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Abstract

Antisense oligonucleotides (AONs) mediated exon skipping offers potential therapy for Duchenne muscular dystrophy.
However, the identification of effective AON target sites remains unsatisfactory for lack of a precise method to predict their
binding accessibility. This study demonstrates the importance of co-transcriptional pre-mRNA folding in determining the
accessibility of AON target sites for AON induction of selective exon skipping in DMD. Because transcription and splicing
occur in tandem, AONs must bind to their target sites before splicing factors. Furthermore, co-transcriptional pre-mRNA
folding forms transient secondary structures, which redistributes accessible binding sites. In our analysis, to approximate
transcription elongation, a ‘‘window of analysis’’ that included the entire targeted exon was shifted one nucleotide at a time
along the pre-mRNA. Possible co-transcriptional secondary structures were predicted using the sequence in each step of
transcriptional analysis. A nucleotide was considered ‘‘engaged’’ if it formed a complementary base pairing in all predicted
secondary structures of a particular step. Correlation of frequency and localisation of engaged nucleotides in AON target
sites accounted for the performance (efficacy and efficiency) of 94% of 176 previously reported AONs. Four novel insights
are inferred: (1) the lowest frequencies of engaged nucleotides are associated with the most efficient AONs; (2) engaged
nucleotides at 39 or 59 ends of the target site attenuate AON performance more than at other sites; (3) the performance of
longer AONs is less attenuated by engaged nucleotides at 39 or 59 ends of the target site compared to shorter AONs; (4)
engaged nucleotides at 39 end of a short target site attenuates AON efficiency more than at 59 end.
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Introduction

Antisense oligonucleotides (AONs) are synthetic single-strand-

ed molecules, typically consisting of 16 to 30 nucleotides that are

complementary to a specific sequence in the target RNA. Apart

from their well-documented applications to suppress gene

expression, AONs have been used to modulate pre-messenger

RNA (pre-mRNA) splicing as potential therapeutic strategy for

genetic diseases such as Duchenne muscular dystrophy or DMD

[1–13], thalassemia [14–17], ocular albinism [18] and cancer

[19]. Studies of AON in DMD (MIM #310200), a fatal X-linked

disorder affecting 1 in 3300 newborn males caused by mutations

in the dystrophin gene, have progressed to preliminary human

trials [7,8,20–26]. The strategy involves selective exon skipping,

either to remove the mutation carried by the exon, for point

mutations, or to restore the mRNA reading frame, for frame-shift

mutations. Although the resulting protein will be shorter than the

wild type, it is expected to reduce the severe symptoms of DMD

to the much milder allelic form of the disease, Becker muscular

dystrophy (BMD, MIM #300376) [1–5]. Restoration of

widespread dystrophin expression by AONs has been demon-

strated in animal models [21,23,25]. Currently, the first phase I/

II clinical trials of AON for DMD therapy are being initiated

[27].

The design of AONs for exon skipping of dystrophin involves

the selection of appropriate AON target sites using mfold [28] and

other similar computational tools [29–31] for prediction of pre-

mRNA secondary structure. However, the conventional applica-

tions of mfold for selecting AON target sites are not satisfactory

[9,32,33]. For example, Aartsma-Rus et al. [10] concluded that,

using mfold to predict the secondary structure of targeted pre-

mRNA, they still had no clear insight into the accessibility of the

targeted sequence within the folded pre-mRNA structure. We

hypothesize that this outcome may be due to the omission in

considering the dynamic localization of accessible sites during the

‘opportune period’ of pre-mRNA transcription. We propose that

PLoS ONE | www.plosone.org 1 March 2008 | Volume 3 | Issue 3 | e1844



this omission may underlie the low success rate in the design of

effective and efficient AONs.

An AON induces exon skipping by competitive binding at its

target site against splicing factors during transcription [2,12].

Splicing factors form the 60S splicing machinery called the

spliceosome that removes the introns while retaining the exons

during pre-mRNA processing [34]. These splicing factors bind to

important sequences in the pre-mRNA, which include donor and

acceptor splice sites, branch points (BP), pyrimidine tracts and

exon splicing enhancers (ESEs) [35]. Blocking these sites with

AONs prevents the spliceosome from identifying the targeted

region as an exon, which will thereby be removed along with the

introns. Because of long introns sequences in dystrophin, ESE-

dependent exon identification [36–41] is particularly important

(Figure S1 and figure S2 of the Online Supporting Information). Indeed,

AONs targeted to ESEs showed specific and effective induction of

exon skipping in human tissue or cells [7–13] but resulted in

unpredictable skipping of adjacent exons when targeted to the

splice sites [9,42,43] in DMD.

The splicing of introns by the spliceosome [34] is considered co-

transcriptional [44–52], as it happens simultaneously during

transcription [53,54] of the pre-mRNA, at the point when an

exon and its flanking introns are defined in the nascent pre-

mRNA. Co-transcriptional splicing of dystrophin gene was first

reported by Tennyson et al [45] in which the authors observed that

‘‘spliced transcript accumulates first at the 59 end of the gene and

at progressively later times as one moves further downstream from

the muscle promoter’’ over a time period consistent with co-

transcriptional splicing. The authors argued that given the

exceptionally large size of the gene and large numbers of exons,

co-transcriptional splicing is an effective way to limit the number of

possible splice sites and thereby decrease the probabilities of

incorrect splicings.

Recent experimental results support the notion that the

transcription and splicing machineries are intricately coupled

(reviewed by Maniatis T. & Reed R. [49]). Specifically, by being

tethered to both the RNA polymerase II and transcription

elongation factors, splicing factors are localized directly adjacent

to the nascent pre-mRNA emerging from the polymerase. This

indicates that co-transcriptional exon recognition occurs at the

proximity of the emerging nascent transcript, which seems to be

supported by identical observations of both Aartsma-Rus et al. [10]

and Wilton et al. [6]. They reported that AONs targeting either

acceptor sites or ESE sites in the first half of the exon are generally

more efficient in inducing exon skipping than at the other half.

