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Abstract
This is an exciting time in neuro-oncology. Discoveries elucidating the
molecular mechanisms of oncogenesis and the molecular subtypes of
glioblastoma multiforme (GBM) have led to new diagnostic and classification
schemes with more prognostic power than histology alone. Molecular profiling
has become part of the standard neuropathological evaluation of GBM.
Chemoradiation followed by adjuvant temozolomide remains the standard
therapy for newly diagnosed GBM, but survival remains unsatisfactory. Patients
with recurrent GBM continue to have a dismal prognosis, but neuro-oncology
centers with active clinical trial programs are seeing a small but increasing
cadre of patients with longer survival. Molecularly targeted therapeutics,
personalized therapy based on molecular profiling of individual tumors, and
immunotherapeutic strategies are all being evaluated and refined in clinical
trials. Understanding of the molecular mechanisms of tumor-mediated
immunosuppression, and specifically interactions between tumor cells and
immune effector cells in the tumor microenvironment, has led to a new
generation of immunotherapies, including vaccine and immunomodulatory
strategies as well as T-cell-based treatments. Molecularly targeted therapies,
chemoradiation, immunotherapies, and anti-angiogenic therapies have created
the need to develop more reliable neuroimaging criteria for differentiating the
effects of therapy from tumor progression and changes in blood–brain barrier
physiology from treatment response. Translational clinical trials for patients with
GBM now incorporate quantitative imaging using both magnetic resonance
imaging and positron emission tomography techniques. This update presents a
summary of the current standards for therapy for newly diagnosed and
recurrent GBM and highlights promising translational research.
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Introduction
The second decade of the 21st century is an exciting time in  
neuro-oncology, perhaps especially so in the diagnosis and  
management of glioblastoma multiforme (GBM). The results of 
ongoing discovery related to the molecular genetics of GBM, the 
molecular pathways mediating resistance to immunotherapy, and 
deeper understanding of mechanisms of sensitivity and resist-
ance to molecularly targeted agents are all entering translational  
clinical trials. In addition, innovative approaches to the neuroim-
aging of treatment response are improving our ability to dif-
ferentiate between effects of therapy and tumor progression in  
both newly diagnosed and recurrent GBM.

Discussion
Approximately 70,000 primary CNS tumors are diagnosed  
annually in the US, with GBM being the most frequent high-
grade glioma, with an incidence of 3–4/100,0001. The incidence  
increases with age, with the peak incidence being in the fifth or 
sixth decade. Although there have been a number of advances in the 
therapy of GBM, median survival is still short at between 15 and 
18 months for patients with newly diagnosed GBM, approximately 
10% going on to be five-year survivors2. The median survival for 
patients with recurrent GBM treated with regimens including  
bevacizumab is eight to nine months1. Neuro-oncologists, being 
optimists by nature, note that long-term survivors are being seen 
with increasing frequency, and the median survival has been  
improving incrementally over the 12 years since the original report 
of the efficacy of chemoradiation incorporating temozolomide 
followed by adjuvant temozolomide for six monthly cycles was 
reported in 20043.

Current treatment regimens for newly diagnosed GBM are based 
on the randomized prospective trial, led by Roger Stupp, compar-
ing external beam fractionated radiation alone to concurrent daily 
low-dose temozolomide during radiation, a one-month break, and 
then six months of adjuvant temozolomide at 150–200 mg/m2.  
This trial demonstrated an increase in median overall survival 
of approximately three months and 30% versus 10% survival at  
24 months favoring the chemotherapy cohort2,4. This regimen  
has been the basic scaffold for subsequent trials, and studies of 
molecular prognostic and predictive factors are based on analy-
sis patient cohorts treated with this regimen or permutations that  
maintain the basic design.

