, (C)
crizotinib with ALK displaying 2D interaction plot on the left panel. Pink dashed
lines indicating the Pi-Alkyl bond and residues embedded in light green sphere
indicating to involve in Van der Waals interactions. On the center panel,
surface view of ALK displaying binding cavity of Wedelosin and right panel
displaying the zoomed out binding pocket having amino acid residues
surrounding the Wedelosin molecule; (ii) Best docked pose of (A)Wedelosin,
(B) N42, (C) ibrutinib with BTK displaying 2D interaction plot on the left panel.
Pink dashed lines indicating the Pi-Alkyl bond and residues embedded in light
green sphere indicating to involve in Van der Waals interactions. On the center
panel, surface view of BTK displaying binding cavity of Wedelosin and right
panel displaying the zoomed out binding pocket having amino acid residues
surrounding the Wedelosin molecule.
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hydrogen bonding (Figure 8iA, left). The RMSD differences were
observed in Wedelosin ALK bound complex with co-crystallized
ligand and approved drug 0.129 Å and 0.215 Å, respectively.
Interactions of ALK with entrectinib and crizotinib are
displayed in Figures 8iB,C , respectively. Wedelosin also
displayed better binding energy with BTK as compared to
approved drug inhibitor ibrutinib and co-crystallized ligand
N42. The Wedelosin bound complex exhibited the binding
into the cavity of BTK and residues Arg97, Leu11, Lys26,
Ile95, Phe44, Ile9, Asp43, Glu96, Glu76 possess van der Walls

interaction force; residues Lys27, Tyr42, Arg28 possess
Conventional hydrogen bonding; residue Pro75 possess
Amide-Pi Stacked bonding which are held with a binding
energy of −8.04 kcal/mol, inhibitory concentration (Ki)
7.34 µM, ligand efficiency −0.11, total internal energy
−4.57 kJ/mol, and torsional energy 0.67 kJ/mol. (Figure 8iiA,
left). On the other hand, with co-crystallized ligand N42 and
approved drug ibrutinib, BTK displayed binding energies
−7.8 kcal/mol and −7.6 kcal/mol, with inhibitory concentrations
(Ki) 22 and 32 µM, respectively. The RMSD differences were

