
GigaScience, 10, 2021, 1–22

https://doi.org/10.1093/gigascience/giab058
Technical Note

TE CHNICAL NO TE

Scalable analysis of multi-modal biomedical data
Jaclyn Smith 1,*, Yao Shi1, Michael Benedikt1 and Milos Nikolic 2

1University of Oxford, Computer Science, Wolfson Building, Parks Road, Oxford OX1 3QD, UK and 2University
of Edinburgh, School of Informatics, Informatics Forum, 10 Crichton St, Newington, Edinburgh EH8 9AB,
Scotland
∗Correspondence address. Jaclyn Smith, University of Oxford, Computer Science, Wolfson Building, Parks Road, Oxford OX1 3QD, UK E-mail:
jaclyn.smith@cs.ox.ac.uk http://orcid.org/0000-0001-8498-8949.

Abstract

Background: Targeted diagnosis and treatment options are dependent on insights drawn from multi-modal analysis of
large-scale biomedical datasets. Advances in genomics sequencing, image processing, and medical data management have
supported data collection and management within medical institutions. These efforts have produced large-scale datasets
and have enabled integrative analyses that provide a more thorough look of the impact of a disease on the underlying
system. The integration of large-scale biomedical data commonly involves several complex data transformation steps, such
as combining datasets to build feature vectors for learning analysis. Thus, scalable data integration solutions play a key role
in the future of targeted medicine. Though large-scale data processing frameworks have shown promising performance for
many domains, they fail to support scalable processing of complex datatypes.
Solution: To address these issues and achieve scalable processing of multi-modal biomedical data, we present TraNCE, a
framework that automates the difficulties of designing distributed analyses with complex biomedical data types.
Performance: We outline research and clinical applications for the platform, including data integration support for building
feature sets for classification. We show that the system is capable of outperforming the common alternative, based on
“flattening” complex data structures, and runs efficiently when alternative approaches are unable to perform at all.

Keywords: nested data; distributed processing; Spark; query compilation; multi-omics analysis; multi-modal data integration

Background

The affordability of genomic sequencing, the advancement of
image processing, and the improvement of medical data man-
agement have made the biomedical field an interesting applica-
tion domain for integrative analyses of complex datasets. Tar-
geted medicine is a response to these advances, aiming to tailor
a medical treatment to an individual on the basis of their ge-
netic, lifestyle, and environmental risk factors [1]. Analyses that
combine molecular measurements from multi-omics data pro-
vide a more thorough look at the disease at hand and the rela-
tive effects on the underlying system; thus, the reliability of such
targeted treatments is dependent on multi-modal, cohort-based
analyses.

Targeted medicine has improved data management and data
collection within medical institutions, which are now capable

of producing biomedical datasets at outstanding rates. For ex-
ample, the SRA from the NIH has exhibited exponential growth
in less than a decade [2]. In addition, these efforts have also
spurred consortium dataset collection and biobanking efforts
[3]. These are consolidated data sources from hundreds of thou-
sands of patients and counting, such as the 1000 Genomes
Project [4], International Cancer Genome Consortium (ICGC) [5],
The Cancer Genome Atlas (TCGA) [6], and UK BioBank [7]. This
scenario has introduced a demand for data processing solutions
that can handle such large-scale datasets; thus, scalable data in-
tegration and aggregation solutions capable of supporting joint
inference play a key role in advancing biomedical analysis.

Modern biomedical analyses are pipelines of data access
mechanisms and analytical components that operate on and
produce datasets in a variety of complex, domain-specific for-
mats. Integrative analyses of complex datasets can bring many

Received: 18 December 2020; Revised: 31 May 2021; Accepted: 18 August 2021

C© The Author(s) 2021. Published by Oxford University Press GigaScience. This is an Open Access article distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any
medium, provided the original work is properly cited.

1

http://www.oxfordjournals.org
http://orcid.org/0000-0001-8498-8949
http://orcid.org/0000-0002-1548-6803
mailto:jaclyn.smith@cs.ox.ac.uk
http://orcid.org/0000-0001-8498-8949
http://orcid.org/0000-0001-8498-8949
http://creativecommons.org/licenses/by/4.0/

2 Scalable analysis of multi-modal biomedical data

challenges, which are compounded with large-scale data. These
challenges can be related to performance or programming is-
sues. Performance issues arise because distribution strategies
are not favorable for nested datasets, often hindering paral-
lel execution and exhibiting poor resource utilization. Program-
ming issues arise when associations must be made on nested
attributes, making implementation not straightforward. To un-
derstand these challenges, we now introduce a running exam-
ple and use that example to overview multi-omics analysis, dis-
tributed processing systems, and the challenges that arise when
these 2 worlds collide.

Running example

Cancer progression can be determined by the accumulation of
mutations and other genomic aberrations within a sample [8].
Consider an integrative, multi-omics analysis that aims to iden-
tify driver genes in cancer on the basis of mutational effects and
the abundance of gene copies in a sample [9]. This analysis com-
bines single-point, somatic mutations and gene-level copy num-
ber information to calculate a likelihood score that a candidate
gene is a driver within each sample, known as a hybrid score.
Candidate genes are assigned to mutations on the basis of the
proximity of a mutation to a gene. In a naive assignment, candi-
dacy is established if the mutation lies directly on a gene; how-
ever, mutations have been shown to form long-range functional
connections with genes [10], so candidacy can best be assigned
on the basis of a larger flanking region of the genome.

Multi-omics datasets

To understand the complexities of such an integrative analy-
sis, first consider the data sources involved. The Genomic Data
Commons (GDC) [11] provides public access to clinical infor-
mation (Samples), somatic mutation occurrences (Occurrences),
and copy number variation (CopyNumber). Assume that access to
each of these data sources returns a collection of objects in JSON,
a popular format for nested data, where [] denotes a collection
type and { } denotes an object type [12].

The Samples data source returns metadata associated with
cancer samples. A simplified version of the schema contains
a sample identifier (sid) and a single attribute tumorsite that
specifies the site of tumor origin; the type of Samples is

[{ sid : string,tumorsite : string }]. (1)

The copy number variation (CNV) data source returns by-
gene copy number information for each sid; this is the number
of copies of a particular gene measured in a sample. The type of
copy number information is:

[{ sid : string,gene : string,cnum : int }]. (2)

The Occurrences data source contains somatic mutations
and associated annotation information for each sample. An oc-
currence is a single, annotated mutation belonging to a single

sample. The type of Occurrences is:

[{ sid : string,contig : string,start : int,end : int,

reference : string,alternate : string,mutationId : string,

candidates : [{ gene : string,impact : string,

sift : real,poly : real,

consequences : [{ conseq : string }] }] }]. (3)

The attribute “candidates” identifies a collection of objects
that contain attributes corresponding to the predicted effects
that a mutation has on a gene; i.e., “variant annotations” sourced
from the Variant Effect Predictor (VEP) [13]. The “impact,” “sift,”
“poly,” and “conseq” attributes provide impact scores denoting
estimated consequence a mutation has to a gene on the basis
of sequence conservation, predicted functional changes [14, 15],
and sequence ontology (SO) terms [16].