Although the introduction of anti-angiogenic therapies, with  
bevacizumab being the lead drug in class, initially appeared to be 
a transformative approach, subsequent clinical trial experience 
has been disappointing. Initial studies for recurrent GBM dem-
onstrated that treatment with bevacizumab was associated with  
higher response rates, clinical improvement, and longer time to  
progression than historical controls employing chemotherapy5–7. 
Two randomized prospective trials in which bevacizumab was 
added to the standard chemoradiation followed by adjuvant temo-
zolomide failed to demonstrate a benefit in overall survival for 
the bevacizumab arm8,9. Phase 2 trials evaluating bevacizumab in 
combination with cytotoxic chemotherapies subsequently failed 
to demonstrate a benefit in overall survival with the combinations 
compared to bevacizumab alone10. In a randomized phase 2 trial 

comparing bevacizumab or lomustine alone to the combination 
of bevacizumab and lomustine with nine-month survival as the  
primary endpoint, the combination of bevacizumab and lomustine 
was superior to either of the drugs alone, but bevacizumab alone 
was no better than lomustine alone11,12. The EORTC trial 26101 
compared the combination of bevacizumab and lomustine to  
lomustine alone and failed to demonstrate improved overall  
survival in the combination arm (Proceedings Society for  
Neurooncology, 2017). Currently, outside of clinical trials, the 
role of bevacizumab in the treatment of GBM is in treating  
patients with neurologic symptoms and signs related to the size 
of the tumor or the surrounding edema. This benchmark for  
overall survival with bevacizumab is only eight to nine months5,13.  
Although the addition of bevacizumab to chemoradiation and  
adjuvant temozolomide did not prolong overall survival, bevaci-
zumab can ameliorate radiation-induced worsening of edema and 
mass effect in newly diagnosed GBM patients.

Discoveries in molecular neuropathology have demonstrated  
that, although essentially a homogeneous group of tumors by 
histologic criteria, GBM can be separated out into clinically  
relevant subgroups using molecular classification schemes14,15. 
Microarray studies performed as part of the Cancer Genome  
Project led to a four-compartment classification, separating GBM 
into classical, pro-neural, neural, and mesenchymal subgroups.  
Similar to risk prediction multigene panels used in other malig-
nancies, retrospective molecular and outcome correlative  
studies involving patients treated with chemoradiation and  
temozolomide for newly diagnosed GBM identified a nine-gene 
panel which separates cohorts into those with better and worse  
prognosis16. Genetic profiling appears to separate tumors which 
arise from pre-existing low-grade gliomas from those which arise 
primarily as GBM14,15. Mutations in the isocitrate dehydrogenase 
(IDH) gene, constituting one of the earliest and possibly initiat-
ing mutations in gliomas, are one discriminant between primary 
and secondary GBM17. IDH has two isoforms, with mutation in 
IDH1 (IDH1-R132H) being the most common. IDH mutations 
are present in 80% of secondary GBM but in only 5% of primary 
GBM. The presence of IDH mutation may identify a better prog-
nostic subgroup within GBM patients. Approximately 40–50% of  
GBM have EGFR gene amplification, and a splice variant which 
creates a mutant form of EGFR (viii) is present in 20–50% of  
EGFR gene-amplified GBM14. The prognostic implications of 
EGFR amplification are still unsettled; higher levels of gene  
amplification appear to correlate with poorer survival outcomes.

O6-methylguanine-DNA methyltransferase (MGMT) is involved 
in DNA repair of O06-alkylating agents, the prototypical exam-
ple being temozolomide. MGMT promoter methylation has  
prognostic and predictive significance in patients with GBM, 
with longer survival rates in newly diagnosed patients treated 
with chemoradiation and subsequent adjuvant temozolomide14,15. 
MGMT promoter methylation is present in approximately 50% of 
newly diagnosed GBM but more commonly in secondary GBM.  
MGMT promoter methylation status has been shown to be a  
predictive biomarker for survival in elderly GBM patients.  
Epigenetic mechanisms also have prognostic significance in  
GBM. Tumors demonstrating hypermethylation of CpG sites 

Page 3 of 8

F1000Research 2017, 6(F1000 Faculty Rev):1892 Last updated: 26 OCT 2017



throughout the genome, usually seen in younger patients with the 
pro-neural subtype, have an especially favorable prognosis14.