FIGURE 9 | (i) (A) MD simulation trajectory analysis of Root Mean Square Divisions (RMSD) of 156,818 (Wedelosin) bound with ALK at 150 ns time frame in
triplicate displayed: R1 (replicate 1) H-Bond plot of 156,818 bound ALK (red); R2 (replicate 2) H-Bond plot of 156,818 bound ALK (blue); R3 (replicate 3) H-Bond plot of
156,818 bound ALK (light green); (B)MD simulation trajectory analysis of Root Mean Square Fluctuations (RMSF) of 156,818 (Wedelosin) bound with BTK at 150 ns time
frame in triplicate displayed: R1 (replicate 1) H-Bond plot of 156,818 bound BTK (red); R2 (replicate 2) H-Bond plot of 156,818 bound BTK (blue); R3 (replicate 3)
H-Bond plot of 156,818 bound BTK (light green). (ii) (A) MD simulation trajectory analysis of Radius of gyration (Rg) of 156,818 (Wedelosin) bound with ALK at 150 ns
time frame in triplicate displayed: R1 (replicate 1) H-Bond plot of 156,818 bound ALK (red); R2 (replicate 2) H-Bond plot of 156,818 bound ALK (blue); R3 (replicate 3)
H-Bond plot of 156,818 bound ALK (light green); (B)MD simulation trajectory analysis of Radius of gyration (Rg) of 156,818 (Wedelosin) bound with BTK at 150 ns time
frame in triplicate displayed: R1 (replicate 1) H-Bond plot of 156,818 bound BTK (red); R2 (replicate 2) H-Bond plot of 156,818 bound BTK (blue); R3 (replicate 3) H-Bond
plot of 156,818 bound BTK (light green). (iii) (A)MD simulation trajectory analysis of Root Mean Square Fluctuations (RMSF) of 156,818 (Wedelosin) bound with ALK at
150 ns time frame in triplicate displayed: R1 (replicate 1) H-Bond plot of 156,818 bound ALK (red); R2 (replicate 2) H-Bond plot of 156,818 bound ALK (blue); R3
(replicate 3) H-Bond plot of 156,818 bound ALK (light green); (B) MD simulation trajectory analysis of Root Mean Square Fluctuations (RMSF) of 156,818 (Wedelosin)
boundwith BTK at 150 ns time frame in triplicate displayed: R1 (replicate 1) H-Bond plot of 156,818 bound BTK (red); R2 (replicate 2) H-Bond plot of 156,818 bound BTK
(blue); R3 (replicate 3) H-Bond plot of 156,818 bound BTK (light green). (iv) (A)MD simulation trajectory analysis of Hydrogen Bonding (H-Bonds) of 156,818 (Wedelosin)
bound with ALK at 150 ns time frame in triplicate displayed: R1 (replicate 1) H-Bond plot of 156,818 bound ALK (red); R2 (replicate 2) H-Bond plot of 156,818 bound ALK
(blue); R3 (replicate 3) H-Bond plot of 156,818 bound ALK (light green). (iv) (B)MD simulation trajectory analysis of Hydrogen Bonding (H-Bonds) of 156818 (Wedelosin)
bound with BTK at 150 ns time frame in triplicate displayed: R1 (replicate 1) H-Bond plot of 156818 bound BTK (red); R2 (replicate 2) H-Bond plot of 156818 bound BTK
(blue); R3 (replicate 3) HBond plot of 156818 bound ALK (light green).
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observed in Wedelosin BTK bound complex with co-crystallized
ligand and approved drug 0.212 Å and 0.243 Å, respectively
Interactions of BTK with N42 and ibrutinib are displayed in
Figures 8iiB,C , respectively. Therefore, the docking studies it
can be suggested that Wedelosin has better predicted binding
energy and inhibitory effect on ALK and BTK over the co-
crystallized ligand and approved drugs.

Molecular Dynamics Simulation (MD) and
Free Energy Landscape Analysis

Molecular dynamics and simulation (MD) studies were carried out
to determine the stability and convergence of Wedelosin bound
ALK and BTK complex. Each simulation of 150 ns displayed stable

conformation while comparing the root mean square deviation
(RMSD) values. The Cα-backbone of ALK bound to Wedelosin
exhibited a deviation of 1.3 Å (Figure 9iA) in BTK bounded with
Wedelosin, a fluctuation of 2.1 Å (Figure 9iB) is found. RMSD
plots are within the acceptable range signifying the stability of
proteins in the Wedelosin bound state before and after simulation
and it can also be suggested that Wedelosin bound ALK (PDB i.d:
5FTO) and BTK (PDB i.d: 5J87) is quite stable in complex might
be due to significant binding of the ligand.

Radius of gyration is the measure of the compactness of the
protein. In Wedelosin bound proteins displayed lowering of
Radius of Gyration (Rg) (Figures 9iiA,B; R1, R2, R3).
Lowering of Rg indicating the compactness of the protein
ligand complex. From the overall quality analysis from RMSD
and Rg, it can be suggested that Wedelosin bound to the protein

FIGURE 10 | Stepwise trajectory analysis for every 25 ns displaying the protein and ligand conformation during 150 ns of simulation of (A). ALK-Wedelosin and (B)
BTK-Wedelosin.

Frontiers in Pharmacology | www.frontiersin.org March 2022 | Volume 12 | Article 81256512

Ghosh et al. Olive Nutraceuticals Against Cancer and COVID-19

https://www.frontiersin.org/journals/pharmacology
www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology#articles


targets posthumously in the binding cavities and plays a
significant role in the stability of the proteins.