This suggests that co-transcriptional exon recognition not only occurs

as soon as recognition sites are transcribed, it is efficient as well;

this implies that competition for binding to exon recognition sites

starts as soon as they are transcribed. Together with the fact that

co-transcriptional exon recognition precedes co-transcriptional intron

removal (splicing), we conjecture that effective AONs must bind to

their target sites during co-transcriptional target exon recognition.

To be efficacious, an AON must bind to an effective target site

at the right time. An effective target site is a pre-mRNA sequence

containing functional ESEs within the exon to be skipped. The

right time or ‘opportune period’ is before splicing factors bind to

the AON target site. Thus, two major factors defining AON

efficiency are (1) binding to functional ESEs within the target site

by the AON and (2) accessibility of the target site to binding during

the ‘opportune period’, which in turn depends on the secondary

structure of the pre-mRNA. The tendency to form complementary

base pairings among the nucleotides within the pre-mRNA may

cause a target site to be inaccessible, as a nucleotide that is

‘‘paired’’ is not accessible for binding. However, there are certain

regions in the pre-mRNA with secondary structure motifs devoid

of base pairing, such as loops, bulges, joint sequences and free 39

or 59 ends [55]. Hence, for optimal AON binding, the prediction

of base pairings and secondary structure motifs of the target site is

likely to be crucial. As co-transcriptional pre-mRNA folding will lead

to dynamic and transient secondary structures [56–60], which in

turn result in dynamic and transient nucleotide base pairing, the

co-transcriptional folding of the nascent pre-mRNA during the

‘‘opportune period’’ must also be taken into account in

determining optimal AON binding.

To test this hypothesis, we developed novel scoring methodol-

ogies to semi-quantify the co-transcriptional binding accessibility of

AON target sites. The AON target sites of 2 sets of published

AONS were scored for co-transcriptional binding accessibility and

their scores correlated with the degree of reported AON efficiency

and efficacy. The scoring methodologies are based on the

application of an established software (i.e. mfold) for secondary

structure prediction in conjunction with a method to approximate

the dynamics of transcription. A ‘‘window of analysis’’ of pre-

determined sequence length of 1500 nucleotides that includes the

full length of the targeted exon (see Methods and Materials)

corresponds to a ‘‘step of transcriptional analysis’’. To approxi-

mate the transcription elongation process, the window of analysis

is shifted one nucleotide at a time along the pre-mRNA sequence

towards the 39 end (Figure 1). At each step of transcriptional

analysis, the possible secondary structures for the window

sequence are predicted with mfold. Subsequently, each nucleotide

within the AON target site will be scored for binding accessibility

based on whether it is paired in the predicted secondary structures.

Results

A total of 176 AONs, reported by two independent sources [10]

and [6], that target ESEs to induce exon skipping in dystrophin

pre-mRNA was analyzed. Although the cell lines and experimen-

tal protocols used in these two studies were similar, the AONs

from each study were analyzed separately because of the following

reasons. The range of AON lengths, which may influence AON

performance [61], differed significantly between the studies. The

AONs from the two sources [10] and [6] showed median lengths

of 19 and 26 nucleotides respectively, and for the purpose of this

study, are henceforth denoted as Set A and Set B respectively.

Secondly, the respective sources graded their AONs differently. In

Set A, AONs were graded as (++), (+) or (2) if their efficiencies

were .25%, ,25% or 0% (i.e., non-effective) respectively. In Set

B, AONs are graded as (++), (+1), (+2) or (2) if their efficiencies

were .30%, 10%–30%, ,10% or 0% respectively. For our

analysis, grades (+1) and (+2) of Set B were merged into a single

grade (+) while retaining the other grades as used by the respective

sources.

Four levels of analysis using scoring methodologies of increasing

complexity were used to score the accessibility of AON target sites.

Scores at each level of analysis were then correlated with AON

efficiency and efficacy for each of the two sets of AONs.

First level analysis
At first level analysis, each nucleotide within the AON target

site, a nucleotide accessibility score will be determined by the

following ratio:

Number of predicted secondary structures

in which the nucleotide is unpaired

Total number of secondary structures predicted

RNA Folding Dynamics
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Note that multiple secondary structures will be predicted in each

step of transcriptional analysis, see Figure 2. Hence, for each

nucleotide, all secondary structures predicted at every step of

transcriptional analysis are included. The accessibility score for the

AON target site (L1) will be:

Sum of nucleotide accessibility scores for

all nucleotides within the AON target site

Total number of nucleotides in AON target site

The L1 scores for the target sites of the analyzed AONs are

tabulated in Table S1 of the Online Supporting Information. The K-S

tests failed to show any statistical difference between L1 scores for

the target sites of Set A AONs of different grades (Table 1A),

which agrees with the results reported in refs. [10] and [61]. On

the other hand, the L1 scores for target sites of Set B (++) and (+1)

AONs were statistically higher that the L1 scores for target sites of

(2) AONs (Table 1B). This result indicates that (++) and (+1) AON

target sites are more accessible than (2) AON target sites, and

therefore, the L1 score is able to correlate with AON efficacy for

Set B AONs. However, as this is not applicable to Set A AONs, we

proceeded to the next level of analysis.

Second level analysis
At this level of analysis, the nucleotide accessibility scores of all

nucleotides in an AON target site were screened to determine the

presence of two or more scores with values below 0.1 occurring

consecutively in the nucleotide sequence of the target site (refer to

Table S2 of Online Supporting Information). Such grouping of below

0.1 nucleotide accessibility scores is termed a ‘‘low accessibility

cluster’’. In Set A, 71% of target sites of (2) AONs had one or

more low accessibility cluster(s). While only 17% of target sites of

(+) AONs had one or more clusters, they were manifested in 52%

of target sites of (++) AONs. Set B also exhibited similar trends:

71%, 70% and 80% of target sites of (2) AONs, (+) AONs and

(++) AONs respectively had one or more clusters. Therefore, the

presence of these clusters in the AON target sites cannot correlate

with AON efficacy and efficiency.

