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Abstract

Paratuberculosis (Johne’s disease), an enteric disorder in ruminants caused by Mycobacterium avium subspecies
paratuberculosis (MAP), causes economic losses in excess of $200 million annually to the US dairy industry. To identify
genomic regions underlying susceptibility to MAP infection in Jersey cattle, a case-control genome-wide association study
(GWAS) was performed. Blood and fecal samples were collected from ,5,000 mature cows in 30 commercial Jersey herds
from across the US. Discovery data consisted of 450 cases and 439 controls genotyped with the Illumina BovineSNP50
BeadChip. Cases were animals with positive ELISA and fecal culture (FC) results. Controls were animals negative to both
ELISA and FC tests that matched cases on birth date and herd. Validation data consisted of 180 animals including 90 cases
(positive to FC) and 90 controls (negative to ELISA and FC), selected from discovery herds and genotyped by Illumina
BovineLD BeadChip (,7K SNPs). Two analytical approaches were used: single-marker GWAS using the GRAMMAR-GC
method and Bayesian variable selection (Bayes C) using GenSel software. GRAMMAR-GC identified one SNP on BTA7 at 68
megabases (Mb) surpassing a significance threshold of 561025. ARS-BFGL-NGS-11887 on BTA23 (27.7 Mb) accounted for
the highest percentage of genetic variance (3.3%) in the Bayes C analysis. SNPs identified in common by GRAMMAR-GC and
Bayes C in both discovery and combined data were mapped to BTA23 (27, 29 and 44 Mb), 3 (100, 101, 106 and 107 Mb) and
17 (57 Mb). Correspondence between results of GRAMMAR-GC and Bayes C was high (70–80% of most significant SNPs in
common). These SNPs could potentially be associated with causal variants underlying susceptibility to MAP infection in
Jersey cattle. Predictive performance of the model developed by Bayes C for prediction of infection status of animals in
validation set was low (55% probability of correct ranking of paired case and control samples).
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Introduction

Paratuberculosis or Johne’s disease (JD) is a chronic bacterial

infection of the gastrointestinal tract caused by Mycobacterium avium

subspecies paratuberculosis (MAP). MAP is contagious; infected

animals expose their cohorts to the pathogen by shedding

bacterium into their colostrum, milk or feces [1]. In cattle, young

calves are at the highest risk for acquiring MAP infection [2]. The

major route of MAP transmission is fecal-oral [3]. MAP is a slow-

growing intracellular bacterium; infected animals remain asymp-

tomatic for 2 to 10 years before showing clinical signs of the

infection. Clinical signs of JD in MAP-infected dairy cattle usually

appear after 2nd or 3rd lactation and include poor nutrient uptake,

severe diarrhea, progressive weight loss, low milk production and

eventually death [4]. There is currently no cure for this disease.

The NAHMS Dairy 2007 study estimated the apparent herd-level

prevalence of MAP-infected herds in the top 17 US dairy states to

be at least 68% based on recovery of viable MAP in environmental

fecal samples [5]. In a recent study, the true herd-level prevalence

of MAP infection in these herds was estimated to be 91.1% [6]. JD

is a common disease in countries with a significant dairy industry

[7] and causes a negative impact on the global economy [8,9].

JD, like most other complex diseases is multi-factorial i.e. under

the influence of both genetic and environmental factors. Studies

have shown that susceptibility to JD is heritable with the estimates

ranging from 0.03 to 0.28 in cattle [10,11,12,13,14,15,16,17].

Crohn’s disease (CD) is an inflammatory bowel disease (IBD) in

humans with manifestations similar to those of JD in cattle. MAP

has been found in some patients with CD [18], however a causal

link between the two has not been demonstrated. In the past few

years, genome-wide association studies (GWAS) have been applied

widely to decipher the genetic basis of complex traits and diseases

in human. Using this approach for IBD has resulted in

identification of 163 loci conferring risk of CD and ulcerative

colitis (another common form of IBD) [19].

In recent years, availability of the BovineSNP50 platform for

genotyping ,54,000 SNPs across the Bovine genome [20] has

facilitated GWAS in cattle. Six GWAS seeking genomic regions
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underlying susceptibility or tolerance to infection with MAP in

Holstein have been performed to date [21,22,23,24,25,26].

Various loci on multiple chromosomes have been reported for

association with susceptibly to MAP infection in Holsteins. Jersey is

the second most common dairy breed after Holstein in the United

States. This is the first GWAS for susceptibility to paratuberculosis

infection in the Jersey breed. Our objectives were to identify

genomic regions that underlie susceptibility to infection with MAP

as well as development of a multi-marker model to be used in

genomic selection against susceptibility to MAP infection in Jersey

cattle.

Materials and Methods

Ethics statement
The University of Wisconsin-Madison College of Agricultural

and Life Sciences Animal Care and Use Committee approved the

procedures used with animals in this experiment.

Resource population
Blood and fecal samples were obtained from ,5,000 mature

cows (minimum age of 20 months) from 30 commercial Jersey

herds throughout the US in a retrospective cross-sectional design.