Mutations in the telomerase reverse transcriptase gene (hTERT) 
occur in approximately 75% of GBM cases. Although hTERT 
mutation status as a univariate factor does not appear to be prog-
nostic or predictive for GBM treatment outcomes, the favorable 
prognosis conveyed by MGMT promoter methylation may depend 
on concurrent hTERT promoter mutation. Classification into 
subgroups based on MGMT promoter methylation status and  
hTERT promoter mutation status appears to be more robust than 
MGMT promoter methylation alone18,19. Since MGMT promoter 
methylation is a stratification factor in many clinical trials for 
GBM, hTERT mutation status will need to be correlated with  
outcome as well.

Retrospective analysis of molecular features and outcome in 
the NRG Oncology Trial RTOG 05-25, which tested two differ-
ent regimens of adjuvant temozolomide, led to a proposed update 
for the prognostic recursive partitioning mode3. This new model  
incorporates MGMT protein expression and c-MET protein expres-
sion with better separation of the overall survival prognostic  
groups than incorporating MGMT promoter methylation alone3.

Translational clinical trial approaches for recurrent and newly  
diagnosed GBM include molecular targeted therapeutics, immu-
notherapies, and somatic gene therapy2. Although trials of single- 
agent tyrosine kinase inhibitors for recurrent GBM have been 
uniformly disappointing, ongoing trials are applying insights 
into mechanisms of resistance and better understanding of driver 
mutations2,20. Current trial designs include detection of specific 
target mutations or mutational profiles as eligibility criteria for 
the specific targeted drug. GBM patients are able to participate in  
mutation-defined rather than histology-defined trials, such as the 
MATCH trial. Responses have been reported with molecular- 
targeted therapies for GBM expressing BRAFv600 mutations, 
for GBM expressing NF1 mutations21, and for subsets of tumors 
with EGFR gene amplification. Although most studies with EGFR 
tyrosine kinase inhibitors (erlotinib and gefitinib) have been nega-
tive, retrospective molecular correlate studies of outcome suggest 
that a subgroup of tumors with EGFRviii mutation and wild-type 
PTEN, a tumor suppressor gene in the PI3K signaling pathway, do 
respond22,23. Clinical trials for recurrent GBM using a bifunctional 
antibody targeting EGFR and coupled to a microtubule-disrupting 
agent have been completed, and a study adding this agent to the 
standard chemoradiation and adjuvant temozolomide is ongoing 
(NCT02573324).

After a generation of persistent investigation by immunolo-
gists in the face of multiple negative trials, discoveries elucidat-
ing the mechanisms of tumor-induced immunosuppression in the 
tumor microenvironment have been translated into the clinic24,25.  
The first immunomodulatory drug trials in solid tumors have  
focused on the immunosuppressive signals PD1, PDL-1, CTLA4, 
and IDO. PD-1 inhibitors and CTLA-4 inhibitors have been FDA 
approved for melanoma and non-small-cell lung cancer trials.  
Clinical trials in recurrent and newly diagnosed GBM are  
2–3 years behind other solid tumor trials, in part because of  

additional complexities of drug delivery within the tumor  
microenvironment26. Nivolumab, pembrolizumab, and ipilimumab 
are humanized monoclonal antibodies with molecular weight and 
lipid/water solubility characteristics that likely limit penetration into 
the tumor microenvironment, especially in regions adjacent to tumor 
mass where the blood–brain barrier is relatively intact. Since PD-1  
is expressed on T cells rather than tumor cells, targeting PD-1  
may not require intratumoral drug delivery. Ongoing trials of  
checkpoint inhibitors in recurrent GBM have reported encour-
aging preliminary data suggesting activity27,28. However, in the  
Checkmate 143 trial, nivolumab did not meet the primary endpoint 
for overall survival compared to bevacizumab alone (Proceedings, 
World Federation of Neuro-Oncology Societies, 2017). Trials of 
checkpoint inhibitors, single drugs and combinations, are currently 
under phase 1 trial for newly diagnosed GBM.