The plots for root mean square fluctuations (RMSF) displayed
a significant RMSF in ALK and BTK protein at few residues at the
specific time function of 150 ns From the triplicate runs of ALK as
shown in Figure 9iiiA, a few fluctuating peaks can be seen
although mostly the complex is found to be stabilized from
Figure 9iiiB, a fluctuation from residue index 81 till 116 can

be found but later it got stabilized. While comparing with the
docking results it was observed that in ALK-Wedelosin complex,
Leu1122, GLU1197 and Asp1203 those involve in conventional
hydrogen bonds formation having RMSF 1.5, 1.2 and 0.5 Å
(Figure 9iiiA). All these residue fluctuations are less compared
to other residues and therefore suggesting the hydrogen bonding
facilitate in stabilizing the complex. In BTK Wedelosin bound
complex docking results suggested four hydrogen bond formation

FIGURE 11 | (i) (A) Free Energy Landscape displaying the achievement of global minima (ΔG, kJ/mol) of (P) ALK in presence ofWedelosin with respect to their RMSD (nm) and
radius of gyration (Rg, nm); (B) Free Energy Landscape displaying the achievement of global minima (ΔG, kJ/mol) of (P) BTK in presence ofWedelosin with respect to their RMSD (nm)
and radius of gyration (Rg, nm). (ii) MMGBSA trajectory (0 ns, before simulation and 150 ns, after simulation) exhibited conformational changes of Wedelosin upon binding with the
proteins, (A)ALK; (B)BTK.Thearrows indicating theoverall positional variation (movement andpose) ofWedelosin at thebindingsite cavity; (C)Binding freeenergydecomposition
for each residue of the ligands in the complexes (ALK-Wedelosin and BTK-Wedelosin).
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with residues couple with Lys27, single with Arg28 andTyr42 and a
comparative analysis in MD simulation exhibited 0.2, 0.4 and
1.3 Å, respectively. All these RMSF values are acceptable for
stabilizing the protein ligand complex. Therefore, RMSF plots, it
can be suggested that the protein structures were stable during
simulation in Wedelosin bound conformation.

The average hydrogen bonds formed between Wedelosin and
the respective proteins during the 150 ns simulation were also
recorded (Figure 9iv). From 0 to 150 ns a formation of hydrogen
bonding was found throughout the simulation and same for
triplicate MD simulation of Wedelosin with ALK
(Figure 9ivA). In Wedelosin-BTK bound complex similarly
significant numbers of hydrogen bonds formed (Figure 9ivB).
Moreover, pattern of three and four hydrogen bond formation

with ALK and BTK, respectively, in docking was corroborated the
number of hydrogen plot analysis after 150 ns molecular
dynamics (Figures 9ivA,B). The amount of hydrogen bonds
between ALK and BTK with Wedelosin have strengthened the
binding and facilitating to conform into more stable complex
during the simulation.

The stepwise trajectory analysis of every 25 ns of simulation of
Wedelosin with ALK tyrosine kinase displayed the positional
alteration with reference to 0 ns structure (Figure 10A). It has
been observed that the ligand, Wedelosin have possessed a
structural angular movement at the end frame to achieve its
conformational stability and convergence. Whereas in case of
BTK bounded with Wedelosin possess an angular rotational
movement to achieve its structural stability (Figure 10B).