Third level analysis
The nucleotide accessibility scores at the first and second levels of

analysis are mean scores. As a result, two nucleotides with identical

accessibility scores may have markedly different numbers of

unpaired predicted secondary structures at each step of transcrip-

tional analysis. In analyzing accessibility for AON binding, it may be

important to take into account steps of transcriptional analysis in

which a nucleotide is predicted to have total absence of unpaired

secondary structures, i.e. the nucleotide is predicted to be completely

inaccessible or ‘‘engaged’’ at the particular step of transcriptional

analysis (Figure 2B). For the purpose of analysis, at every step of

transcriptional analysis, each nucleotide in the AON target site

which is engaged may then be depicted in a plot as illustrated in

Figure 3. Table S3 of the Online Supporting Information tabulates these

plots for all the AON target sites analyzed.

For each nucleotide in an AON target site, a nucleotide engaged

score may be derived as follows:

Figure 1. Approximation of the transcriptional elongation process of pre-mRNA. To approximate the transcription elongation process, a
‘‘window of analysis’’ is shifted one nucleotide at a time along the pre-mRNA sequence towards the 39 end, beginning with the 39 end of the exon
targeted to be skipped at the window’s 39 end and stopping when the 59 end of the targeted exon reaches the 59 end of the window. Each window
of analysis corresponds to a step of transcriptional analysis at which the possible secondary structures of its sequence were predicted.
doi:10.1371/journal.pone.0001844.g001
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Total number of steps of transcriptional

analysis at which the nucleotide is engaged

Total number of steps of transcriptional analysis

Following this, an AON target site engaged score (L3) may be

derived as follows:

Sum of nucleotide engaged scores for

all nucleotides within the AON target site

Total number of nucleotides in AON target site

(Table S1 of the Online Supporting Information tabulates the L3 scores

for all the AONs analyzed)

For Set A AONs, target sites of (++) AONs had statistically

lower engaged scores than target sites of both (2) and (+) AONs.

Therefore, L3 score can statistically differentiate both AON

efficacy and efficiency (Table 1A). However, seven outlier AONs

(6% of the total) were identified. In this context, these were AONs

in which the target site L3 scores contradicted their AON grades.

For instance, target sites of h52AON2 and h60AON2 graded as

(2) could not induce exon skipping even though their L3 scores

were below the 5th-percentile of L3 scores of (++) AON target sites.

Figure 2. Definition of an engaged nucleotide in a particular step of transcriptional analysis. (A) to (C). This is to illustrate that multiple
secondary structures of the targeted exon (drawn in green) are predicted in each step of transcriptional analysis, with some of the possible structural
motifs shown here. For illustration purpose, a particular nucleotide (marked in red) within an AON target site (green line) is tracked. When this
nucleotide is paired (denoted with *), it is not accessible for AON binding. If this nucleotide is paired in all predicted secondary structures, this
nucleotide is defined as an engaged nucleotide at this particular step of transcriptional analysis (B).
doi:10.1371/journal.pone.0001844.g002

RNA Folding Dynamics
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On the other hand, target sites of h45AON5 and h46AON4

graded as (+) and target sites of h51AON29, h55AON5 and

h77AON2 graded as (++) all had L3 scores higher than the 95th-

percentile of L3 scores of (2) AON target sites but could still

induce exon skipping. The omission of these outlier AONs

strengthened the correlation of L3 scores with AON efficacy and

efficiency (Table 1A). For Set B AONs, target sites of (++) AONs

had statistically lower engaged scores than target sites of (2) AONs.

Table 1. p-values for K-S tests using the first level score (L1) and third level score (L3) as test variables for differentiating the
efficacy and/or efficiency of AONs.

Ho: L1 L3(with outliers) L3(no outliers) Test for

1st,2nd 1st.2nd 1st,2nd 1st.2nd 1st,2nd 1st.2nd

A ++ vs 2 0.21 0.97 0.030 0.81 0.0044 1 Efficacy

+ vs 2 0.41 0.94 0.92 0.28 0.67 0.51 Efficacy

++/+ vs 2 0.42 0.99 0.35 0.49 0.10 0.85 Efficacy

++ vs + 0.44 0.57 0.0025 0.82 0.0014 0.98 Efficiency

++ vs +/2 0.21 0.85 0.0035 0.76 0.00063 1 Both

B ++ vs 2 1 0.032 0.032 0.92 0.011 1 Efficacy

+ vs 2 0.93 0.037 0.060 0.81 0.035 0.97 Efficacy

++/+ vs 2 0.99 0.023 0.029 0.87 0.011 1 Efficacy

+1 vs 2 0.92 0.036 0.061 0.84 0.032 1 Efficacy

+2 vs 2 0.97 0.076 0.19 0.72 0.17 0.49 Efficacy

++ vs + 0.90 0.44 0.31 0.95 0.14 1 Efficiency

++ vs +1 0.90 0.55 0.32 0.96 0.27 0.99 Efficiency

++ vs +2 0.68 0.45 0.23 0.77 0.027 1 Efficiency

+1 vs +2 0.61 0.82 0.59 0.61 0.17 0.99 Efficiency

++ vs +/2 0.96 0.38 0.18 0.98 0.057 1 Both

The second column states the two AON grades being tested. ‘/’ means that two grades of AONs are combined into a single grade for the test. In the second row, ‘1st’
and ‘2nd’ denote the first and second grades being tested (as indicated in the corresponding second column). The last column indicates whether the particular K-S test
tests for efficacy and/or efficiency. Significant p-values are highlighted in bold and underlined. Test results for (A) AONs in Set A; and (B) AONs in Set B.
doi:10.1371/journal.pone.0001844.t001

Figure 3. Occurrences of engaged nucleotides at each step of transcriptional analysis. In the above illustration, the horizontal axis denotes
sequential steps of transcriptional analysis while the vertical axis denotes numbered nucleotides within the AON target site. At each step of
transcriptional analysis, nucleotides in the target site that are engaged are depicted as a black dot in the plot. The calculations of the fourth level
scores, L4_OR and L4_AND, are illustrated (refer to main text for details).
doi:10.1371/journal.pone.0001844.g003
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Therefore, L3 scores can statistically differentiate AON efficacy

(Table 1B). Similarly, four outlier AONs (6% of the total) were

identified, i.e., H30A, H58A, H64A and H34A2. The omission of

these outlier AONs enabled L3 scores to statistically differentiate

efficacy between (+1) and (2) AONs, and efficiency between (++)

and (+2) AONs. Remarkably, L3 scores can differentiate between

more AON grades than L1 scores. Moreover, for all K-S tests in

which L1 scores showed statistical significance, the corresponding

K-S tests of L3 score obtained smaller p-values. Taken together,

L3 scores can differentiate both AON efficacy and efficiency better

than L1 scores.