The Samples and CopyNumber data source types map per-
fectly into a relational scenario, such as a table in SQL or a
DataFrame in Pandas [17]. With all attributes of scalar type (e.g.,
integer, string), these data sources are considered “flat.” The
Occurrences data source has a nested collection “candidates”
on the first level and another nested collection “consequences”
on the second level. When a collection has attributes of collec-
tion type, it is referred to as a “complex value” or a “nested col-
lection.”

In the running example, the gene-based copy number val-
ues need to be combined with the mutational impact values.
This requires associating the flat CopyNumber dataset with the
Occurrences dataset based on sid and gene. The impact mea-
surements and copy number values are then combined and a
collection of candidate genes with corresponding hybrid scores
are returned after summing across the unique genes for each
sample. The output type of the running example is thus:

[{ sid : string,scores : [{ gene : string,score : real }] }]. (4)

The nested nature of this analysis is further complicated
when the data is large and distributed computing is needed.

Distributed processing frameworks

Large-scale, distributed data processing platforms, such as
Apache Spark [18], have become indispensable tools for mod-
ern data analysis. The wide adoption of these platforms stems
from powerful functional-style APIs that allow programmers to
express complex analytical tasks while abstracting distributed
resources and data parallelism. Despite natively supporting
nested data, distribution strategies often fail to process nested
collections at scale, especially for a small number of top-level tu-
ples or large inner collections. Furthermore, data scientists who
work on local analysis pipelines often have difficulties translat-
ing analyses into distributed settings.

Distributed processing frameworks work on top of a cluster of
machines where one is designated as the central, or “coordina-
tor” node, and the other nodes are “workers.” Figure 1 shows the
set-up of a Spark cluster; an application is submitted to the co-
ordinator node, which then delegates tasks to worker nodes in a
highly distributed, parallel fashion. A user never communicates
with a worker node directly. A distributed processing API com-
municates high-level analytical tasks to the coordinator while
abstracting data distribution and task delegation from the user.

Smith et al. 3

Figure 1: Set-up of a Spark cluster with distributed representation of Occurrences and CopyNumber cached in memory across N worker nodes. User applications are
submitted to the coordinator, which delegates tasks to the worker nodes to support distributed execution. Figure 2is an example of a user application.

Figure 2: Example Spark application that groups somatic mutations and copy
number information by sample.

Spark uses a specialized data structure for representing
distributed data, where a “partition” is the smallest unit of
distribution. When a flat data source, such as Samples and
CopyNumber, is imported into Spark each item of the collec-
tion is allocated in round-robin fashion to each partition. The
same import strategy is applied to a nested dataset, with the
nested attributes persisting in the same partition as their par-
ent; we refer to this as a “top-level distribution strategy.” Figure
1displays how Occurrences would be stored in memory across
worker nodes, distributing top-level objects with candidates

and consequences nested within the same location.
Spark provides an API for performing batch operations over

distributed collections. Figure 2 presents a Scala program that
uses the Spark API to associate CopyNumber to the relevant gene
and samples in Occurrences; this is the association required for
the running example.

The program starts by defining a case class, named
FlatOccurrence, which encapsulates objects of type [{ sid :
string,gene : string,impact : real }]. The flatMap operation (lines
3–5) works locally at each partition, iterating over top-level ob-
jects in Occurrences and navigating into candidates to create
instances of FlatOccurrence objects. The “join” operator (line 6)
merges tuples from the result of flatMap and CopyNumber based
on the equality of (sid, gene) values; these are the keys of a
“key-based partitioning guarantee” that sends all matching val-

ues to the same partition. The process of moving data to pre-
serve a partitioning guarantee is known as “shuffling.” The fi-
nal groupByKey operation (line 7) groups the joined result on the
basis of unique sid values; this is a key-based operation that
sends all tuples with matching sid values to the same parti-
tion, producing a final output type of [{ sid : string, [{ gene :
string,impact : real,cnum : int }] }].

Given the complexities of biomedical analyses and the re-
lated aspects of distributed computing frameworks described
above, we next detail the performance and programming chal-
lenges that arise when implementing analyses over distributed,
nested collections.

Challenges of distributed, multi-omics analyses

Performance issues are rooted in the top-level distribution and
key-based partitioning strategies of distributed processing sys-
tems. First, few top-level values can hinder distribution strate-
gies for nested data. For example, the groupByKey operation in
Fig. 2 for a dataset with a small number of samples, such as
the 51 samples of the TCGA lymphoma dataset, will distribute
objects across ≤51 partitions. This is poor resource utilization
for a cluster that supports more partitions. Second, large inner
collections, such as the collective copy number information for
every gene, can overwhelm the physical storage of a partition.
This leads to time-consuming processes of moving values in and
out of memory. Both of these performance issues can lead to
skew-related bottlenecks that make certain tasks run consider-
ably longer than others.

Programming issues arise when joining on a nested attribute,
such as the join between Occurrences and CopyNumber in the
running example. After pre-processing, the association on the
nested attributes of Occurrences can be performed with a join in
SQL, Pandas, or Spark as we have seen in Fig. 2; however, the pre-
processing required is not straightforward for complex datasets.

Because Occurrences is distributed, the gene join keys are
nested within each partition and are not directly accessible

4 Scalable analysis of multi-modal biomedical data

without iterating inside the nested collections. Even an iteration
inside candidates cannot directly perform the conditional join
filter on CopyNumber because it is itself distributed. An attempt
to reference a distributed resource within a transformation of
another distributed resource will result in error because a single
partition is not aware of the other distributed resources and has
no power to delegate tasks to workers. The solution is to repli-
cate CopyNumber to each worker node, which can be too expen-
sive, or rewrite to flatten Occurrences and bring gene attributes
to the top level, which can lead to exponential blowups. Flatten-
ing can also yield incorrect results, owing to empty nested col-
lections and the loss of relationship information between nested
child objects and their parent attributes. For example, simply ap-
plying the flatMap in Fig. 2 does produce a flat bag from a nested
one. But it will lose all occurrences that have empty candidates

collections, which may make certain operations on the nested
object impossible to retrieve from the output. The flatMap ex-
ample from the figure also illustrates the performance issues as-
sociated with flattening. Even though it loses some information,
flattening the 8,000 top-level records of the TCGA lymphoma
Occurrences dataset produces 250,000 records, which is a 31×
increase. Furthermore, regrouping this information on the ba-
sis of the unique oid identifier returns only 1,700 top-level tu-
ples because we have lost occurrences with empty collections. In
general, manual implementations of flattening procedures that
perform adequately and ensure correctness are non-trivial [19].

Related work

A wide range of tools are available to assist biological analyses.
Workflow engines ease the process of connecting many external
software systems while producing repeatable analyses; exam-
ples include Galaxy [20], Cromwell [21], Arvados [22], and Tav-
erna [23]. Corresponding workflow languages describe impera-
tive pipelines requiring manual optimizations to each individ-
ual pipeline component. In contrast, high-level, declarative lan-
guages better insulate pipeline writers from platform details,
while also providing the ability to leverage database-style query
compilation and query optimization techniques. Many genomic-
specific languages have been developed that target distributed
processing platforms, such as GenoMetric [24], Hail [25], Adam
[26, 27], and Glow [28]. These provide advantages for a particular
class of transformations but would not suffice for pipelines that
integrate a variety of relational and nested data types.