Nomination of herds for this study was based on the prevalence of

JD evidenced by the herd’s owner or veterinarian. Sampling was

performed selectively for three herds and completely (whole herd)

for the remaining 27 herds. Samples were shipped in insulated

containers with cold packs by overnight courier to the Johne’s

Testing Center of the School of Veterinary Medicine at the

University of Wisconsin-Madison and processed upon receipt

(separation of plasma, collection of buffy coats for DNA

extraction). Serum was held at 4̊C and fecal samples at –20uC
until testing. All blood samples were tested within 7 days by a

serum ELISA (JTC-ELISA) [27] with 30% sensitivity and . 99%

specificity relative to fecal culture [28].

ELISA optical density (OD) values for each serum sample were

converted to sample to positive ratios (S/P) using [ODSample –

ODNegative control]/[ODPositive control – ODNegative control] [29].

ELISA S/P ratios were categorized as negative (0 to 0.09), suspect

(0.10 to 0.24), low positive (0.25 to 0.39), positive (0.40 to 0.99),

and strong positive ($1.00) as suggested [29] (Table 1). Animals

categorized as low-positive, positive or strong-positive were all

considered to be ELISA-positive. Within-herd apparent preva-

lence (number of test-positive animals divided by total animals in

the herd) varied from 0.03 to 0.30 based on ELISA results. Within

herds, for each ELISA-positive cow, two ELISA-negative cows

(matched on birth date) were selected. All ELISA-positive and

selected ELISA-negative cows were also tested for evidence of

MAP infection by fecal culture (FC) [30] (Table 1). The sensitivity

and specificity of fecal culture have been estimated to be

approximately 74% and 100% for detection of infectious cows,

respectively [31].

Discovery data
In total, 1,000 cows including 500 cases and 500 controls were

selected for discovery purpose (objective 1). Cases consisted of

animals with positive results to both ELISA and FC (ELISA+/

FC+). Controls were cows testing negative to both ELISA and

fecal culture (ELISA-/FC-) and matched with cases on herd and

birth date. In a previous study [32] using a temporal clustering

approach, we showed that MAP-infected animals were significantly

clustered by birth date within dairy herds. This finding strengthens

the hypothesis of non-uniform exposure to MAP in dairy herds.

The choice of matching cases and controls on their birth dates was

to ensure similar exposure to the pathogen thus reducing the

environmental noise. Considering lack of a gold standard for

diagnosis of MAP infection, we used the results of ELISA and FC

tests in combination for defining MAP infection status. The

rationale was to increase certainty with which these phenotypes

represent the true infection status of animals.

Validation data
To validate the results of discovery GWAS, an additional 200

animals were selected from the original herds. All eligible

ELISA+/FC+ animals and their matching ELISA-/FC- were

already used in the discovery stage. The remaining test-positive

animals were either ELISA+ or FC+. FC+ cows that were not used

in the discovery stage were used as cases for validation (n = 100).

This choice was made to reduce classification bias, as fecal culture

is twice as sensitive as ELISA. Controls were ELISA-/FC- also

matched with cases on herd and birth date (n = 100).

Genotyping and quality control
Genomic DNA of discovery and validation animals was

extracted from buffy coats using a variation of the typical

proteolytic digestion and organic extraction method [33]. The

purity (A260/A280) of DNA samples was assessed by spectropho-

tometry. DNA samples were also quantified using PicoGreenH
dsDNA (Invitrogen) and adjusted to 50 ng/ml prior to genotyping.

Discovery cases (n = 500) and controls (n = 500) were genotyped

for 54,609 single-nucleotide polymorphisms (SNPs) at the

biotechnology center of the University of Wisconsin-Madison

using the Bovine 50K SNP BeadChip (Illumina Inc, San Diego,

CA) [20]. The genotypes were assessed for quality control (QC)

criteria including animal call rate (. 90%), SNP call rate (. 95%),

minor allele frequency (MAF) (. 0.01) and deviation from Hardy-

Weinburg equilibrium (HWE) (P-value ,161026). A total of

22,022 SNPs failing one or more criteria were removed. Among

the excluded SNPs 10,499 had MAF,0.01, 7,471 SNPs had call

rate ,95% and 4,052 SNPs deviated from HWE. The final data

consisted of 889 animals (450 cases and 439 controls) and 32,587

SNPs.

For the validation data, 91 cases and 91 controls passed the

DNA quality assessment. The BovineLD BeadChip (Illumina Inc,

San Diego, CA) including 6,909 SNPs was used for genotyping

[34]. A QC analysis was performed with the criteria of animal call

rate (. 90%) and SNP call rate (. 95%). A total of 180 animals

(90 cases, 90 control) and 6,796 SNPs passed QC. All QC

procedures were done in R GenABEL package [35].

Imputation
BEAGLE (v 3.3.2) was used to impute missing genotypes in the

discovery and validation data [36]. The average missing rate per

SNP in the discovery data after QC was , 1%. Allelic R2 was

estimated by BEAGLE based on genotype probabilities as an

indicator of imputation accuracy. The average allelic R2 of 0.99

for imputed genotypes in the discovery data suggested high

accuracy of imputations. Out of 6,796 SNPs in the validation set,

5,424 were common across LD and 50K chips. The genotypes of

common SNPs were used to infer haplotypes and impute 27,163

SNPs unique to 50K panel for the validation data set. The average

allelic R2 of 0.96 indicated high accuracy of imputed genotypes.