To appreciate the contrast between K-S test results of the first

and third level scores, we plotted the quartiles of the normalized

L1 scores (L1) and L3 scores (L3) of AON target sites for AONs in

each grade of Sets A and B for comparison (Figure 4A and 4B

respectively). For example, the L1 score of an AON target site

from Set A is the relative percentage difference between its L1

score and the average L1 score of all AON target sites from Set A.

As expected, (++) AON target sites had the lowest L3 score

quartiles in both sets of AONs. Surprisingly, the maximum range

for L3 scores is 7 to 10 times larger than the range for L1 score.

Specifically, for Set A AONs, the range for target site L3 scores is

140% in contrast to 12% for L1 scores; for Set B AONs, the range

for target site L3 scores is 280% in contrast to 40% for L1 score.

Overall, for Set B AONs, the L3 scores can satisfactorily

differentiate efficacies and efficiencies of (++), (+) and (+1) AONs.

On the other hand, for Set A AONs, while L3 scores can

differentiate (++) AONs from the rest of AON grades, they cannot

account for the efficacies of (+) AONs because both (+) and (2)

AON target sites had statistically similar L3 scores. Intriguingly,

the p-value for (++) vs. (+) AONs was even smaller than for (++) vs.

(2) AONs. This indicates that although (+) AON target sites had

high L3 scores, they can still induce exon skipping albeit not

efficiently. Hence, a more detail analysis was needed.

Fourth level analysis
While third level analysis primarily involves a general measure

of frequency of engaged nucleotides, fourth level analysis includes

consideration of localization of consecutive engaged nucleotides in

the sequence of steps of transcriptional analysis of an AON target

site. Three fourth level scores were developed for this analysis.

These scores were applied to groups of 2 to 5 consecutive

nucleotides in the AON target site and correlated with AON

efficacy and efficiency (see Methods and Materials for details).

(1) L4_AVG–

Sum of nucleotide engaged scores for

the group of consecutive nucleotides

Number of nucleotides in the group

Figure 4. Quartiles of the normalized first and third level scores. The quartiles (Q1, median and Q3) of the normalized first level scores (L1),
and normalized third level scores (L3) for target sites of AONS in every AON grade of (A) Set A and (B) Set B are plotted. The units for all the vertical
axes are in percentages.
doi:10.1371/journal.pone.0001844.g004
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(2) L4_AND–

Sum of steps of transcriptional analysis in which

all the nucleotides in the group of consecutive nucleotides

are engaged simultaneously (see Figure 3)

Total number of steps of transcriptional analysis
:

(3) L4_OR–

Sum of steps of transcriptional analysis in which

at least one nucleotide in the group of

consecutive nucleotides is engaged (see Figure 3)

Total number of steps of transcriptional analysis
:

Preliminary analysis showed that the presence of consecutive

engaged nucleotides at the ends of an AON target site attenuated

AON efficacy and efficiency more than at other sites (data not

shown). With this insight and to increase the power of the

statistical tests, we analysed the localization of consecutive engaged

nucleotides at the ends and away from the ends of the AON target

site separately.

Engaged nucleotides away from the ends of an AON
target site

For the purpose of this analysis, ‘‘away from the ends of an

AON target site’’ refers to nucleotides in the target site that are at

least four nucleotides away from both 39 and 59 ends, as illustrated

in Figure 3. We extracted groups of consecutive nucleotides

consisting of two to five nucleotides from every AON target site

analyzed. The three fourth level scores were calculated only for

those groups of consecutive nucleotides meeting the following

criterion for analysis: every nucleotide in the group having an

engaged score of at least 0.1. Subsequently, statistical tests as in

Table 1 were applied to the scores. The analyses were stratified

according to the number of consecutive nucleotides in the groups

scored, as described below.

Groups of two consecutive nucleotides. For both Set A

and Set B AONs, the K-S tests found no statistical differences in all

three scores of AON target sites at the different AON grades (data

not shown). Note: inadequate AON sample size in Set B restricted

the tests to scores of target sites of (++) vs. (+1) AONs and (++) vs.

(+/2) AONs.

Groups of three consecutive nucleotides. K-S tests could

not be performed for both sets, as AON sample sizes of many

AON grades were not adequate (,6) to confer statistical

confidence. Nevertheless, for Set A AONs, box-plots for each

score were constructed in Figure 5A. The L4_AND score can

differentiate (++) AONs from the other two AON grades

comparatively well. While the L4_AVG score displayed some

ability to differentiate (++) AONs, the L4_OR score failed to do so.

For Set B AONs, only (++) AONs had adequate sample size to

construct the box-plot (Figure 5A). Consistent with the results for

Set A AONs, the L4_AND score of (++) Set B AON target sites had

the smallest median and inter-quartile range compared to the

other two scores.

Groups of four consecutive nucleotides. For Set A AONs,

only (+) and (2) AONs had adequate sample sizes to construct the

box-plots (Figure 5B). Again, the L4_AND score demonstrated the

best ability to differentiate (+) AONs from (2) AONs while the

L4_OR score failed to do so. The sample sizes of Set B AONs at all

grades were too small for analysis.

Groups of five consecutive nucleotides. For Set A AONs,

while three target sites of (2) AONs were found to have such a

group as defined for this analysis, it was not found in all target sites

of both (+) and (++) AONs. For Set B AONs, such a group was

found in 33%, 11% and 6% of target sites of (2) AONs, (+) AONs

and (++) AONs respectively.

Taken together, these results suggested that the presence of at

least three consecutive engaged nucleotides at simultaneous steps of

transcriptional analysis but not the individual nucleotide engaged

score attenuated AON efficacy and efficiency.