TraNCE is introduced in [29]. That article presents the core
shredding and skew-handling techniques, and provides micro-
benchmarks that show the impact of their performance rela-
tive to the baseline, standard pipeline, and to external competi-
tors. The arXiv preprint [30] and GitHub repository [31] associ-
ated with [29] provide additional comparisons. The focus of this
work is the use of the tool in the context of biology and the re-
maining architectural pieces that enable that use, including the
interaction of the language with statistical libraries, notebook
environments, and extended skew-handling techniques.

Proposed solution

To address these issues and achieve scalable, distributed pro-
cessing of multi-modal biomedical data, we propose TraNCE
(Transforming Nested Collections Efficiently). TraNCE is a com-
pilation framework that automates the difficulties of designing
distributed analyses with complex, biomedical data types. The
framework provides a high-level language suitable for users of
varying levels of data science expertise, providing an abstrac-

tion to the difficulties of integrating complex datasets and pro-
gramming with a distributed collection API. The system uses
query compilation and optimization techniques to ease the diffi-
culty of handling nested collections and is designed for arbitrary,
multi-modal analyses of complex data types.

The article proceeds as follows. The Methods section outlines
the components of the TraNCE platform, describing the major
components by means of example. We overview several omics-
based use cases that have been trialed with our framework, in-
cluding performance metrics, in the Results section. Finally, we
conclude with a summary of contributions and future work.

Methods
TraNCE platform

TraNCE (TraNCE, RRID:SCR 021252) is a compilation framework
that transforms declarative programs over nested collections
into distributed execution plans. This section discusses several
key aspects of the platform, including program compilation, pro-
gram and data shredding, and skew-resilience. “Program compi-
lation” leverages a high-level, declarative source language that
allows users to describe programs over nested collections. The
framework insulates the user from the difficulties of handling
nested collections in distributed environments.

Two compilation routes are provided, standard and shred-
ded, that apply optimizations while transforming input pro-
grams into executable code. Standard compilation uses unnest-
ing [19] techniques to apply optimal flattening methods in or-
der to compute on nested values. This compilation route auto-
matically handles introducing NULL values and unique identi-
fiers that preserve correctness. The standard compilation acts
as a baseline for the “shredded compilation”; this compilation
route is reflective of current procedures to handle nested data,
such as what is provided in Spark-SQL [32] (Spark-SQL, RRID:
SCR 016557). The shredded route optimizes the standard route
with “shredding” techniques that transform a program operat-
ing on nested collections into a collection of programs that op-
erate over flat collections [33, 34], thus enabling parallelism be-
yond top-level records.

The result of each compilation route is an Apache Spark pro-
gram that is suited for distributed execution. We apply dynamic
optimizations at runtime that overcome skew-related bottle-
necks. “Skew-resilience” prevents the overloading of a partition
at any time during the analysis to avoid such bottlenecks in ex-
ecution and maintain better overall distribution of the data.

Figure 3 provides a schematic of the framework, including
interaction with a Spark cluster for the shredded compilation
method. The Spark cluster set-up for the standard compilation
method is the classic set-up depicted in Fig. 1.

The next sections overview each of the framework compo-
nents, drawing specific attention to multi-omics analysis. We
begin with an introduction to the TraNCE language and then
describe the standard compilation and shredded compilation
routes. Finally, we detail the skew-resilient processing optimiza-
tion and the code generation process.

High-level language

TraNCE provides a language for describing biomedical analyses
as high-level collection programs; this language is a variant of
nested relational calculus (NRC) [34, 35]. Here we provide a walk-
through of the language using several example programs over
the Occurrences, CopyNumber, and Samples data sources. We in-

https://scicrunch.org/resolver/RRID:SCR_021252
https://scicrunch.org/resolver/RRID:SCR_016557

Smith et al. 5

Figure 3: System architecture of TraNCE, presenting 2 compilation routes that result in executable code. The Spark cluster provides a schematic representation of the
shredded compilation route, where the shredded inputs of Occurrences are cached in memory across worker nodes.

troduce some basic aspects of the language, eventually leading
up to the program associated with the running example. The full
syntax of the TraNCE language is provided in [29].

TraNCE programs operate on collections of objects. Objects
are tuples of values for a fixed set of attributes, with all objects
of 1 collection having the same type. Attributes can be of ba-
sic scalar type (e.g., integer, string) or of collection type, thus
providing support for nested data. We denote collection types
with [] and object types with { } to follow JSON syntax. For
example, the type of Occurrences shown in equation (3) is a
collection that itself contains collections, with candidates and
consequences corresponding to collection types and all other at-
tributes as scalars.

The main advantage of the TraNCE language is the ability
to manipulate nested collections and return results with nested
output type, while abstracting out the complications of nested
data distribution from the user. Consider the following program,
assigned to OccurrProj via the ⇐ operator, that requests only
specific attributes from the Occurrences data source:

The OccurrProj program iterates over Occurrences, persist-
ing only the attributes required for the running example. The
program first iterates over the top level of Occurrences, preserv-
ing only the sid attribute, and creates a nested candidates col-
lection by iterating over the candidates collection and preserv-
ing the gene and impact attributes. Note that this is similar to
lines 3–5 from Fig. 2; however, this program follows the nested
structure of Occurrences and does no flattening.

The next step of the running example is to define the associa-
tion between CopyNumber and Occurrences. The language allows
one to specify such associations between data sources and on

nested attributes without explicitly defining a flattening opera-
tion. For example, the OccurCNV program associates copy num-
ber information based on both the top-level sid attribute and
the nested gene attribute of Occurrences.

The OccurCNV program iterates over Occurrences following
its original structure. The iteration over CopyNumber is specified
in the second level, providing immediate access to the nested
gene attribute and allowing the user to define an association be-
tween sid and gene. The result returns the original structure of
the first 2 levels of Occurrences, annotating each of the candi-
date genes for every mutation with the relevant copy number
information.

Standard arithmetic operations and built-in support for ag-
gregation are provided in the language. The sumByvalue

key (e) function
can be used for counting and summing based on a unique key.
The key and value parameters can reference any number of at-
tributes from the input expression e. sumBy can be applied at a
specific level as long as the input e has no nesting. For example,
the OccurAgg program performs the association from the run-
ning example, while also summing over the product of the re-
spective copy number and mutational impact values for every
sample in occurrences.

The OccurAgg program extends the previous programs, re-
turning the sum of the product of copy number and variant in-
formation based on the unique genes in candidates. The sumBy

is applied to the first level of Occurrences with gene as key and
score as value. With all attributes of scalar type, the input cor-
responding to e has a flat type [{ gene : string,score : real }].