Numerous studies of vaccines for recurrent and newly diagnosed 
GBM have been recently completed or are ongoing. A prospective  
randomized trial comparing temozolomide alone to temozolomide  
plus a vaccine targeting the EGFRviii-mutated protein dem-
onstrated improved overall survival in the vaccine arm29, but 
a similar trial in newly diagnosed GBM was terminated early  
after interim analysis indicated futility. The recurrent GBM 
EGFRviii trial was open label and compromised by a high 
rate of drop out in the standard treatment arm. Current vaccine  
strategies include autologous vaccines generated from the patient’s 
tumor at resection, peptide-based vaccines, and a new gen-
eration of vaccines using dendritic cells exposed to tumor cell  
RNA30,31. Viral vector-based gene therapy trials, in which the vector 
encodes immunomodulatory molecular signals, combine the les-
sons learned in viral somatic gene therapy trials to immunotherapy 
strategies32,33. Chimeric antigen receptor T cell therapies are also in 
early clinical trials for patients with GBM and have demonstrated 
the ability to migrate from injection sites to distant tumor sites34.

A novel cytotoxic mechanism based on tumor treatment fields 
was the subject of a randomized prospective phase 3 trial in newly  
diagnosed GBM. This technology employs scalp electrodes  
to generate alternating directional fields of low-intensity radiation 
in the 150–200 kHz range through the tumor. The tumor treatment 
fields (TTFs) led to the disruption of mitotic spindle formation 
and cell death in dividing tumor cells35. This trial demonstrated  
a survival benefit to the TTF cohort, similar in magnitude to the 
incremental benefit seen in the chemotherapy arm of the trial, 
which established concurrent chemoradiation and temozolomide 
as the standard therapy for newly diagnosed GBM4. Contro-
versy continues36 regarding the lack of a sham control arm in the  
trial and whether the TTF arm was more compliant with temo-
zolomide therapy, but analysis of the complete dataset indicates  
that the groups were well balanced for the relevant prognostic  
factors35.

The increasing translational clinical trial focus on strategies  
different from cytotoxic chemotherapy has created challenges 
for the radiologic evaluation of treatment response and tumor  
progression37,38. Patients treated with chemoradiation for newly 
diagnosed GBM may have transient worsening in MRI findings 
manifest in the first post radiation therapy follow up MRI. This 
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phenomenon, termed pseudoprogression, if not recognized can  
lead to premature discontinuation of effective therapy and is  
actually a good prognostic marker for prolonged survival38.  
Pseudoprogression is not distinguishable from true progression  
using routine clinical MRI criteria. At present, no single  
imaging feature or combination of features have been validated  
as biomarkers differentiating pseudoprogression from true  
progression. Quantitative imaging techniques employing MR 
spectroscopy and data extracted from clinical sequences are  
supplementing and refining treatment response assessment based 
on visual inspection of images37. Techniques that appear promis-
ing include Dynamic Contrast Enhanced or Susceptibility Weighted 
Contrast sequences, which allow the calculation of regional  
cerebral blood flow, changes in ADC characteristics, and 
PET imaging using FDG, FLT, or amino acid tracers37,39.  
Anti-angiogenic therapies can lead to overestimation of response  
based on criteria which measure the dimensions of contrast 
enhancement, and progression frequently presents as enlarging  
FLAIR abnormality without enhancement. Anti-angiogenic 
pseudoresponse confounds  the evaluation of efficacy at early 
time points in treatment. As with pseudoprogression, a range of  
quantitative MRI40 and PET techniques41,42 have been evaluated as 
potential imaging biomarkers of response.

Currently, there are no prospectively validated imaging biomar-
kers which are reliable discriminators of true response. A  
multidisciplinary working group to address the complexities of 
treatment response assessment in neuro-oncology have produced 
guidelines for current clinical trials (RANO). This group, led by 
Ben Ellingson, have proposed standardized imaging protocols  
with tiered complexity to establish standard imaging practices  
for both clinical management and translational therapeutic  
protocols43.