Engaged nucleotides at the ends of an AON target site
‘‘At the ends of an AON target site’’ refers to nucleotides in the

target site that are within three bases at 39 or 59 ends. For every

AON target site analyzed, the three fourth level scores were

calculated for every group of three consecutive nucleotides at 39

and 59 ends of the target site. Groups with zero L4_AVG score,

i.e., all the nucleotides were not engaged at any step of

transcriptional analysis, were excluded from the statistical tests.

Statistical tests as in Table 1 were applied to each of the three

fourth level scores. Significant p-values of the K-S tests for target

site scores of Sets A and B AONs are tabulated in Table 2A.

For Set A AONs, the L4_OR scores demonstrated the best

ability to differentiate AON efficacy and efficiency, followed by the

L4_AVG and L4_AND scores. In contrast, the L4_AVG score

demonstrated the best ability to differentiate Set B (++) AONs,

followed by the L4_AND score but not the L4_OR score. As the

L4_AND score did not show the best ability to correlate AON

efficacy and efficiency in both sets, AON efficacy and efficiency is

more attenuated by presence of engaged nucleotides at the ends of

target sites than at other sites. In addition, given that the L4_OR

score only counted steps of transcriptional analysis in which at

least one nucleotide was engaged, the test results suggested that

efficacy and efficiency of shorter AONs (Set A) was more

attenuated by engaged nucleotides at the ends of their target sites

compared to longer AONs (Set B). To investigate whether engaged

nucleotides at either 39 or 59 end of target sites affected AON

efficacy and efficiency differently, we stratified the groups into 39

and 59, and repeated the same K-S tests, as discussed below.

Engaged nucleotides at 39 end. (Table 2B) For Set A

AONs, the K-S test results were consistent with those obtained

from both ends of AON target sites (Table 2A) except that, the

L4_AND scores now failed to differentiate any AON grade. For Set

B AONs, small sample sizes only permitted testing between target

sites of (++) vs. (+1) AONs and no statistical difference was

obtained for all three scores (data not shown).

Engaged nucleotides at 59 end. (Table 2C) For Set A

AONs, only the L4_OR scores can differentiate AON efficacy. For

Set B, small sample sizes only permitted testing between target

sites of (++) AONs vs. (+1), (+) and (+/2) AONs. Although both

the L4_AVG and L4_OR scores can differentiate (++) AONs from (+/

2) AONs, the L4_AVG scores had a smaller p-value. This plausibly

suggests that although engaged nucleotides at 59 end also attenuated

the efficacy and efficiency of Set B AONs, the extent of attenuation

was less marked than Set A AONs. Altogether, these test results

(Tables 2A–2C) strongly support the conclusion that engaged

nucleotides at the ends of a shorter target site attenuated AON

efficacy and efficiency more markedly than a longer target site.

Engaged nucleotides at 39 end vs. engaged nucleotides at

59 end. Here, we tested whether there was statistical difference

in the localization of engaged nucleotides in the sequence of steps of

transcriptional analysis between 39 and 59 ends of target sites of

RNA Folding Dynamics
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AONs of the same grade. For instance, in the case of (++) AONs,

each of the fourth level scores of the groups of nucleotides at the

target site 39 end was compared with the 59 end using K-S tests.

For Set A AONs, the groups of nucleotides at the 39 end of (++)

AON target sites had statistically smaller L4_AVG scores than at

the 59 end (Table 2D). This implied that engaged nucleotides at 39

end of a short target site attenuated AON efficiency more than at

59 end. For Set B AONs, on the other hand, small sample sizes

only permitted testing of target sites of (++) AONs and (+) AONs

but no statistical difference was obtained (data not shown).

Discussion

Previous studies have supported the general principle that

mRNA secondary structures influence AON efficacy and efficien-

cy [62–64], although these studies did not consider co-transcriptional

folding in the prediction of the secondary structures. Furthermore,

laboratories working this field [10,61] have reported no correlation

with secondary mRNA structure in designing AONs to induce

exon skipping of the dystrophin gene. In these reports, co-

transcriptional dynamic changes in secondary structure were either

not considered or were approximated with a relatively unrefined

methodology. Our study aims to re-visit this issue by using a more

refined method to approximate co-transcriptional dynamic changes

in pre-mRNA secondary structures and by developing novel

methods to take into account the localization of completely

inaccessible nucleotides in the co-transcriptional process. Applying

four levels of analysis with scoring methodologies of increasing

complexity, we demonstrate that the frequency and localization of

consecutive engaged nucleotides in the sequence of steps of

transcriptional analysis correlated with efficacy and efficiency of

94% of previously reported AONs.

Four key novel insights pertaining to AON efficacy and

efficiency were deduced from this study. Firstly, the lowest

frequencies of engaged nucleotides manifested at target sites were

associated with the most efficient (++) AONs. Secondly, engaged

nucleotides at 39 or 59 ends of the target site attenuated AON

efficacy and efficiency more than at other sites. Thirdly, the

Figure 5. Box-plots for each of the fourth level scores L4_AVG, L4_AND and L4_OR. (A) Box-plots for scores of groups of 3 nucleotides
meeting criterion of analysis in target sites of (++) AONs, (+) AONs and (2) AONs of Set A, and of (++) AONs of Set B (***). (B) Box-plots for scores of
groups of 4 nucleotides meeting criterion of analysis in target sites of both (+) and (2) AONs of Set A.
doi:10.1371/journal.pone.0001844.g005
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efficacy and efficiency of longer AONs were less attenuated by

engaged nucleotides at 39 or 59 ends of the target site as compared to

shorter AONs. In fact, the frequency and localization of engaged

nucleotides of short AON (Set A) and long AON (Set B) target sites

were statistically similar (see Table S4 of the Online Supporting

Information for more details). In agreement with reported studies

[61], these results indicate that AONs targeting longer target sites

can induce exon skipping more effectively and efficiently by

possibly binding to the pre-mRNA more stably as compared to

AONs targeting shorter target sites. Fourthly, engaged nucleotides at

39 end of a short target site attenuated AON efficiency more than

at 59 end. This might explain why AON efficiency is more sensitive

to nucleotide changes at the 39 end than 59 end of its target site

[65]. Notably, our results provide quantitative statistical proof for

these experimental observations.