6 Scalable analysis of multi-modal biomedical data

All programs so far have followed the structure of the
Occurrences data source, grouping the genes associated to each
mutation and each sample. If the goal is to create candidate gene
collections per sample, then we can additionally group by sam-
ple using the groupBykey(e) function. The following is the full pro-
gram that represents the running example, which we denote
SGHybridScores; this program creates hybrid scores for each
sample, summing the combination of annotation information
and copy number information across all candidate genes for all
mutations associated to the top-level sample.

The expression inside of sumBy captures the navigation into
candidates, associating each candidate gene at this level with
CopyNumber on the gene and sid attribute. The product of all
these measurements produces the intermediate score for each
of the candidate genes within the candidates collection for each
mutation. The final hybrid scores are calculated by aggregating
all intermediate scores across all mutations within a sample, re-
turning a hybrid score associated to each unique gene for each
sample using sumBy. The result of this aggregation is further
grouped with groupBy to return the hybrid scores associated to
every sample, producing output type:

[{ sid : string,scores : [{ gene : string,score : real }] }].

The next program extends upon the running example
SGHybridScores program, grouping the sample-grouped hybrid
scores by tumor site using the Samples table. We denote this pro-
gram as TGHybridScores:

The tumor-grouped hybrid score program first iterates over
the Samples data source to create a unique set of tumor
sites with dedup. dedupis a function that returns a collection
with all duplicates removed. The second part of the program
TGHybridScores iterates over these unique groups to create
top-level groupings based on tumorsite. The program then en-
ters the first level at samples, where it proceeds to iterate over
Samples, creating first-level groupings based on sid. The sec-
ond level begins at scores, which performs the sumBy aggre-
gation described in the previous program. The result of the
TGHybridScores program is every sample-based hybrid score

further grouped by tumor site with the output type:

[{ tumorsite : string,samples : [{ sid : string,scores :

[{ gene : string,score : real }] }] }].

Note that the first portion of TGHybridScores that creates a
unique set of tumor sites and then iterates over them to create
distinct top-level keys with nested groups is the same exact op-
eration as groupBy; thus the groupBy operation is a function that
enables users to describe such key-based grouping operations in
a more concise way. The rest of the examples in this section re-
fer to the extended running example TGHybridScores in order
to describe the compilation routes with the base syntax of the
language.

The TraNCE programs described in this section highlight the
advantages of using a variation of NRC to describe analyses
over nested collections. Each analysis is similar to pseudo-code
where the user describes actions on nested collections, without
considering implementation details that are specific to a dis-
tributed environment.

Standard compilation

The standard compilation route translates TraNCE programs
into executable Spark applications, while handling the diffi-
culties of flattening procedures. Figure 3 provides a high-level
schematic of the standard pipeline architecture; the standard
Spark cluster setup is depicted in Figure 1. This compilation
is based on unnesting techniques that automate the flattening
process by automatically inserting NULL and unique identifiers
(ID) to preserve correctness [19]. The unnesting process starts
from the outermost level of a program, recursively defining a
Spark execution strategy. A new nesting level is entered when
an object contains an expression of collection type. Before en-
tering the new nesting level, a unique ID is assigned to each ob-
ject at that level. At each level, the process maintains a set of
attributes, including the unique IDs, to use as the prefix for the
key in grouping and sumByoperations.

Consider running the standard compilation for the
TGHybridScores analysis. The Spark application generated
for this program starts by iterating over Occurrences values,
flattening each of the nested items inside candidates with
flatMap. Prior to this, Occurrences is indexed to ensure tracking
of top-level objects. If candidates is an empty collection, lower-

Smith et al. 7

level attributes exist as null values. The result of flattening has
gene attributes that are accessible at top level. The flattened re-
sult is joined with CopyNumber based on sid and gene attributes,
and the product associated to score is calculated. This result is
further joined with Samples and grouped by sample using the
groupByKey operation. A final call to groupByKey groups again
by tumorsite to produce the final result.

Projections are pushed throughout the execution strategy,
ensuring that only used fields are persisted. The framework
can also introduce intermediate aggregations, such as combin-
ing impact, sift, and poly in Occurrences prior to joining with
CopyNumber.

The standard compilation route is the baseline for process-
ing nested queries, generating execution strategies that are re-
flective of the state-of-the-art flattening procedures in current
systems capable of processing nested queries. We have previ-
ously shown that due to additional optimizations that we apply,
such as intermediate aggregations, the standard route has bet-
ter performance in relation to classical flattening methods [29].
Nonetheless, flattening methods do not scale, so the standard
compilation route is provided as the basis for the scalable shred-
ded compilation route.

Shredded compilation

The shredded compilation route takes the same high-level
TraNCE program as in the standard route, extending compila-
tion to support a more succinct data representation. Analytics
pipelines, regardless of final output type, produce intermediate
nested collections that can be important in themselves: either
for use in multiple follow-up transformations or because the
pipeline is expanded and modified as data are explored. The
shredded pipeline ensures scalability throughout the duration
of the pipeline, removing the need to introduce intermediate
grouping operations with the help of this succinct representa-
tion.

The shredded compilation uses the “shredding transforma-
tion,” which transforms programs that operate on nested data
into a set of programs that operate on flat data; the resulting set
of programs is the “shredded program.” Nested inputs are there-
fore required to be encoded as a set of flat relations; this is the
“shredded input.” The shredded input and shredded program
are provided as a succinct representation, where any attribute
corresponding to a nested collection is referenced in the flat pro-
gram using an identifier, known as a “label.” Labels encode nec-
essary information to reassociate the levels of the shredded in-
put. Reassociation is required when a specific level of the shred-
ded program navigates over multiple levels of the shredded in-
put or when the output is returned as a nested type.

Figure 3 provides a high-level overview of the shredded com-
pilation route, which produces a Spark application that defines
the shredded program. The shredding transformation is hidden
from the user and a user never interacts with shredded repre-
sentations directly. Further details of the shredding transforma-
tion are described in [29].

Given the transformation to flat representation, the shred-
ded compilation route supports distribution beyond top-
level attributes. The succinct representation supports a more
lightweight execution that replaces upper- and lower-level at-
tributes with labels; this results in reduced data transfer by
means of shuffling and provides support for “localized opera-
tions,” which are operations that can be directly applied to the
level specified in the input program. Shredding can be neces-
sary for scaling for a small number of top-level objects and

large/skewed inner collections [29]. Further performance bene-
fits are presented in the Results section. We here continue with
an explanation of shredding by example.

The shredded representation of Occurrences consists of 3
data sources:

� a top-level source of Occurrences, denoted Occurrences top,
that returns data with a flat type

[{ sid : string,contig : string,start : int,end : int,

reference : string,alternate : string,

mutationId : string,candidates : Label0 }],

� the first-level source, denoted Occurrences candidates,
which has a flat datatype extending the type of candidates
with a label attribute of Label type

[{ label : Label0,gene : string,impact : real,

sift : real,poly : real,consequences : Label1 }],

� and the second-level source, which extends the type of
consequences with a label attribute of Label type, denoted
Occurrences candidates consequences

[{ label : Label1,conseq : string }].

The relationships between the shredded representations can
be conceptualized as a database schema, with labels repre-
senting foreign-key dependencies. The candidates attribute in
Occurrences top is then a foreign key that references the pri-
mary key of Occurrences candidates at label. Therefore, the re-
construction of nested output, known as “unshredding,” can be
achieved by reassociating the shredded sources based on these
relationships.