Population stratification
Differences in allele frequencies between subpopulations of

admixed populations can lead to false associations in GWAS [37].

To find genetic outliers, the genomic kinship was computed

GWAS and Genomic Prediction of Paratuberculosis
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between all pairs of animals using the ibs function in the R

GenABEL package [35]:

fi, j~
X

k

(xi, k{pk)(xj, k{pk)

(pk(1{pk))
ð1Þ

where fi, j is the genomic kinship (identical-by-state) between

animal i and j, k ranges from 1 to N (number of autosomal SNPs),

xi,k or xj, k is the genotype of ith or jth animal for kth SNP (coded as 0,

K and 1) and pk is the allele frequency at the kth SNP. The kinship

matrix was transformed to a distance matrix (0.5 – kinship) and

principal components (PCs) of variation of the genomic distance

matrix were calculated using the cmdscale function. The first two

PCs (PC1 and PC2) were used to obtain the classical multi-

dimensional scaling (MDS) plots. All population stratification

procedures were performed within the R GenABEL package.

Statistical analyses
Single-marker GWAS. Genome-wide association analysis

was carried out based on regression of phenotypes (susceptibility to

MAP infection) on the genotypes of animals for one SNP at a time.

For single-marker GWAS, we used a three-step approach referred

to as genomic GRAMMAR-GC (Genome-wide Rapid Association

using Mixed Model and Regression-Genomic Control) [38,39].

This approach has been used in multiple GWAS in cattle

[23,40,41]. The advantage of this approach especially in livestock

is that it accounts for cryptic population structure caused by the

presence of closely related animals [38]. In the absence of pedigree

information, GRAMMAR-GC infers relationships through geno-

mic marker data. Following the approach of Aluchenko et al. [38],

in the first step phenotypes were corrected by accounting for

familial dependence among individuals using:

y�i ~yi{(m̂mzĜGi) ð2Þ

where y�i is the so-called ‘‘environmental residual’’ and yi is the

binary phenotype of ith animal, m is the overall mean, ĜGi is the

estimated polygenic contribution. In the second step, these familial

correlation-free residuals were used as dependent quantitative

traits for association analysis of each SNP using a linear regression

model:

y�i ~mzajgizei ð3Þ

where y�i is as defined before, gi is the genotype of the ith individual

at the marker under study, aj is the effect of jth SNP and ei is the

random residual for the ith individual. In the third step, genomic

control (GC) is applied to correct the test statistic using a deflation

factor (f) calculated by:

f̂f~Median (T2
1 zT2

2 ,:::,T2
j )=0:465 ð4Þ

where T2
j is the observed chi-squared (x2) statistic for the jth SNP

and 0.465 is the expected median of x2
(1) distribution with a non-

central variance. T2 for each SNP is calculated by

T2
j ~âa2

j =var (âaj) ð5Þ

where âaj is the effect of jth SNP. T2=f̂f is compared with x2
(1) to

determine whether the locus is significantly associated with the

quantitative trait. The deflation factor is estimated in the same way

as inflation factor (l) in conventional GC method [42] with the

difference that f,1 in contrast to l that is constrained to be . 1.

This difference is due to the regression of residuals instead of

original trait on n loci in step 2. Polygenic [43] and qtscore [38,39]

functions of the R GenABEL package were used for association

analysis. Two P-value thresholds of 561027 and 561025 were

considered for genome-wide ‘‘strong’’ and ‘‘moderate’’ associa-

tions [44]. The Manhattan plot of minus log10 (P-value) against

chromosomes was drawn using an in-house script in R [45]. The

quantile-quantile (Q-Q) plot of observed P-values against expected

P-values was generated to evaluate the overall genome-wide

significance.

To validate the associations suggested by discovery GWAS,

validation data (31,065 SNPs and 180 animals) were analyzed by

single-marker GWAS procedures described above. For validation,

strong and moderate associations suggested by discovery GWAS

were required to meet two criteria in the validation analysis:

P,0.01 and same direction for estimated effects.

Bayesian GWAS. In contrast to traditional single-marker

regression based GWAS that fits one marker at a time, Bayesian

methods simultaneously fit many markers and take into account

the linkage disequilibrium (LD) relationships between markers.

Bayesian methods were originally adopted for genomic prediction

of breeding values [46], however, in recent years they have been

applied for GWAS as well e.g. [47,48]. We used the Bayes C

threshold model implemented in GenSel [49] for both mapping

quantitative trait loci (QTL) of MAP infection as an alternative

approach to single-marker GWAS and developing a multi-marker

model to predict new phenotypes (risk assessment). Bayesian

Table 1. Cross-tabulation of serum ELISA scores by fecal culture test results.