To demonstrate the correlative power of the fourth level scores,

three common examples in which only the fourth level scores can

differentiate (++) AONs in Set A (Figure 6) are discussed. Figure 6A

illustrated an example wherein AON target sites with identical

accessibility scores (L1) can have strikingly different engaged scores

(L3). Whereas the (2) AON target site high engaged score was

expected, the higher engaged score of the (++) AON target site

compared to the (+) AON target site was confounding. In contrast

to the L3 score, fourth level analysis showed more engaged

nucleotides at the ends of (+) AON target site than at (++) AON

target site, i.e. was able to discriminate between (+) and (++) AON

target sites. Figure 6B illustrated an example in which the target

site engaged scores (L3) correlate inversely with AON efficacy and

efficiency, i.e., AON target sites with higher engaged scores had

better ability to induce exon skipping. Again, the fourth level

scores resolved this conundrum in a similar manner as the first

example. The final example (Figure 6C) illustrated a widespread

phenomenon in the data set in which (+) AON target sites had

higher engaged scores (L3) than (2) AON target sites. In fact, this

phenomenon caused the p-values of K-S tests of (++) vs. (+) AON

target site L3 scores to be smaller than for (++) vs. (2) target site L3

scores. In most instances, most of the engaged nucleotides

manifested in (+) AON target sites were localized away from the

ends of the sites. Altogether, these examples showed that

localization is as important as the frequency of engaged nucleotides.

As an illustration, an AON (novelAON57) target sequence was

selected to skip exon 57. All three reported AONs (h57AON1,

h57AON2, h57AON3) designed to induce exon 57 skipping by

targeting the intra-exonic sequences failed to skip exon 57 [10].

Interestingly, exon 57 manifests an overwhelming occurrence of

engaged nucleotides (Figure S3 of the Online Supporting Information);

hence, it is relatively difficult to locate a suitably long sequence that

has ESE activity as well as co-transcriptional binding accessibility that

fulfils the four insights (as described above). For instance, the 39

ends of the target sites of both h57AON1 and h57AON2 AONs

manifest substantial engaged nucleotides whereas the first half of the

target site of h57AON3 AON manifests extensive engaged

nucleotides (Table S3 of the Online Supporting Information). We

designed novelAON57 to have a target site with the following

characteristics: negligible occurrence of engaged nucleotides,

presence of ESE motifs predicted by ESE-Finder [66] and

RESCUE-ESE [67], and location at the first half of the exon.

Notably, novelAON57 targets a completely different site from the

published AONs, as shown in Figure 7. At all AON concentrations

tested, i.e. 100nM, 200nM, and 400nM, novelAON57 demon-

strates selective skipping of exon 57 with an efficiency of (++)

(Figure 7).

The number of secondary structures predicted for each exon was

tabulated in Table S5 of the Online Supporting Information. There was

an average of 44,582 predicted secondary structures per exon and 24

to 47 predicted secondary structures per step of transcriptional

analysis (Table S5). As a result, the identification of engaged

nucleotides at a step of transcriptional analysis had low false-

positives, as an engaged nucleotide must be paired in all predicted

secondary structures. In addition, the use of numerous windows of

analysis had the added advantage of spreading out the prediction

error of mfold as vast numbers of secondary structures were used in

the analyses. Despite the exceptional length of the dystrophin gene,

the measured average elongation rate does not differ significantly

from other genes [45]. While this seems to suggest that transcription

of dystrophin gene is similar to other genes, the possibility of other

transcription and/or splicing factors being involved cannot be

dismissed. In the event that such factors significantly affect the rate of

transcript elongation and/or the mechanism of exon recognition, the

results of our analyses might differ substantially.

Table 2. p-values for K-S tests using the fourth level scores as test variables.

Set Ho: L4_AVG L4_AND L4_OR Test for

1st,2nd 1st.2nd 1st,2nd 1st.2nd 1st,2nd 1st.2nd

A A ++ vs 2 0.0089 0.97 0.028 0.97 0.0019 0.96 Efficacy

A ++/+ vs 2 0.055 0.96 0.039 0.97 0.014 0.96 Efficacy

A ++ vs +/2 0.013 0.96 0.093 0.96 0.0035 0.96 Both

B ++ vs +1 0.17 0.98 0.036 0.98 0.31 0.93 Efficiency

B ++ vs +/2 0.025 0.95 0.11 0.97 0.082 1 Both

B A ++ vs 2 0.017 0.91 0.055 0.91 0.017 0.82 Efficacy

A ++ vs +/2 0.012 0.94 0.17 0.66 0.020 0.86 Both

C A ++ vs 2 0.11 0.96 0.088 0.96 0.026 0.96 Efficacy

A ++/+ vs 2 0.16 0.96 0.11 0.99 0.047 0.94 Efficacy

B ++ vs +/2 0.018 0.96 0.25 1 0.040 0.96 Both

D A 39 vs 59 (++) 0.028 0.79 0.24 0.44 0.060 0.89 Efficiency

Only tests with significant p-values were shown. (A) Test data includes both 39 and 59 ends of AON target sites. (B) Test data consists of only 39 end of AON target sites.
(C) Test data consists of only 59 end of AON target sites. (D) 39 vs. 59 end of AON target sites.
doi:10.1371/journal.pone.0001844.t002
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Besides co-transcriptional binding accessibilities of AON targets,

AON efficiency depends on other factors such as presence of

ESEs, stability of AONs (by chemical modifications), thermody-

namic considerations, absolute distance of AON target site from 39

splice site, etc. For instance, statistical analysis of predicted ESE

sites by Aartsma-Rus et al [10] showed that target sites of (++)

AONs in Set A had marginally more active ESE sites (p-

value<0.05). Therefore, the prediction of efficient AON targets

does not simply involve annealing of an AON to a structurally

accessible target as the best co-transcriptionally accessible target site

might not contain ESEs. As these factors are often not mutually

exclusive, an AON target site that fares very well in one factor but

poorly in others might not be efficient.