FIGURE 11 | (iiiA). Dynamic Cross Correlation matrix (DCCM) of ALK and correlated amino acids conformed into secondary structural domains (coloured) and
non-correlated domains (grey) of ALK; (B) Dynamic Cross Correlation matrix (DCCM) of BTK and correlated amino acids conformed into secondary structural domains
(coloured) and non-correlated domains (grey) of BTK. (iv) Principal component analysis (PCA) of (A). ALK-Wedelosin displaying (i) PC1 and PC2, (ii) PC2 and PC3, (iii)
PC9 and PC10; (B) BTK-Wedelosin showing (i) PC1 and PC2, (ii) PC2 and PC3, (iii) PC9 and PC10, for 150 ns simulation trajectories. (vA) Energy plot of protein
ALK and Wedelosin complex system during the entire simulation event of 150 ns The total energy (green), van der Waal’s energy (cyan) and coulomb energy (red) of the
entire system indicating the stability of the individual systems bound to Wedelosin molecule; (B) Energy plot of protein BTK and Wedelosin complex system during the
entire simulation event of 150 ns The total energy (dark green), van der Waal’s energy (cyan) and coulomb energy (red) of the entire system indicating the stability of the
individual systems bound to Wedelosin molecule. (vi) Binding Solvent Accessible Surface area (SASA) of bound and unbound state of (A) ALK + Wedelosin; (B) BTK +
Wedelosin. (iiiA) Dynamic Cross Correlation matrix (DCCM) of ALK and correlated amino acids conformed into secondary structural domains (coloured) and
noncorrelated domains (grey) of ALK; (B) Dynamic Cross Correlation matrix (DCCM) of BTK and correlated amino acids conformed into secondary structural domains
(coloured) and noncorrelated domains (grey) of BTK. (iv) Principal Component Analysis (PCA) of (A). ALK-Wedelosin displaying (i) PC1 and PC2, (ii) PC2 and PC3, (iii)
PC9 and PC10; (B) BTKWedelosin showing (i) PC1 and PC2, (ii) PC2 and PC3, (iii) PC9 and PC10, for 150 ns simulation trajectories. (vA) Energy plot of protein ALK and
Wedelosin complex system during the entire simulation event of 150 ns The total energy (green), van der Waal’s energy (cyan) and coulomb energy (red) of the entire
system indicating the stability of the individual systems bound to Wedelosin molecule; (B) Energy plot of protein BTK and Wedelosin complex system during the entire
simulation event of 150 ns The total energy (dark green), van der Waal’s energy (cyan) and coulomb energy (red) of the entire system indicating the stability of the
individual systems bound to Wedelosin molecule. (vi) Binding Solvent Accessible Surface area (SASA) of bound and unbound state of (A) ALK + Wedelosin; (B) BTK +
Wedelosin.

Frontiers in Pharmacology | www.frontiersin.org March 2022 | Volume 12 | Article 81256514

Ghosh et al. Olive Nutraceuticals Against Cancer and COVID-19

https://www.frontiersin.org/journals/pharmacology
www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology#articles


The free energy landscape of (FEL) of achieving global minima
of Cα backbone atoms of proteins with respect to RMSD and
radius of gyration (Rg) are displayed in Figure 11i. ALK bound to
Wedelosin achieved the global minima (lowest free energy state)
at 2.8 Å and Rg 33 Å (Figure 11iA). The FEL envisaged for
deterministic behaviour of ALK to lowest energy state owing to its
high stability and best conformation at Wedelosin bound state.
Whereas in case of BTK bound with Wedelosin, the global
minima (lowest free energy state) is achieved at 5.3 Å and Rg
16.7 Å (Figure iB). Therefore, FEL is the indicator of the protein
folding to attain minimum energy state, and that aptly achieved
due to Wedelosin bound state.

Molecular Mechanics Generalized Born and
Surface Area (MMGBSA) Calculations
To assess the binding energy of ligands to protein molecules,
the MMGBSA technique is commonly employed. The binding
free energy of each protein-Wedelosin complex, as well as the
impact of other non-bonded interactions energies, were
estimated. With ALK, the ligand Wedelosin has a binding
energy of −54.6528 kcal/mol. BTK bound to Wedelosin has
an average binding energy of −32.1878 kcal/mol (Table 2).
Non-bonded interactions like GbindCoulomb,
GbindCovalent, GbindHbond, GbindLipo, GbindSolvGB,
and GbindvdW govern Gbind. Across all types of
interactions, the GbindvdW, GbindLipo, and GbindCoulomb
energies contributed the most to the average binding energy.
On the other side, the GbindSolvGB and Gbind Covalent
energies contributed the least to the final average binding
energies. Furthermore, the GbindHbond interaction values
of Wedelosin-protein complexes demonstrated stable
hydrogen bonds with amino acid residues. In all of the
compounds, GbindSolvGB and GbindCovalent exhibited
unfavorable energy contributions, and so opposed binding.
Figure 11ii (left panel) reveals that between pre-simulation
(0 ns) and post-simulation (0 ns), Wedelosin in the binding
pockets of ALK and BTK has undergone a large angular change
in the pose (curved to straight) (150 ns). These conformational
changes lead to better binding pocket acquisition and
interaction with residues, which leads to enhanced stability
and binding energy.