ELISA category1 Fecal No test Fecal Negative Fecal Suspect Fecal Positive Clinical2 Total

No test - 1 - 2 - 3

Negative (0–0.09) 2,294 1,860 - 201 - 4,355

Suspect (0.10–0.24) 19 16 - 13 1 49

Low positive (0.25–0.39) 2 36 3 90 - 131

Positive (0.40–0.99) - 30 2 139 1 172

Strong positive ($1) - 12 1 280 - 293

Total 2,315 1,955 6 725 2 5,003

1Range of numbers in each category is sample/positive ratio.
2Animals with clinical signs of Johne’s disease.
doi:10.1371/journal.pone.0088380.t001
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methodology combines prior information of marker effects with

information from data to draw inferences from posterior

distributions using Markov Chain Monte-Carlo (MCMC) sam-

pling [50]. In Bayes C, a common variance is assumed for all SNPs

and its advantage over other Bayesian approaches is that it is less

sensitive to priors of genetic and residual variances [50]. The

threshold model in Bayes C with a probit link function for

categorical binary traits described [51] as:

y~mz
Xn

j~1

zjajdjze ð6Þ

where y is the liability vector for case/control observations, m is the

overall mean, n is number of SNPs, z represents a column vector

of genotype covariates at SNPj (AA = –10, AB = 0 and BB = 10),

aj is the allele substitution effect of SNPj, dj is a an indicator

variable for presence (1) or absence (0) of jth SNP in the model and

e is the vector of random residual effect assumed normally

distributed ,N (0, I) I being an identity matrix. The proportion of

SNPs with no effect (parameter p) was assumed to be 0.999.

Therefore, 33 SNPs (0.1% of 32,587 SNPs) were assumed to

contribute to genetic variance in any MCMC iteration. A high

value of p was chosen to allow only regions with strongest

associations to be identified. In Bayes C when a SNP is present in

the model (i.e. d = 1), aj is assumed to be normally distributed ,N

(0, s2
a) conditional on s2

a, whereas when the SNP is not present

(d = 0) aj is zero. Residual variance was set to 1. Assuming an

average heritability of 0.1 for susceptibility to MAP-infection in

dairy cattle [10,11,12,13,14,15], 0.11 was used as a prior for

genetic variance (s2
a). s2

a was assumed to have a scaled inverse chi-

squared distribution with 4 degrees of freedom and scale

parameter S2
a . A total of 41,000 MCMC cycles with 1,000 burn-

in cycles were implemented.

Because of LD between markers in the vicinity of a QTL, the

effect of a QTL may be distributed over nearby markers.

Consecutive 1 Mb non-overlapping windows (genome windows)

along the bovine genome were used to calculate the cumulative

effects of markers within windows [52]. SNPs were allocated to

consecutive genome windows using physical map order derived

from Bovine genome assembly UMD 3.1. The window effect in

GenSel is expressed as the percentage of total genetic variance

contributed by each window. Percentages of explained genetic

variance by windows were plotted against chromosomes using R

[45]. Model frequency of a marker defined as the proportion of

fitted models which included that marker was used to infer

associations. SNPs with the highest model frequency in top

windows are potentially associated with the phenotype under

study. In Bayesian GWAS, limiting the proportion of false

positives (PFP) among all positive values is an approach that can

be used to correct for multiple testing [53]. Therefore, if SNPs with

model frequency $ 0.90 were deemed significant, PFP would be

# 0.10.

Genomic prediction. A multi-SNP model was developed by

Bayes C analysis in the discovery data (training set). Using the

predict function in GenSel the genomic estimated breeding values

(GEBV) were obtained for 180 animals in the validation data

(testing set). The efficacy of predicted GEBVs in correctly ranking

cases and controls was evaluated by Receiver operator character-

istic (ROC) analysis implemented in ROCR package of R [54].

The ROC curve plots the true-positive rate (sensitivity) against the

false-positive rate (1- specificity) which graphically depicts the

accuracy with which a risk classification score (GEBV, in this

study) predicts the binary outcome (infection status) across a full

range of thresholds. The area under ROC curve (AUC) is a

statistic that quantifies the classification power of the SNP model,

where values of 1.0 and 0.5 reflect perfect classification and

random assignment [55].

As an alternative, a 10-fold cross-validation was also performed

using the discovery data. 450 cases and 439 controls were

randomly divided into 10 approximately equal subgroups. Nine

subgroups were assigned to a training set while the remaining

subgroup was considered as a testing set. For each replication, we

used the training set to construct a SNP model which subsequently

was tested in the testing set. This procedure was repeated 9

additional times with a unique testing set each time. Ten different

models were constructed in GenSel using Bayes C (same input

parameters used in initial Bayesian GWAS). The GEBVs of

animals in the testing sets were calculated using GenSel predict and

the efficacies of SNP models were evaluated by comparing AUCs.

Combined analyses. The discovery (N = 889) and validation

(N = 180) data were merged to enhance the power of analyses. The

combined data comprised of 1,069 animals and 32,375 SNPs. A

total of 212 SNPs were excluded in QC: 175 SNPs due to MAF ,

0.01, 33 SNPs for call rate ,0.95 and 4 SNPs were out of HWE

(P,1026). Population stratification, single-marker GWAS, Bayes-

ian GWAS and 10-fold cross-validation were performed in the

manner described before.

Results

Single-marker GWAS (discovery data)
Appearance of a single cluster in the MDS plot suggested the

absence of population substructure in the discovery data (Figure

S1-A). The deflation factor (f) was estimated to be 0.96

(SE = 961025). The GC-corrected P-values for the majority of

SNPs corresponded well to the expected P-values under H0 of no

association, with a few departures indicating association with the

trait under study (Figure S2-A). No SNP passed the threshold of

strong association (Figure 1-A). The most significant SNP was

identified on BTA7 position 68 Mb (P = 4.961025) surpassing the

threshold for moderate association (Table 2). The second most

significant SNP (P = 5.961025) was located on BTA3 (107 Mb)

and failed to pass the moderate threshold (Figure 1-A, Table 2).