TraNCE then translates the nested program into a series of
programs that operate on these flat inputs, i.e., construct the
shredded program. We next review the shredding transforma-
tion on the extended running example TGHybridScores.

Recall that the TGHybridScores program starts with the
dedupoperation that returns a collection of distinct tumor sites
that will later be used for grouping. The first program returned
from the shredding transformation is the shredded program
TumorSites top. The expression assigned to TumorSites oper-
ates over a flat input and returns flat output, so the shredding
transformation essentially returns the identity:

The shredding transformation continues on the expres-
sion assigned to TGHybridScores, returning a series of 3
programs, collectively, the shredded TGHybridScores pro-
gram. The first program represents the top-level collection,
TGHybridScores top, with the samples attribute containing only
a label reference.

The type of TGHybridScores top is [{ tumorsite : string,

samples : Label2 }]. There are no nested collection attributes,
so this is indeed a flat collection. Furthermore, the label of the

8 Scalable analysis of multi-modal biomedical data

samples attribute encodes only the necessary information to re-
construct the nested output, which in this case is the binding of
tumorsite.

The program TGHybridScores samples defines the succinct
representation of the first-level expression, represented by the
following program:

The type of TGHybridScores samples is [{ label : Label2, sid :
string, scores : Label3 }].

The label expression defines a label that encodes the
same information as the samples field in TGHybridScores top.
This is the same database-style representation seen with the
shredded inputs. The label attribute is the primary key of
TGHybridScores samples and TGHybridScores top references
this with a foreign key at samples. The scores attribute encodes
only the sid information that is needed in the next-level expres-
sion.

The program TGHybridScores samples scores defines the
succinct representation of the lower-level expression, repre-
sented by the final program:

The type of TGHybridScores samples scores is [{ label :
Label3, gene : string, score : real }].

The TGHybridScores samples scores program navigates the
top and first level of the shredded representation, using a con-
ditional to reassociate these 2 shredded representations on the
basis of their label attributes. The shredded representation al-
lows nested operations to work directly on the level assigned in
the input program. This is an example of a localized operation
that results in lightweight execution of nested data, removing
the need to carry around redundant data.

The 3 programs associated with TGHybridScores are impor-
tant for maintaining distribution of the nested values during
program evaluation. The first program defines a collection of tu-
mor site information; this avoids distributing the data based on
a small number of top-level tuples. The second program defines
a collection of sample information, further ensuring the distri-
bution of the lowest level of nesting. The final program defines

the bulk of the analysis, isolating the aggregation to the level
where it is specified in the input program, and enabling execu-
tion of the aggregate without carrying around extra information
from the parent.

Skew-resilient processing

Analytical pipelines often contain processes that associate
items on the basis of a shared attribute, such as the grouping by
tumor site in tumor-grouped analysis. The execution of lines 6–7
of TGHybridScores will move all data belonging to a specific tu-
mor site to the same partition—treating tumor site as a key. The
TCGA-based Occurrences data source will contain significantly
more samples for certain tumor sites than others; e.g., there are
1,100 patients associated with the breast cancer dataset (BRCA)
and 51 patients associated with the lymphoma dataset (DLBC).
The grouping operation will move all mutations associated to
the 1,100 BRCA patients to the same node and the whole of DLBC
to another node. This will result in extreme imbalances of data
across nodes, leading to 2 main issues. First, the movement of a
large amount of data to the same location could completely over-
whelm the resources on that node—which is likely the case for
pathway and gene family groupings. Second, any downstream
computation of these groups will lead to significant bottlenecks
in execution time; for instance, a simple count operation over
the 444,000 BRCA occurrences takes 32 times that of the 8,115
somatic occurrences of DLBC. Regardless of the specific opera-
tion, these distribution issues are a consequence of skew. Skew-
related issues can easily burden an analysis and can be hard for
high-level programmers to diagnose.

In distributed processing systems, skew is a consequence of
key-based partitioning, where all values with the same key are
sent to the same partition; thus, skew is a problem even for flat
datatypes. TraNCE automatically estimates skew-related bottle-
necks at runtime and dynamically alters the query execution
strategy to overcome skew. The core of the skew-handling pro-
cedure is the identification of “heavy keys,” which are keys with
so many associated values that moving them all to the same par-
tition would overwhelm the resources of that node. The frame-
work uses a sampling procedure to identify heavy keys. There
are 4 strategies available in the skew-handling procedure: full,
partial, sample, and slice. Full is the most accurate method, fully
identifying heavy keys on the basis of all values across all parti-
tions. Partial identifies heavy keys on the basis of values locally
within each partition. Sample identifies heavy keys by randomly
sampling a subset (default 10%) of each partition. Because access
to data within a partition is via an iterator interface, all of these
methods require 1 full iteration over each partition, which can be
expensive for large partitions. Slice evaluates heavy keys on the
basis of the first range of values (default 1,000) in the partition.
The sampling percent and slice range are all user-configurable.
All methods categorize a key as heavy when the associated val-
ues make up a user-specified threshold of the total value (default
2.5%). All other keys are considered light.

Light keys follow the skew-unaware execution strategy. All
heavy keys are subject to a broadcast-based execution strategy
that prevents the movement of associated values to the same
node. Broadcast is a feature of distributed processing platforms,
which takes a set of values and duplicates them on each node.
This means that the heavy values of one input are sent to the
heavy values of another input, and the computation proceeds
locally without shuffling any values. This means that values as-
sociated to heavy keys are not moved, which dramatically re-

Smith et al. 9

duces the memory footprint of a task that would otherwise be
memory intensive.

Both compilation routes leverage skew-handling methods
that maintain proper distribution of values associated to heavy
keys. Given that the shredded representation ensures distribu-
tion of inner-collections, the shredded compilation method is
better suited to deal with skew-related issues that arise from
large nested collections and/or top-level distribution.

Code generation

The code generation stage translates a TraNCE program into a
parallel data flow described in the Spark collection API, such as
the application in Fig. 2.

Input and output collections are modeled as Spark Datasets,
which are strongly typed, special instances of the native
distributed collection type in Spark—Resilient Distributed
Datasets (RDDs) [36]. Datasets are used because the alterna-
tive encoding—using RDDs of case classes—incurs much higher
memory and processing overheads [30]. Datasets map to rela-
tional schemas and also allow users to explicitly state which
attributes are used in each operation, providing valuable meta-
information to the Spark optimizer.

Because nested inputs are represented as a collection of flat
relations in the shredded pipeline, the shredded representation
of data sources is merely a collection of Spark Datasets. The
tables representing the nested levels contain a label column
(label) as key; these collections have a label-based partitioning
guarantee, which is a key-based partitioning guarantee where
all values associated to the same label reside on the same par-
tition. Top-level collections that have not been altered by an op-
erator have no partitioning guarantee and are distributed by the
default, round-robin strategy.