Thus MM-GBSA calculations resulted, from MD simulation
trajectories well justified with the binding energy obtained from
docking results moreover, the last frame (150 ns) of MMGBSA

displayed the positional change of the Wedelosin as compared to
0 ns trajectory signify the better binding pose for best fitting in the
binding cavity of the protein (see Figures 11iiA,B).

Therefore, it can be suggested that the Wedelosin molecule
has good affinity for the major two targets ALK and BTK. Free
energy decomposition of the binding cavity residues of ALK and
BTK with Wedelosin were also investigated from MM-GBSA
trajectories. In ALK bound Wedelosin displayed the residues
LEU1122, GLU1197, ASP1203 and GLY1269 involved in
conventional hydrogen bonds as confirmed from molecular
docking as well as dynamics studies exhibited very low
binding energy decomposition −21.44, −53.83, −64.56 and
−21.66 kcal/mol, respectively (Figure 11iiC). However,
residues GLY1123, LEU1198, MET1199, HIS1124, GLY1202,
ASP1270 involved in Van der Walls and interactions with the
ligand contributed significant energies to stabilise the complex
(Figure 11iiC). In BTK bound Wedelosin the residues LYS27,
ARG28, ASP43, GLU45, ARG48, ARG49 were contributed
highest with the ligand binding by involving conventional
hydrogen bonding as well as weak non-bonded Van der
Waal’s interaction (Figure 11iiC). Therefore, it can be
suggested that of the binding site residues of ALK and BTK
are principally regulating the stable interaction with the
Wedelosin.

Dynamic Cross Correlation, Principle
Component Analysis (PCA), Energy
Calculation and Solvent Accessible Surface
Area (SASA)
MD simulation trajectories are analyzed for dynamic cross
correlation among the domains within protein chains bound
with Wedelosin molecule. For correlative dynamic motion, the
cross-correlation matrices of ALK and BTK was generated and
displayed in Figures 11iiiA,B. The blue blocks displayed in the
figure indicated the residues having high correlated movement
and red having least correlation. The amino acid residues of
Wedelosin bound ALK and Wedelosin bound BTK showed
concerted movement of residues (Figure 11iii).

Principal component analysis (PCA) determines the relationship
between statistically meaningful conformations (major global
motions) sampled during the trajectory. PCA of the MD
simulation trajectories for ALK and BTK bound to Wedelosin
molecule were analyzed to interpret the randomized global motion
of the atoms of amino acid residues. The internal coordinates
mobility into three-dimensional space in the spatial time of
150 ns were recorded in a covariance matrix and rational
motion of each trajectories are interpreted in the form of
orthogonal sets or Eigen vectors. In the ALK and BTK
trajectory, PCA indicates the statistically significant
conformations. It is possible to identify the major motions
within the trajectory as well as the critical motions required for
conformational changes. In ALK bound toWedelosin, two different
clusters along the PC1 and PC2 plane have been exhibited that
indicating a non-periodic conformational shift (Figure 11ivA(i)).
While, these global motions are periodic because the groupings

TABLE 2 | Binding energy calculation of Wedelosin with ALK and BTK and non-
bonded interaction energies from MMGBSA trajectories.