The 20 most significant SNPs (P,561024) were located on 8

chromosomes including BTA7, 3, 23, 17, 6, 1, 5 and 13 (in order

of significance) (Table 2). On BTA3 a total of six SNPs covering

101 to 107 Mb were identified (Table 2). These six SNPs

represented four distinct genomic regions based on LD between

pairs of SNPs; three SNPs (at 100.9 Mb, 101 Mb and 102.2 Mb)

were in high LD (average pair wise r2 = 0.67) representing one

genomic region and the other three SNPs each represented one

region. Also, six SNPs were identified on BTA23 representing a

total of four regions including 27.7 Mb, 29.3–32.6 Mb (r2 = 0.63),

44.4 Mb and one region at 7.8 Mb (r2 = 0.54 for SNPs at 7.84 and

7.87 Mb) (Table 2). BTA1 contained three SNPs located at

positions 125.6, 135.3 and 141.9 Mb (P,561024) representing

three genomic regions based on a relatively low average pair wise

r2 (0.25) (Table 2).

Single-marker GWAS (validation data)
The MDS plot for validation data (after imputation) did not

show any outliers and confirmed genetic homogeneity in the

population (Figure S1-B). The estimated deflation factor from

GRAMMAR was 0.98 (SE = 261024). The Q-Q plot of corrected

P-values is shown in Figure S2-B. None of the 20 most significant

SNPs identified in the discovery analysis were significant (P,0.01)

in validation analysis (Figure 1-B). The effect directions of these

GWAS and Genomic Prediction of Paratuberculosis
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SNPs were compared with validation results, and 65% of the

effects were in the same direction.

Bayesian GWAS (discovery data)
From Bayes C analysis, the mean posterior estimates of

contribution of SNPs to genetic variance was 0.186 with the

95% highest posterior density (HPD) of 0.048–0.370. The genetic

variance was computed from allele frequency and posterior mean

of substitution effect for each SNP in 40,000 MCMC iterations.

The mean posterior estimate of heritability (h2) of susceptibility to

MAP infection based on SNPs was 0.153 and 95% HPD of

0.046–0.270 (Table 3).

A total of 2,657 genome windows existed along the Bovine

genome with an average of 12 SNPs per window. The genome

windows were sorted based on the proportion of genetic variance

captured by each. In the top 20 windows, the proportion of genetic

variance explained by a window ranged between 0.56% to 3.3%

(Table 2). Assuming an infinitesimal model, the expected

proportion of genetic variance explained by each window was

,0.04% ([1/2,657] * 100). In total, 584 windows (22%) explained

more than 0.04% of the genetic variance. Window 2199 on

Figure 1. Manhattan plots displaying the results of single-marker genome-wide association analysis (GRAMMAR-GC) for
susceptibility to MAP infection. A) Discovery data (32,587 SNPs) B) Validation data (31,065 SNPs) C) Combined data (32,375 SNPs). Y-axis
represents –log10 of P-values corrected by genomic control (GC) and X-axis represents chromosomes. Thresholds represent P-values of 1024 and
561024 for moderate and suggestive associations, respectively.
doi:10.1371/journal.pone.0088380.g001
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BTA23 (27 to 27.9 Mb) containing 19 SNPs accounted for the

highest percentage of the genetic variance (3.32%) (Figure 2-A,

Table 2). The probability that this window explained more than

the average genetic variance was 0.26. In window 2199, ARS-

BFGL-NGS-11887 at position 27.7 Mb among other SNPs,

showed the highest model frequency, i. e., was included in the

model in 21% of MCMC iterations (Table 2).

The top 20 windows were located on BTA23 (5 windows),

BTA3 (5 windows), BTA6 (2 windows) and BTA17, 5, 7, 16, 19,

X, 1 and BTA10 (one window each). To compare these results

with the results of single-marker GWAS, for each window the SNP

with the highest model frequency (the most influential SNP) was

chosen to represent the window. For BTA3 and BTA23 the results

of Bayesian GWAS corresponded with the results of single-marker

GWAS (Table 2). The loci that were among the 20 most

significant in the Bayesian analysis (GenSel) but not the GenABEL

analysis included SNPs on BTA16 (48 Mb), 6 (1 Mb), 19 (61 Mb),

6 (136 Mb), 10 (1 Mb) and 23 (35 Mb)(Table 2). The most

significant SNP based on GenABEL analysis, BTA-109542-no-rs

on BTA7, ranked 11th in the GenSel analysis. Considering the 20

most significant SNPs in each, the results of the two analyses

(GenABEL and GenSel) were in high agreement (70% of loci in

common). In total, 10 SNPs had model frequency . 0.10.

Assuming these SNPs to be positive results, we would expect at

least one of these SNPs to be truly associated with MAP infection

(PFP ,0.90).

Genomic prediction (validation data)
The marker effect estimates from the Bayesian analysis were

used to predict the genomic merit of 180 animals in the validation

set. The predicted genomic merit was used to rank paired case and

control samples which was compared with observed phenotype by

ROC analysis. The predictive ability of the model was low. The

AUC of the SNP model was 0.55 (Figure 3). The AUC from 10-

fold-cross validation using discovery data was similar, ranging

between 0.47 to 0.67 (average 0.56) (Figure 4-A).