Using quantitative imaging techniques, investigators have identi-
fied imaging features that are not accessible by visual inspection 
and which correlate with molecular characteristics of the tumor  
and biologic behavior44,45. This application of quantitative imag-
ing using MRI features extracted from imaging data may allow 
non-invasive assessment of regional heterogeneity, identify the  
presence of EGFR amplification and IDH mutation46,47, differen-
tiate infiltrative tumor from perilesional edema48, differentiate  
recurrence from radiation treatment effect, and have prognostic 
significance in patients with newly diagnosed GBM44,46. Immu-
notherapy of GBM challenges response evaluation criteria based 
on enhancement as well, with the immune-mediated inflamma-
tion associated with response, mimicking progression. In a report 
of retrospective analysis of MRI parameters, including DCE,  
DSC, and arterial spin labeling (ASL), MR spectroscopic meas-
urement of myoinositol and Na23, and FLT PET, the authors  
suggest that advanced neuroimaging techniques may differentiate 
immunologic response from tumor progression49.

Elderly patients with GBM constitute an especially refractory 
challenge. Age over 60 years has been a consistent poor prognos-
tic factor through the modern history of GBM therapeutics. The 
increasing incidence with age coupled to the aging population 

demographic means that the management of 70 and 80 year olds 
with GBM is becoming a numerically more frequent problem.  
Several trials have compared regimens which shortened the dura-
tion of radiation therapy and compared radiation therapy alone 
to radiation with chemotherapy and even chemotherapy alone, 
producing similar outcomes50. MGMT promoter methylation sta-
tus is an important prognostic and predictive marker. For MGMT  
promoter methylated patients, in one trial, treatment with  
temozolomide alone was equivalent to short course radiation  
therapy. Abbreviated courses of radiation appear to be similar in 
efficacy to a full six weeks of radiation, but none of these trials  
compared their experimental regimen to the full six-week regimen  
of chemoradiation followed by six months of adjuvant temo-
zolomide. Although controversy remains about the management 
of elderly patients, evolving consensus suggests that patients 
between 60 and 70 should be considered for similar treatment 
as younger patients while patients over 70 or with significant  
medical comorbidities be treated with a modified regimen. A  
randomized prospective trial comparing 4,000 cGy over three 
weeks versus concurrent chemoradiation to the same total dose 
followed by six months of adjuvant temozolomide demonstrated 
a survival benefit to the chemotherapy cohort, with a beneficial 
effect in both the MGMT methylated and the unmethylated groups, 
though larger in the MGMT methylated cohort51. This regimen is  
currently considered by many neuro-oncology centers to be the 
standard therapy.

Conclusion
Although the treatment options for patients with GBM are far from 
satisfactory, and overall survival for patients with newly diagnosed 
GBM remains short, this is an optimistic time for neuro-oncology. 
Neuro-oncology centers with multi-disciplinary teams including 
neurosurgery, neuro-oncology, neuroradiology, and neuropathol-
ogy are seeing median overall survival increasing, and the number 
of long-term survivors is increasing as well. The translational 
research challenges over the next five years include the systematic  
evaluation of immunotherapy using cell-based treatments and 
checkpoint inhibitors, elucidating the factors that create sensi-
tivity and resistance to molecularly targeted therapies, and the  
development of increasingly accurate imaging biomarkers of  
treatment response. Radiogenomics and other applications of quan-
titative neuroimaging will improve our ability to identify biologi-
cally relevant characteristics of tumors non-invasively. The current 
generation of clinical trials are incorporating powerful insights into 
the relationship between molecular genetics and biologic behavior, 
attention to the issue of drug delivery to tumor and pharmacody-
namics, and the interplay of mechanisms of tumor immunity and 
immunosuppression in the tumor microenvironment.

This review has provided an overview of the rapidly evolving diag-
nostic, therapeutic, and imaging aspects of the management of 
patients with GBM. The most important recommendation regard-
ing the care of patients with GBM is the importance of the role 
of neuro-oncologic centers of excellence with experience in the 
diagnosis and management of these patients based on high-volume 
neurosurgical and neuro-oncology practice, as equally important, 
with access to clinical trials.
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