The code generator can produce both Spark applications
and Apache Zeppelin notebooks. Spark applications generate
a single application file that can be executed via command-
line. Notebooks can be imported into the Apache Zeppelin web-
interface where users are able to further interact with the out-
puts of the generated code. Notebook generation was designed
to provide initial support for users to interface with external li-
braries, such as pyspark [37], scikit-learn [38] (scikit-learn, RRID:
SCR 002577), and keras [39]. The notebooks rely on Zeppelin to
translate Scala Datasets into Pandas DataFrames for easier in-
teraction with machine learning and other advanced statistical
packages. This is merely a first step towards integrating more
advanced analytics in the system.

Results

This section presents a collection of TraNCE programs and
performance-related experiments that illustrate the different
features of the platform. We first review 2 use cases that focus on
research applications, then use the queries to measure system
performance. The first use case is a single-omics analysis that
builds mutational burden-based feature sets for use in external
learning frameworks. The second use case is a multi-omics anal-
ysis pipeline that identifies driver genes in cancer, using nested
input and constructing nested intermediate results to return flat
output. We highlight the advantage of distributed computing for
these use cases using a variety of cluster configurations and in-
creasing data size. The third use case focuses on clinical appli-
cations and is designed to mimic requests that a clinician could
make from a user-interface that supports multi-omics data inte-

gration. The final section presents an overview of how the shred-
ded representation can leverage sharing.

Where relevant, we present the performance of the stan-
dard and shredded compilation routes. While previous results
have shown that the standard compilation of TraNCE outper-
forms several external competitors, including SparkSQL [30],
the standard route is used as a representative of the flattening
methods used in these systems and acts as a baseline for the
scalable shredded compilation route. All experiments are run
using Spark 2.4.2, Scala 2.12, Hadoop 2.7. Runtimes are mea-
sured after caching all inputs into memory. The schemas of each
of the query inputs are described in Supplementary Section 1.
Performance-related results of high importance are highlighted
in the relevant sections.

Application 1: Mutational burden

High mutational burden can be used as a confidence biomarker
for cancer therapy [40, 41]. One key measure is “tumor muta-
tional burden” (TMB), the total number of somatic mutations
present in a tumor sample. Here we focus on 2 subcalculations
of TMB: gene mutational burden (GMB) and pathway mutational
burden (PMB). GMB is the total number of somatic mutations
present in a given gene per tumor sample. PMB is the total num-
ber of somatic mutations present in a given pathway per tumor
sample. These burden-based analyses provide a basic measure-
ment of how impacted a given gene or pathway is with somatic
mutations. Mutational burden can be used directly as a likeli-
hood measurement for immunotherapy response [40] or can be
used as features for a classification problem.

The progression of some cancers could make it impossible
for a clinician to identify the tumor of origin [42]. The ability to
classify tumor of origin from a cohort of cancer types can be clin-
ically actionable, providing insights into the diagnosis and type
of treatment the patient should receive. For the burden-based
use case, we aim to predict tumor of origin from a pancancer
dataset.

Figure 4 summarizes the burden-based analyses that calcu-
late GMB and PMB and then perform downstream classification
to predict tumor of origin. Each analysis starts by assigning the
mutations of each sample, from either Variants or Occurrences,
to the respective gene or pathway. Once assigned, the results
are aggregated to return total mutation counts for each gene or
pathway, producing GMB or PMB values for each sample. The
result of the PMB analysis is annotated with tumor site predic-
tor labels from Samples and converted to a Pandas DataFrame to
perform 2 multi-classification methods to predict tumor of ori-
gin from a pancancer dataset. We next present the TraNCE pro-
grams for these analyses and describe the downstream learning
application.

Given that a pathway is represented as a set of genes, GMB is
a partial aggregate of pathway burden; i.e., PMB is the sum of all
the gene burdens for each gene belonging to a pathway. We thus
show the gene burden program using mutations from Variants

and the pathway burden program using somatic mutations from
Occurrences.

The Variants data source is based the VariantContext [43]
object, used to represent variants from a Variant Call Format
(VCF) file. This data structure represents 1 line, i.e., 1 variant,
from a VCF file. Variants are identified by chromosome, position,
reference and alternate alleles, and associated genotype infor-
mation for every sample. We use an integer-based categorical
assignment to genotype calls to support analyses; 0 is homozy-
gous reference with no mutated alleles, 1 is heterozygous with

https://scicrunch.org/resolver/RRID:SCR_002577]

10 Scalable analysis of multi-modal biomedical data

Figure 4: Workflow diagram representing the burden-based analyses for both genes and pathways, and downstream classification problem. The results of the pathway
burden analysis feed into a classification analysis using multi-class and one-vs-rest methods to predict tumor of origin.

1 mutated allele, and 2 is homozygous alternate with 2 mutated
alleles. The type of Variants is:

[{ contig : string,start : int,reference : string,alternate :

string,

genotypes : [{ sid : string,call : int }] }].

Gene burden
The gene burden program performs a VCF-based analysis using
the Variants data source. The program first iterates Genes, cre-
ating a top-level gene group, and then performs a sum-aggregate
of the nested genotype calls for each sample corresponding to
that gene. Variants are associated to a gene if it lies within the
mapped position on the genome.

The output type is:

[{ gene : string,burdens : [{ sid : string,burden : real }] }].

The GMB program could be altered to include a larger flank-
ing region by changing the equalities on start and end to use a
range.

Pathway burden
The PMB program uses the annotations within the Occurrences

data source to determine gene association. These burden scores

are measured within a wider scope than the GMB program. When
a candidate gene set is created based on a large flanking region,
the pathway burdens could be dramatically overestimated. To
account for this, the program uses impact information instead
of the number of alleles to measure the mutational burden of a
pathway.

The output type is:

[{ pathway : string,burdens : [{ sid : string,burden : real }] }].

A simple version of the PMB program could use raw counts,
which we will use for downstream classification analysis. A
more complex version could combine multiple impact at-
tributes, such as impact, poly, and sift, to provide a better es-
timate of burden.

Classification with burden-based features
We now consider how the burden-based programs can be used
to create feature vectors for a learning classifier. Classification
of tumor origin has been previously explored with various can-
cer biomarkers [44–47]. The goal of our classification problem is
to identify tissue of origin from the whole TCGA dataset using
pathway burden features based on raw mutation count.

The classification process starts by preparing the PMB output
for classification, labeling each pathway burden feature with the
associated label:

Smith et al. 11

To interface with external machine learning libraries, the
burden-based programs are compiled into Zeppelin notebooks
where the output is available once the program is executed.
Learning procedures can then be applied directly in Spark/Scala,
or the ZeppelinContext can be used to read a Spark DataFrame as
a Pandas DataFrame. For this example, we focus on the Pandas
representation to highlight how a user can interact with TraNCE
outputs using their external library of choice. Given this data
processing pipeline, TraNCE is used for the heavy lifting portion
that integrates and restructures the datasets to produce feature
matrices—the assumption being that the dataset is reduced to
a size reasonable enough for the in-memory processing of stan-
dard statistical libraries.