The development of scores at four levels of analysis to semi-

quantify co-transcriptional binding accessibility of AON target

sites allows their correlation with AON efficacy and efficiency

using statistical tests. These methodologies are potentially

applicable to the development of a systematic approach to identify

Figure 6. Three examples for where only the fourth level scores can correlate AON efficacy and efficiency compared to third level
scores. (A) to (C) For every example, the incidences of engaged nucleotides at each step of transcriptional analysis for all nucleotide in target sites of
(++), (+) and (2) AONs were depicted.
doi:10.1371/journal.pone.0001844.g006

RNA Folding Dynamics

PLoS ONE | www.plosone.org 10 2008 | Volume 3 | Issue 3 | e1844



optimal target sites in the design of AONs to induce exon skipping

of dystrophin pre-mRNA. Similarly, the methodologies may also

be applicable in analyzing the efficiency of AONs applied in other

diseases, such as thalassemia [14–17], ocular albinism [18] and

cancer [19], in which exon splicing modulation to correct the

mRNA reading frame has been proposed as a therapeutic strategy.

Materials and Methods

Data Set
Set A is extracted from the list of 114 AONs published by

Aartsma-Rus et al. [10]. Among them, 41 of them induce exon

skipping in .25% of the total dystrophin mRNA transcripts and

are graded as (++); 35 of them induce exon skipping in ,25% of

the total transcripts and are graded as (+); and 38 of them fail to

induce exon skipping and are graded as (2). On the other hand,

Set B is extracted from the list of AONs published by Wilton et al.

[6]. Although they published a total of 82 AONs, only 62 of them

are applicable for this study. The remaining ones either target

non-ESE sites or result in unspecific exon skipping. Among the

relevant AONs, 35 of them induce exon skipping in .30% of the

total dystrophin mRNA transcripts and are graded as Type 1; 11

of them induce exon skipping in between 10% to 30% of the total

transcripts and are graded as Type 2; 9 of them induce exon

skipping in ,10% of the total transcripts and are graded as Type

3; and 7 of them fail to induce exon skipping (i.e., non-effective)

and are graded as Type 4. For naming consistency, Types 1–4 are

renamed as grades (++), (+1), (+2) and (2) respectively. Altogether,

the 176 AONs target 67 exons in the dystrophin gene by blocking

ESEs. AON efficacy was determined from RT-PCR analysis while

AON efficiency was calculated based on densitograph semi-

quantification [6,10].

Computational prediction of the dynamical pre-mRNA
secondary structure

The methodology for quantifying and analyzing the dynamics of

the pre-mRNA structures in the progression of transcription did

not depend on the choice of the prediction tool as long as co-

transcriptional structures were obtainable. mfold was eventually

chosen because of its relative efficiency for computing long RNAs

as well as the advantage of being used in most published

experimental results on AONs that target dystrophin gene

[9,10,68] and therefore, the results in this work can be compared

with them on a common basis. mfold version 3.1 [28,69] was

executed on a Dell PowerEdge SC1420 server running Red Hat

Enterprise Linux 4.0 OS. Since it was highly probable that the

nascent pre-mRNA may not have the chance to assume optimal

structures, we accepted sub-optimal structures whose energies lie

within 5% of the optimum.

Since long introns are typical in dystrophin gene, only local

secondary structures around the targeted exon need to be

considered. This was because abundant hnRNPs (heterogeneous

nuclear ribonuclear proteins) package long intron regions into

compact and manageable secondary structures for pre-mRNA

processing that deterred long-distance or global intra-molecular

complementary base pairings, which possibly prevented an exon

from being entangled in a complex structure that would obstruct

the spliceosome from accessing it [70]. On the other hand,

sequence length of the window of analysis was estimated from

experimental measurements: elongation rate of dystrophin mRNA

ranged from 1.7 to 2.5 kb per minute [45]; and RNP formation at

39 splice sites was observed 48 seconds after 39 splice sites synthesis

[71]. During the time-delay from 39 splice site synthesis to its

recognition, about 1360 to 2000 bases were appended to the

nascent transcript. The dynamical secondary structures of exons 2

(62 bp), 29 (150 bp) and 59 (269 bp) were predicted based on

1200, 1500 and 2000 sequence length of the window of analysis.

For each exon, there was no statistical difference in the nucleotide

accessibility and engaged scores computed from secondary struc-

tures predicted based on different sequence lengths of window of

analysis (data not shown). Therefore, the predicted secondary

structures of a target exon were not sensitive to sequence length of

the window of analysis.

Statistical test for differentiating AON efficacy and
efficiency

Two-sample Kolmogorov-Smirnov (K-S) test was used to test for

statistical differences and significances of the first, third and fourth

Figure 7. The efficiency of a novel AON targeting exon 57. The left panel shows the RT-PCR analysis of dystrophin mRNA treated with
novelAON57 at concentrations of 100nM, 200nM and 400nM of AONs. For every AON concentration, the relative percentage of total transcripts
(average value of duplicate transfections) with skipping of the targeted exon is given below the lanes. The middle panel indicates the relative position
of the novel AONs with respect to published AONs. The right panel plots the co-transcriptional binding accessibility of the novel AON target sites,
wherein the horizontal axis denotes sequential steps of transcriptional analysis and the vertical axis denotes numbered nucleotides within the AON
target site. At each step of transcriptional analysis, nucleotides in the target site that are engaged are depicted as a black dot in the plot.
doi:10.1371/journal.pone.0001844.g007
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level scores in their abilities to differentiate AON efficacy and

efficiency between any two AON samples. Both two-tailed (Ho: the

two AON samples have different probability distributions) and one-

tailed (Ho: the first AON sample is larger/smaller than the second

AON sample) tests were performed to ensure consistency of test

results. All statistical tests were performed on the statistical software,

R Version 2.0.0 [72]. Note: Wilcoxon rank-sum test was not used

because box-plots of two AON samples showed that they had

different distributional shapes (data not shown), which violated a key

Wilcoxon test assumption.