Combined analyses
Single-marker GWAS. No population substructure existed in

the combined data set (Figure S1-C). The deflation factor from

GRAMMAR-GC was 0.94 (SE = 1.661024). The Q-Q plot of

corrected P-values is shown in Figure S2-C. No SNP passed the

strong or moderate thresholds of association (Figure 1-C, Table 4).

The two most significant SNPs were located on BTA23 at

27.7 Mb (third most significant in discovery analysis by GenA-

BEL) and BTA17 position 26.3 Mb (not among the 20 most

significant results in discovery data) (P,1024) (Figure 1-C, Table

4).

Figure 2. Manhattan plots displaying the results of Bayesian genome-wide association analysis (Bayes C) for susceptibility to MAP
infection. A) Discovery data (2,657 windows) B) Combined data (2,656 windows). Y-axis represents the proportion of genetic variance explained by
1-Mb windows across the Bovine genome and X-axis represents the chromosomal location of windows.
doi:10.1371/journal.pone.0088380.g002
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The 20 most significant SNPs by combined analysis (P,

661024), representing 8 genomic regions, were mapped to 8

chromosomes including BTA23 (4 SNPs), 11 (2), 3 (6), 17 (2), 5, 25,

6 (2) and 13 (2) (ordered by P-value) (Table 4). Comparing single-

marker GWAS results of the combined and discovery data, the

most significant SNP on BTA7 (P = 4.961025) in discovery

analysis declined in significance in the combined analysis (Table

2 & 4). Likewise, the SNPs located on BTA1 and at 7 Mb of

BTA23, also declined in significance (Table 2 & 4). A total of 11

SNPs including 4 SNPs on BTA3, 4 SNPs on BTA23, one SNP on

each BTA5, 6, 13 and 17 25 were identified by both analyses

(Table 2 & 4).

Bayesian GWAS. A total of 2,656 genome windows contain-

ing 32,375 SNPs were used to estimate the genetic variance

explained by SNPs in combined data. The mean posterior

estimate of genetic variance was 0.147 (95% HPD: 0.042–

0.287). The mean posterior estimate of h2 was 0.126 with 95%

HPD interval from 0.040 to 0.223 (Table 3).

The 20 most significant windows were located on 9 chromo-

somes including BTA23 (5 windows), 3 (7), 25, 11 (2), 17, 16, 5, 6,

and 13 (Table 4). SNPs on BTA23 were located at 19.3, 27.7,

29.3, 44.4 and 50.7 Mb. Five out of seven windows on BTA3 were

contiguous: three windows 399, 400, and 401 (respectively, these

included SNPs at 100, 101 and 102 Mb); and two windows 405

and 406 (respectively, these included SNPs at 106 and 107 Mb).

The highest percentage of genetic variance (3.2%) was explained

by window 2199 on BTA23 covering 27 to 28 Mb (Figure 2-B,

Table 4). In total, 603 out of 2656 windows (23%) explained $

0.04% of genetic variance (expected genetic variance under the

infinitesimal model). Similar to the results of Bayesian GWAS for

discovery data, SNP ARS-BFGL-NGS-11887 in window 2,199

had the highest model frequency (0.23), slightly higher compared

to model frequency of 0.21 in the discovery results (Table 2 & 4).

Comparing the results of Bayesian analysis between combined

and discovery data, 11 SNPs [BTA23 (3 SNPs), BTA3 (4) and

BTA17, 6, 5 and 16] were common between the 20 most

significant SNPs in the two analyses (Table 2 & 4). New loci that

appeared within the 20 most significant windows by combined

analysis included loci on BTA23 (19 and 50 Mb), BTA3 (6, 36 and

102 Mb), BTA11 (92 and 93 Mb), BTA13 (6 Mb) and BTA25

(19 Mb) (Table 4). Model frequencies of SNPs in most cases were

equal or smaller in combined analysis compared to discovery.

Likewise, the percentage of explained genetic variance by each

window was generally smaller in combined analysis (Table 2 & 4).

Comparing the results of Bayesian GWAS with single-marker

GWAS for combined data, 16 out of 20 most significant SNPs

were common between both analyses (80% concordance) (Table

4).

Genomic prediction (cross-validation)
In a ten-fold cross-validation, the predictive abilities of models

developed by training with 90% of combined data were evaluated

in the remaining 10%. AUC ranged from 0.46 to 0.65 for the

Figure 3. Receiver Operating Characteristic (ROC) curve for validation data. Multi-SNP model was developed by Bayes C analysis of
discovery data and tested in classifying 180 case vs. control animals in validation data. Broken line represents the model. Area under ROC curve is
equivalent to the probability of correctly assigning a random pair of observations (positive and negative) to case and control. The diagonal represents
a model with no predictive ability (AUC = 0.5).
doi:10.1371/journal.pone.0088380.g003
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models (ROC curves in Figure 4-B). Average AUC across 10

models was 0.55.