Energies (kcal/mol) * ALK BTK

ΔGbind −54.6528 ± 11.2374 −32.1878 ± 8.5934
ΔGbindLipo −14.1400 ± 2.5341 −5.61587 ± 2.68045
ΔGbindvdW −46.4764 ± 4.6178 −14.6396 ± 7.62527
ΔGbindCoulomb −22.15048 ± 9.1922 −11.5424 ± 3.0719
ΔGbindHbond −2.1925 ± 0.8303 −9.686651 ± 1.85560
ΔGbindSolvGB 30.2477 ± 4.7516 29.52873 ± 8.3810
ΔGbindCovalent 0.0559 ± 2.0973 9.224784 ± 3.97046
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along the PC2 and PC3 planes do not totally cluster separately
(Figure 11ivA(ii)). Moreover, high periodic global motion was
observed along the PC9 and PC10 planes due to the grouping of
trajectories in a single cluster at the center of the PCA plot
(Figure 11ivA(iii)). Centring of the trajectories in a single
cluster indicates the periodic motion of MD trajectories due to
stable conformational global motion. On the other hand, similar
behaviour observed in case of PCA analysis of BTK bound to
Wedelosin. Here, two different clusters along the PC1 and PC2
plane have been displayed non-periodic conformational shift
(Figure 11ivB(i)). While, these global motions are periodic
because the groupings along the PC2 and PC3 planes do not
totally cluster separately (Figure 11ivB(ii)). Ordered periodic
global motion were observed along the PC9 and PC10 planes
due to the grouping of trajectories in a single cluster at the
center of the PCA plot (Figure 11ivB(iii)). Centring of the
trajectories in a single cluster indicates the periodic motion of
MD trajectories due to stable conformational global motion.

The energy profiles of the protein, ALK and Wedelosin
complex systems were determined to display the stability of
the entire system. In this regard, the total energy (ETOT) of
the ALK Wedelosin system shown to be very stable with an
average total energy −69.00 kcal/mol (green). However, van der
Waal’s energy (vdW) displayed to be merged over the total energy
with an average energy −39.00 kcal/mol, contemplating as
principal contributor to the stability of the ALK Wedelosin
complex (cyan). In addition, Coulombic interactions played
minor role in the system stability and contributing an average
energy −-23.00 kcal/mol (red), (see Figure11vA). In BTK
bounded Wedelosin system, average total energy −130.00 kcal/
mol (green) although, van der Waal’s energy (vdW) displayed to
be merged over the total energy with an average energy 20.00 kcal/
mol, contemplating as principal contributor to the stability of the
ALK Wedelosin complex (cyan). In addition, Coulombic
interactions played minor role in the system stability and
contributing an average energy −101.00 kcal/mol (red), see
(Figure 11vB).

Solvent accessible surface area provides the information
about the compactness of the protein complex on binding
with ligand, here in this case the unbound protein displayed
the higher SASA as marked as red as compared Wedelosin
bound ALK and BTK which happened due to the compactness
of the protein in the bound stage with the ligand as depicted
from Figures 11viA,B.

DISCUSSION

ALK and BTK are the twomajor targets for inhibition of lung cancer
and attraction for the receptor to develop novel drug molecules
against the patient suffering from lung cancer as well as SARS-COV-
2. Classical 2D-QSAR models link physicochemical properties of
substances, such as electronic, hydrophobic, and steric features, to
biological activity (Galimberti et al., 2020). In the present
communication, we have carried out QSAR modeling studies
using 197 diverse set of compounds. The six parameter GA-MLR
based QSAR model gave rise to the R2 = 0.8253, Q2LMO: 0.8150, F:

118.93, Q2-F1: 0.7784, Q2-F2: 0.7782, Q2-F3:0.7755, CCCtr: 0.9043,
CCCcv: 0.8941 that gives an idea about the pharmacophoric features
important for ALK tyrosine and BTK inhibitory activity. As
acknowledged earlier, it is vital in conformity with apprehend
distinguished and visually no longer recognizable pharmacophoric
features related with the inhibitory potency and anticancer activity
for ALK and BTK tyrosine kinase for different chemical classes. The
QSAR evaluation alongside QSAR primarily based virtual screening
have efficaciously recognized the combination concerning reported
and novel pharmacophoric features. TheQSAR analysis displays that
the aromatic carbon atom precisely at a topological distance over 5
bonds from the ring nitrogen but mere ring carbon atom is more
beneficial for future lead optimization, wide variety of partially
charged nitrogen’s (N_hy1) but nitrogen with partial charge
among the length −0.100 after −0.199 (N_MSA1) need to keep
included in future drug design, sp2 hybridized oxygen atoms exactly
at 5 bonds from the aromatic nitrogen atoms exhibits that the
presence about mere oxygen atom alongside aromatic nitrogen is
imperative because within future upgradation of lead molecule for
anticancer activity. Additionally, some molecular descriptor among
QSAR model has investigated the incidence of the carbon atom
which in future serve as main site for the optimization over lead
molecule. Moreover, certain descriptor has highlighted the incidence
of partially charged nitrogen which pointed toward the possible site
because of improving the hydrogen bonding interactions against
target biomolecule. The QSAR modelling was followed by QSAR
based virtual screening strategy to predict the bioactivity of the 161
oleanoic derivatives. From the QSAR based virtual screening study,
the best molecule was chosen by using receptor based molecular
docking screening that gives novel Wedelosin (pKi = 8.713, Ki =
1.94 nM) over other five best known compounds. The structure
based virtual screening based on molecular docking also
corroborated the findings of QSAR model where Wedelosin
displayed lowest binding energy with ALK and BTK receptors.
Further re-docking of Wedelosin with both the receptors
displayed more binding energy with ALK as compared to BTK.
A comparative analysis with the co-crystallized ligand entrectinib
and approved drug crizotinib, for ALK receptor Wedelosin
displayed similar binding with the former and better than the
later. Both entrectinib and crizotinib are popular approved drugs in
inhibiting ALK tyrosine kinase for cancer prevention (Awad and
Shaw, 2014; Ardini et al., 2016). However, Wedelosin displayed
better binding energy with BTK tyrosine kinase as compared to co-
crystallized ligands N42 and approved drug ibrutinib with
significant predicted inhibitory concentration (Liang et al.,
2017). Therefore, from the docking studies it could be predicted
that Wedelosin has good affinity for ALK and BTK targets while
comparing with approved drugs. MD simulations and binding free
energy calculations were performed on chosen protein-ligand
complexes based on docking results. RMSD simulations can be
used to investigate a protein’s global conformational changes and
stability. The root mean square deviation (RMSD) provides a
quantitative measure of the similarity of two systems by
quantifying the deviations in the proteins’ backbone Cα atoms
(Singh et al., 2021). RMSD of ALK and BTK with Wedelosin
exhibited a stable conformation having a less deviation
representing the formation of a stable conformation with the
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protein-ligand complex. However, the RMSF displayed very less
fluctuation also conforming the stability of the complex as similarly
reported elsewhere (Kumar et al., 2014). On the other hand,
lowering of radius of gyration depicted the compactness od the
ALK and BTK complex with Wedelosin measures the stability of
the complex. The formation of the significant number of
hydrogen bonds in MD simulation corroborated the findings
with molecular docking also suggested for a stable complex
formation during the MD simulation over 150 ns time scale.
MMGBSA is a powerful tool in determining the binding energy of
the ligand with its respective protein targets (Sun et al., 2014).
MMGBSA studies accurately predicted the total binding energy of
the Wedelosin at the binding cavity of ALK and BTK and
exhibited a very low binding energy suggesting the capacity of
the Wedelosin to conform into a stable complex. The binding
energies in MMGBSA trajectory supported by van der Walls
energy, Lipophilic energy, Coulombic energies and similarly
reported elsewhere (Bharadwaj et al., 2021). Further free
energy landscape (FEL) of Wedelosin bound ALK and BTK
complexes exhibited a deep basin over areas of increased free
energy with the deep blue colour locations represented the local
energy minima and actively promoted stable conformations
similarly suggested by Singh et al., 2021. Moreover, in PCA
analysis, the trajectories of Wedelosin bound with ALK and
BTK in first two PC modes exhibited a less periodic
conformation of the global motion whilst later on became
congruent due to high conformational stability of the
complexes. Therefore, from the overall approach have led to
the identification od novel Wedelosin compound from olive fruit
which possibly find a new arena of small molecule drug discovery
against SARS COV-2 in conjunction with cancer.
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