Preliminary analysis in the fourth level analysis
In this preliminary analysis, the localization of groups of

consecutive engaged nucleotides in the sequence of steps of

transcriptional analysis of an AON target site was tested for

correlation with AON efficacy and efficiency. For each AON

analyzed, all possible groups of consecutive nucleotides in the AON

target site were obtained. For instance, groups of two consecutive

nucleotides were extracted by walking one nucleotide at a time from

one end of an AON target site to the other end. Likewise, groups of

three to five consecutive nucleotides are obtained similarly. The

three fourth level scores (L4_AVG, L4_AND and L4_OR) were next

applied on every group of consecutive nucleotides. Their scores were

then correlated with AON efficacy and efficiency by K-S tests among

various AON grades in Sets A and B. As the number of nucleotides

in the groups may influence AON efficacy and efficiency, the K-S

tests were stratified according to the numbers of nucleotides in the

groups. Note: as the majority of the groups with more than five

consecutive nucleotides have zero L4_AND scores, inadequate

sample size constrained the analysis to a maximum of five

consecutive nucleotides.

Illustration of the efficiency of a novel AON targeting
exon 57

A novel AON (novelAON57) was synthesized by Sigma-Prologo

(France) with 29-O-methyl and full length phosphorothioate

backbones according to our specifications. Transfections were

done on normal human fibroblast cells (Coriell, USA) cultured in

6-wells plates, with the AON concentrations of 100 nM, 200 nM

or 400 nM and LipofectAmine 2000, with ratio of concentrations

as suggested by the manufacturer (Invitrogen, Carlsbad, Canada).

The transfection was done in duplicate. 24 hours after transfec-

tion, the cells were harvested and subjected to mRNA analysis to

assess the performance of the AONs in inducing exon skipping.

Total RNA was isolated using Trizol (Invitrogen, Carlsbad,

Canada). Single step RT-PCR was performed on ,400ng total

RNA using a single step RT-PCR analysis kit, Access RT-PCR

system (Promega, Madison, USA), according to the manufactur-

er’s instructions for 20 cycles, followed by nested PCR for 22

cycles. Sequences of dystrophin exon-specific primers used for

single step RT-PCR and nested PCR are available upon request.

Exon skipping efficiency was estimated by densitometry analysis of

the gel images comparing the density of amplicons from

dystrophin mRNA with exon 57 skipping to the native dystrophin

mRNA.

Supporting Information

Figure S1 Genomic lengths of all exons and introns of

dystrophin gene. The sequence lengths for each of the 79 exons

in dystrophin are plotted as black bars. For every exon, both of

their flanking introns sequence lengths are shown as gray bars.

Note that the sequence length is on a logarithmic scale (vertical

axis). Total exonic and intronic sequence length are 11,034 bps

and 2,209,348 respectively. The exons occupied a mere 0.5% of its

full DNA sequence. The lengths of the exons range from 7 to

269 bps; introns range from 107 to 319,058 bps.

Found at: doi:10.1371/journal.pone.0001844.s001 (0.06 MB DOC)

Figure S2 Percentage genomic lengths of each exon relative to

the total length of its flanking introns. To underscore the fact that

locating an exon in dystrophin is akin to finding a needle in a

haystack, the percentage of the length of an exon relative to the

total length of its 39 and 59 intron sequences is computed and is

plotted here. The majority of the exons constitute less than 1% of

their intronic lengths and even the highest percentage is less than

7%.

Found at: doi:10.1371/journal.pone.0001844.s002 (0.06 MB DOC)

Figure S3 Co-transcriptional binding accessibilities of exon 57.

The horizontal axis denotes sequential steps of transcriptional

analysis whereas the vertical axis denotes numbered nucleotides

within the AON target site. At each step of transcriptional analysis,

nucleotides in the target site that are engaged are depicted as a

black dot in the plot.

Found at: doi:10.1371/journal.pone.0001844.s003 (0.08 MB DOC)

Table S1 First level score (L1) and third level score (L3) of 176

AON target sites analysed. This table tabulates the first level score

(L1) and the third level score (L3). The AONs are sorted in

ascending order of their target exon number, where the exon

number is indicated in the AON names after the letter ‘h’, for e.g.

h2AON1 targets exon 2. The sources of the AONs are indicated as

superscripts on their names.

Found at: doi:10.1371/journal.pone.0001844.s004 (0.20 MB DOC)

Table S2 The nucleotide accessibility score of all nucleotide in

an AON target site is plotted for all the 176 AONs analysed. The

horizontal axis represents the nucleotide position in the respective

target exon and the nucleotide accessibility score is plotted on the

vertical axis.

Found at: doi:10.1371/journal.pone.0001844.s005 (0.48 MB DOC)

Table S3 Occurrences of engaged nucleotides at each step of

transcriptional analysis for all nucleotide in an AON target site are

depicted for each of the 176 AON target sites analysed. The

horizontal axis denotes sequential steps of transcriptional analysis

while the vertical axis denotes numbered nucleotides within the

AON target site. At each step of transcriptional analysis,

nucleotides in the target site that are engaged are depicted as a

black dot in the plot.

Found at: doi:10.1371/journal.pone.0001844.s006 (1.93 MB DOC)

Table S4 p-values for K-S tests using the third level score (L3)

and fourth level scores (L4_AVG, L4_AND and L4_OR) as test

variables between Set A and Set B. (A) (++) and (+) AONs are

tested between Set A and Set B for statistical difference using L3 as

test variable. (B) to (E) Fourth level scores as test variables

for engaged nucleotides localized at (B) both 39 and 59 ends, (C) at

39 end, (D) at 59 end and (E) away from the ends of the AON

target sites Note: (-) AONs between the two sets cannot be tested

because the sample size in Set B is too small to confer statistical

confidence.

Found at: doi:10.1371/journal.pone.0001844.s007 (0.07 MB DOC)

Table S5 Number of predicted secondary structures generated

in each exon. For every exon in dystrophin gene, the total number

of secondary structures predicted as well as the average number of

predicted secondary structures per step of transcriptional analysis

is tabulated.

Found at: doi:10.1371/journal.pone.0001844.s008 (0.12 MB DOC)
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