Discussion

This is the first genome-wide association study for susceptibility

to paratuberculosis in Jersey cattle. Previously, GWAS

[21,22,23,24,26] and a meta-analysis [41] were conducted to

identify loci responsible for susceptibility to this condition in

Holsteins. These studies have found evidence for association on

multiple and varying chromosomal locations.

The proportion of variance explained by all SNPs across the

genome (0.15 and 0.12) was in the range of pedigree-based

heritability estimates (0.08 to 0.27, unpublished data). This

suggests that markers captured most of the additive genetic

variation through LD with QTL. However, the previous pedigree-

based heritability estimates are from studies of Holstein cattle. No

report is available for the heritability of susceptibility to

paratuberculosis in Jersey cattle. Studies have shown that

susceptibility to MAP infection may differ between breeds

[56,57]. Sorge et al., (2011) reported that Jersey cows are 1.4

times more likely to test positive to milk ELISA than Holstein cows

[56]; however, this conclusion is questionable as breeds were

confounded with herds in their data. To capture loci with the

largest genetic contribution a high value of the p parameter (0.999)

was used in the current analysis; with a smaller p, the proportion

of genetic variance explained by all SNPs might be increased.

The significance level in single-marker and Bayesian GWAS

was generally low; no SNPs surpassed the threshold of strong

association in separate or combined analyses. Likewise, the highest

model frequency of SNPs in most significant windows for both

discovery and combined analyses was 0.23. The low model

frequencies resulted in higher PFP. For p= 0.999, a randomly

chosen locus would a priori be expected to have non-zero effect in

0.1% of MCMC samples. A model frequency of 0.23 indicates that

particular SNP had a non-zero effect in 23% of MCMC samples.

The relatively low significance of identified SNPs can be explained

by the complex genetic architecture of susceptibility to paratuber-

culosis and that there are many genes with small effects influencing

this disease. The power of GWAS to identify SNPs with small

effect size is limited, however, this limitation may be overcome in

studies of larger scale.

The results of single-maker GWAS on discovery data showed

evidence for association on BTA23 and BTA3 as multiple SNPs

on these chromosomes in relatively close proximity were among

the 20 most significant SNPs. There was a relatively high

correspondence between the results of single-marker and Bayesian

GWAS; 70% and 80% of the 20 most significant SNPs by

GenABEL were also among 20 most significant SNPs by GenSel

for discovery and combined analyses, respectively. The first three

windows from Bayesian analysis of discovery data explained

,10% of genetic variance while with combined data ,7% of

genetic variance was explained by the top three windows. From

both GenABEL and GenSel analyses, combining data enhanced

the significance of only a few SNPs.

There is some correspondence between the results of this study

and previous GWAS in Holsteins. The closest correspondence is

for SNP ARS-BFGL-NGS-19381 (BTA23, 32.6 Mb). The nearest

SNPs to this position that were identified in Holsteins were located

at 32.1 and 32.2 Mb on BTA23 [22,41]. The 32 Mb region of

BTA23 may be a case of a genomic region commonly associated

with MAP infection across two breeds. Genes within 1 Mb of this

location are four members of solute carrier family 17 (SLC17 A1,

A2, A3 and A4) located between 31.7– 31.8 Mb. The 1 Mb
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distance was chosen based on the extent of linkage disequilibrium

in cattle. Kim and Kirkpatrick (2009) showed that for pairs of

markers with relatively high LD (r2 = 0.4–0.6) the median physical

distance was ,1.1 Mb. However, for Jersey with smaller

population size and higher inbreeding the extent of LD may be

even higher. Association of SNPs in SLC11A1 (another member of

SLC family) with MAP infection has been reported [58]. SLC11A1

and SLC17A1 both encode membrane transport proteins and

mutations in these genes have been associated with inflammatory

diseases such as Crohn’s and Gout diseases [59,60]. SLC17A1can

be considered a potential candidate gene for predisposition to

MAP infection in cattle.

For validation of GWAS results the ideal situation is using

samples from a population independent from the discovery

population with the same phenotype that was used in the

discovery stage. In this study, neither of these requirements was

possible. Our validation data failed to replicate the results of

discovery GWAS. One reason for this might be use of a different

case definition; FC+ and ELISA+/FC+ may represent distinct

phenotypes i.e. loci responsible for a cow’s ability for MAP

shedding may be different from loci underlying humoral response

to the pathogen. Another limitation is the small number of samples

used in the validation data set.

The predictive ability of the models developed by the Bayesian

approach was low. Given that an AUC of 0.50 represents random

guessing, an AUC of 0.55 or 0.56 is a weak classifier. The efficacy

of the multi-marker model developed by Kirkpatrick et al. (2010)

for prediction of susceptibility to MAP infection in Holsteins was

0.73 by AUC in cross-validation analyses [22]. It has been shown

that the accuracy of genetic tests for prediction of disease

susceptibility is limited by heritability and disease prevalence

[55,61]. For low heritability traits even if GEBVs are 100%

accurate, prediction of unobserved phenotypes from genomic data

will never be accurate [62]. It would be of interest to study the

effect of heritability and prevalence on the maximum accuracy

that can be obtained by multi-marker models for prediction of the

risk of MAP infection.

Combining the results of GRAMMAR-GC and Bayes C for

discovery and combined data, nine SNPs distributed on four

chromosomes were commonly identified by all four analyses.