Once represented as a Pandas DataFrame, the dataset is split
for training and testing using scikit-learn and neural networks
are constructed with keras. For the whole of the TCGA dataset,
we use a minimum cut-off of 200 representative samples. This
leaves 9 different tumor tissue sites available for classification:
breast, central nervous system, colon, endometrial, head and
neck, kidney, lung, ovary, and stomach.

We first train a fully connected, feed-forward multi-class
neural network for tumor tissue site, using 1,600 pathways se-
lected by the χ2 test as the features. The neural network uses
LeakyReLu [48] with alpha = 0.05 as the activation function, and
we utilize dropout layers [49] with dropout rate = 0.3 after each
fully connected layer (dense layer) before the output. This model
is trained using a categorical cross-entropy loss function and an
Adam optimizer [50]. The network has a Softmax output, which
can be interpreted as a probability distribution over 9 different
tumor tissue sites. The data are randomly split into 2 folds, 70%
for training and 30% for testing.

Next, we extend the previous method via the “one-vs-rest”
method [51], which decomposes a multi-classification problem
into multiple binary classification problems, and each binary
classifier is trained independently. For every sample, only the
most “confident” model is selected to make the prediction.

Each binary classifier is a fully connected, feed-forward neu-
ral network, using all 2,230 pathways as the features. These
are set up the same as the multi-class networks, except with
dropout layer dropout rate = 0.15 and a binary cross-entropy
loss function. The binary networks have Sigmoid output, which
can be interpreted as a probability of a certain type of tumor tis-
sue site corresponding to this model. For each model, the data
are randomly split into 2 folds as with the tumor-site network.

We train 9 independent binary classifiers for each type of tu-
mor tissue site. These binary models predict the likelihood that
the given pathway burden measurements of a patient are associ-
ated with the tumor site represented by that model. After train-
ing each binary model, predictions are made using the entire
dataset, and the computed results are merged. The probabilities
from all models are compared for each patient from the testing
dataset, classifying the patient according to the highest likeli-
hood. For example, suppose we have 2 models, a breast model
that predicts a breast-site likelihood of 0.8 and a lung model that

Figure 5: The accuracy and loss of the multi-class neural network for tumor tis-

sue site.

predicts a lung-site likelihood of 0.6 for the same patient. The
system compares these 2 probabilities and classifies tumor of
origin as breast.

Difference in sampling procedures aside, the multi-classifier
and the binary models in the one-vs-rest method have 1 key dif-
ference. When using pathway burden features, pathways that
are highly correlated with a specific tumor site could be over-
powered by pathways that show strong signal for cancer in gen-
eral. The multi-classifier could compromise features specific to
tumor of origin in an attempt to achieve the best performance
overall. This can lead to particularly inaccurate results when the
data distribution is uneven. The binary models are eager to se-
lect the best feature weights for the representative tumor of ori-
gin, providing more opportunities for tumor-specific features to
stand out.

Multi-classification results
Figure 5 shows the accuracy and loss of the multi-class neural
network for tumor tissue site for 30 epochs. The overall accu-
racy is 42.32%, calculated from the confusion matrix adding all
444 correctly predicted labels together and dividing by the 1,049
testing samples. Most misclassifications were predicted to be
breast cancer, likely attributed to the data imbalance problem
of the training dataset. An imbalanced data distribution forces
a model to learn features corresponding to highly populated la-
bels, reducing training loss while skewing overall prediction per-
formance.

Different types of cancer may not contain enough dominant
features for a simple multi-class model to distinguish differ-
ences among tumor origin site. Even pathways that play a key
role in any cancer, such as pathways specific to disruption in
cell cycle, could be providing insufficient signal to act as a de-
terminant for cancer types. This could be because other path-
ways are washing out the signal of more important pathways,
or it could simply mean that pathway burden alone is not pro-
viding the whole story. Thus, future multi-class problems in this
domain should consider integrating other features, such as ad-
ditional genomic measurements, or filter pathways on the basis
of prior knowledge of the cancer types in question.

One-vs-rest classification results
Figure 6 displays the accuracy and loss of 3 binary networks for
10 epochs. We present the 3 worst-performing classes from the

12 Scalable analysis of multi-modal biomedical data

Figure 6: Accuracy and loss for the tumor tissue site–based binary network; includes results for the 3 worst-performing classes from the multi-class network.

multi-class network: stomach, head and neck, and central ner-
vous system, which all resulted in testing accuracies >90% in the
one-vs-rest method. The accuracy and loss of the other binary
models are provided in the supplementary material. The com-
bined accuracy of all binary models is 78.44%, calculated as the
correctly predicted labels (2,744) divided by total samples (3,498).

Overall performance of the one-vs-rest method is far better than
the multi-classifier performance.

Further exploration into the pathway signal profiles of each
tumor site could be considered for future work. Gene burden
performance could be compared to the performance of pathway
burden to identify genes that are the main drivers for pathway

Smith et al. 13

signal. The identification of predominant pathways and genes
for certain tumor sites could provide insight into specific cancer
profiles and determine the overall confidence of using burden-
based features for tumor site classification.

The burden-based use case exemplifies how TraNCE can han-
dle data integration tasks and, more specifically, integration
tasks that produce feature vectors for classification problems. In
addition, this use case shows how users can interact with pop-
ular learning packages within a notebook environment without
the overhead associated with manually integrating data sources.

Application 2: Multi-omics cancer driver gene analysis

Mutations that play a driving role in cancer often occur at low
frequency [52], making cohort analysis across many samples im-
portant in their identification. Furthermore, a cancer profile is
more than just a consequence of a single mutation on a single
gene. Gene interactions, the number of such genes, and their
expression levels can provide a more thorough look at cancer
progression [8]. This use case focuses on such a multi-omics
analysis, which defines a set of programs that integrate anno-
tated somatic mutation information (Occurrences), copy num-
ber variation (CopyNumber), protein-protein network (Network),
and gene expression (GeneExpression) data to identify driver
genes in cancer [9]. This analysis provides an integrated look
at the impact cancer has on the underlying biological system
and takes into account the effects a mutation has on a gene, the
accumulation of genes with respect to both copy number and
expression, and the interaction of genes within the system. The
programs of the driver gene analysis work in pipeline fashion,
where the materialized output from one program is used as in-
put to another later on in the pipeline.

Figure 7 provides an overview of the cancer driver gene anal-
ysis. The pipeline starts with the integration of mutation and
copy number variation to produce a set of hybrid scores for
each sample. The hybrid scores are then combined with protein-
protein network interactions to determine effect scores. The
effect scores are further combined with gene expression in-
formation to determine the connection scores for each sam-
ple. The analysis concludes by combining the connection scores
across all samples, returning connectivity scores for each gene.
The genes with the highest connectivity scores are considered
drivers. We now detail each of the steps and conclude with some
performance metrics using the 2 compilation routes.

Hybrid scores
The hybrid score program HybridScores is the first step in the
pipeline and is an advanced version of the SGHybridScores.
The program below describes the process of creating hybrid
scores based on the Occurrences input. Here, Samples pro-
vides a map between sid and aliquot used to join CopyNumber,
and the hybrid scores are then determined for every aliquot.
In addition, conditionals are used to assign qualitative scores
based on the human-interpretable level of impact (impact). The
SOImpact information is used to integrate values from the nested
consequences collection into the hybrid score.