These SNPs include ARS-BFGL-NGS-118877 (27.7 Mb), ARS-

BFGL-BAC-35219 (29.3 Mb) and BTA-56690-no-rs (44.4 Mb) on

BTA23; ARS-BFGL-NGS-109837 (100.9 Mb), Hapmap51790-

BTA-103080 (101.1 Mb), BTB-00148619 (106.4 Mb) and Hap-

map53765-ss46526662 (107 Mb) on BTA3; ARS-BFGL-NGS-

100555 (57.1 Mb) on BTA17, and BTA-30686-no-rs (60.6 Mb) on

BTA6. In most cases potentially relevant candidate genes are in

near proximity (i.e. within 1 Mb). ARS-BFGL-NGS-11887 is

located in the region of major histocompatibility complex (MHC)

class I gene clusters (27.5–28.5 Mb) on BTA23. The role of

multiple MHC genes (e.g. TNF super family, HLA, HLA-A,

MIC1, AIF1, LTA, etc.) in the predisposition to CD in humans

has been demonstrated or suggested [19,63,64,65]. ARS-BFGL-

NGS-11887 is located in the intronic region of TCF19 (transcrip-

tion factor 19) which is highly conserved among multiple species.

TCF19 is located on chromosome 6p21.3 close to MHC region in

human and its potential role in the etiology of Type 1diabetes (an

autoimmune disease) has been suggested [66]. The most relevant

candidate gene within 1 Mb of SNP ARS-BFGL-BAC-35219 on

BTA23 is ubiquitin D (UBD), alternatively known as FAT10;

FAT10 modifies an inflammatory mediator that inhibits its activity

during cellular response to Leprosy [67]. HIVEP1 is proximate to

BTA-56690-no-rs at 44.4 Mb on BTA23 and encodes for a

protein that participates in the transcriptional regulation of

Figure 4. Receiver Operating Characteristic (ROC) curve for 10 fold cross-validation. A) Discovery data (32,587 SNPs) B) Combined data
(32,375 SNPs). Ten sets of training and testing subsets were created. Multi-SNP models were developed by Bayes C analysis in training sets and were
validated in testing set. Each broken line represents one model and solid bold line is the average area under curve (AUC) of all models. AUC is
equivalent to the probability of correctly assigning a random pair of observations (positive and negative) to case and control. The diagonal represents
a model with no predictive ability (AUC = 0.5).
doi:10.1371/journal.pone.0088380.g004
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inflammatory target genes by binding specific DNA sequences in

their promoter and enhancer regions [68]. The most relevant

candidate gene close to ARS-BFGL-NGS-109837 and Hap-

map51790-BTA-103080 is CCDC17 (coiled-coil domain contain-

ing 17) located between 101.05–101.06 Mb on BTA3.

CCDC88B, from the same family, was suggested as the most

promising candidate gene at location 11q13.1 in humans for

susceptibility to Sarcoidosis (a complex inflammatory disease) [69].

Zinc finger protein 684 (ZNF 684) is in 200 kb of BTB-00148619

located at 106.4 Mb on BTA3; the variants in ZNF 365 have been

associated with CD [70]. UBE2K (ubiquitin-conjugating enzyme

E2K) located 20kb upstream of BTA-30686-no-rs (60.6 Mb) on

BTA6 could be a potential candidate gene for susceptibility to

paratuberculosis infection. UBE2L3 on human chromosome 22

has been identified as a new potential risk gene for CD which is

also involved in other immune-mediated diseases [71]. ARS-

BFGL-NGS-100555 is in close proximity (170 kb) to FAM109A

(family with sequence similarity 109, member A) on BTA17.

FAM5C from the same family has been reported to be associated

with gastric cancer in humans [72]. All these SNPs had the same

effect directions in both discovery and validation data supporting

their validation. BTA-75232-no-rs (10.1 Mb) on BTA5 was

identified by all four analyses but had different effect direction in

validation data. The genes described above seem to be promising

candidates for response to paratuberculosis infection.

Conclusions

We performed a case-control genome-wide association study for

infection with Mycobacterium avium subsp. paratuberculosis in Jersey

cattle. Two statistical approaches were used: single-marker

regression (GRAMMAR-GC) and Bayesian methodology (Bayes

C) for multi-marker regression. Nine SNPs representing four

chromosomes (BTA3, 6, 17 and 23) were identified by both

GRAMMAR-GC and Bayes C analyses in discovery and

combined (discovery and validation) data. Multi-marker prediction

models were developed and tested by both cross-validation and

application to the validation data set; predictive ability of the

models to correctly rank cases and controls was low (55-56%)

based on the area under ROC curve. The application of these

models to predict the phenotypic outcome of animals in regard to

JD is limited, however, they can be used for prediction of genetic

merit.
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Figure S1 Multi-dimensional scaling plots. A) Discovery

data (N = 889) B) Validation data (N = 180) and C) Combined

data (N = 1,069). Each animal is represented by one point. PC1

and PC2 are the first two principal components obtained from

genomic kinship matrix. Distance between points represents the

genetic distance between animals.
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Figure S2 Quantile-quantile plots of P-values from
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Combined data. Y-axis represents the observed P-values and X-

axis the expected P-values under null hypothesis (diagonal) of no

association.
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