The output type of HybridScores is:

[{ sid : string,aliquot : string,scores : [{

gene : string,score : real }] }].

The HybridScores program must persist the aliquot at-
tribute in order to associate more genomic measurements re-

lated to that aliquot later in the pipeline. These hybrid scores
now provide a likelihood score of a gene being a driver within
a specific aliquot based on both accumulated impact of somatic
mutations and copy number variation. The analysis continues
to integrate further information to increase the confidence of
driver gene scores.

By sample network
The second step in the pipeline HybridNetworks builds individ-
ual aggregated networks for each (sid, aliquot) pair in the ma-
terialized output of HybridScores. For each sample, we take the
product of the score and edge protein distance for each edge
in the network; genes are associated to proteins on the basis of
the mapping provided in the Biomart gene map table. The sum
aggregate of these values is then taken for each node protein in
Network, while maintaining top-level sample groups.

The output type of this query is:

[{ sid : string,aliquot : string,nodes : [{

nodeProtein : string,score : real }] }].

The HybridNetworks program produces an intermediate
score for each protein in the network by weighting the hybrid
scores of nearby proteins in the network (edges) based on their
distance scores; thus, this is an intermediate aggregation of the
network data with the hybrid scores using only the edges in the
network.

Effect scores
To complete the integration of network data with the hy-
brid scores, the next step is to integrate the nodes in the
Network to produce effect scores. Effect scores are produced
by combining the accumulated edge-based hybrid scores from
HybridNetworks with the hybrid score for each protein node
for each sample in the materialized output of HybridScores. As
in HybridNetworks, genes are associated to proteins using the
Biomart mapping table.

The output type of this query is:

[{ sid : string,aliquot : string,scores : [{

gene : string,score : real }] }].

At this point, the effect score is another likelihood measure-
ment for a gene being a driver gene for cancer. The analysis now
continues to add confidence to the effect score by further inte-
grating gene-based measurements.

Connection scores
The ConnectScores program calculates the connection scores. A
connection score is the product of the effect score and the FPKM
value from the GeneExpression table. Gene expression data are
combined with the materialized output of EffectScores to de-
termine the connection scores for each gene within every sam-
ple.

The output type of this query is:

[{ sid : string,aliquot : string,scores : [{

gene : string,score : real }] }].

Given the pipeline nature of these queries, the connection scores
for each gene are the accumulated somatic mutation, copy num-

14 Scalable analysis of multi-modal biomedical data

Figure 7: Summary of the cancer driver gene analysis. The pipeline starts by integrating somatic mutations and copy number variation and further integrates network
information and gene expression data. The genes with the highest connectivity scores are taken to be drivers.

ber, protein-protein network, and gene expression data for each
sample. The connect score can be used to determine the likeli-
hood of a gene being a driver in a specific sample. In theory, this
likelihood measurement should have more confidence than the
hybrid or effect scores.

Gene connectivity
At this point in the analysis, all the genomic measurements have
been integrated to produce high-confidence likelihood connec-
tion scores for each gene within each sample. The final step is to
combine across all samples to identify the highest scoring genes
over all samples; this is the gene connectivity. Gene connectivity
uses the materialized output of ConnectScores, summing up the
connection scores for each gene across all samples. The genes
with the highest connection scores are taken to be drivers.

The output type is:

[{ gene : string,score : real }]

Collectively, these 5 programs make up the cancer driver
gene analysis. The final output of Connectivity is sorted and
the top genes are investigated as likely driver genes for cancer.
Further confidence can be gained by fine-mapping techniques
[53].

This analysis follows the workflow of [9], which terminates
with an identification of driver genes. The 3 top driver genes re-
ported from our analysis were TP53, FLNA, and CSDE1. All these

Smith et al. 15

Figure 8: Performance comparison between the standard and shredded pipelines
on gene and pathway burden analysis using the 1000 Genomes Project dataset.

genes have previously been reported as important for their role
in cancer. Future work should explore the pancancer results of
this analysis, potentially comparing tumor-site–specific driver
genes to the identified pancancer driver genes. Naturally, we
could also use some of the intermediate scores as features for
learning algorithms, as with the previous case study.

The runtime performance of this pipeline was presented in
[29], showing that the shredded compilation route was the key to
scalability for larger datasets. We use the queries of this analysis
to demonstrate the scalability of the framework in the context
of biology in the next section.

Scalability experiments

This section uses the above 2 use cases to illustrate the scalabil-
ity benefits of the platform for biological pipelines. We use the
burden-based analysis to show scalability of the shredded com-
pilation route for increasing data size and constant cluster size,
using the standard compilation method as a baseline. We then
use the driver gene analysis to measure scalability for constant
data size and increasing cluster size. These experiments high-
light the scalability of the shredded compilation route.

Increasing data size
We use the burden-based analysis to show the performance of
the shredded compilation route for an increasing number of top-
level records. We run Spark with 1 worker, 10 executors, 2 cores,
and 20 GB memory per executor, and 16 GB of driver memory.
Owing to resource limitations of this cluster, we use the pub-
licly available chromosome 22 from Phase 3 of the 1000 Genomes
Project [4, 54]; this is a 11.2-GB dataset representing 2,504 sam-
ples.

Figure 8 displays the runtimes of the standard and shred-
ded compilation for the gene burden and pathway burden anal-
ysis for an increasing number of variants from the VCF-based
Variants data source. The results show that flattening methods
of the standard route are quickly overwhelmed as the number
of variants increases, whereas the shredded route increases at
a much slower rate. In addition, after 600,000 variants the stan-
dard pathway burden run increases at a greater rate than the
corresponding gene burden run. The shredded method exhibits
2 main advantages. First, the succinct representation avoids car-

Figure 9: Scalability for the driver gene analysis measured using HybridScores

and HybridNetworks programs for a variety of cluster configurations.

rying around extra data, such as the genotype information when
Variants are joined with Genes. Second, the result of flattening
Variants will have a large amount of items. The whole file con-
tains ∼1,103,600 variants and >2,500 samples, which produces
a result with >2.7 billion items. The performance benefits ex-
hibited in this experiment are only for a single chromsome; as
such, distributed computing becomes even more of a necessity
when processing whole genomes or considering more samples.
Overall, these results highlight the advantage of the shredded
representation even for the shallow nesting of the VariantCon-
text structure.

Increasing cluster size
This experiment uses queries from the driver gene analysis
to assess scalability of the shredded compilation route as the
amount of compute resources increase. Figure 9 displays the
combined runtime for the first 2, most expensive steps of the
driver gene analysis—HybridScores and HybridNetworks—for
an increasing amount of workers and a variety of cluster con-
figurations. The queries are run with the pancancer datasets,
including 280 GB of Occurrences [5, 13], 4 GB of Network [55],
and 34 GB of CopyNumber (34 GB). We focus only on the shredded
compilation route because the standard compilation route was
unable to perform for this scale of data.

We use an increasing number of cores (5, 10, 20) per worker to
evaluate performance based on the number of processing units
available to each worker. For each of these runs we provide 32
and 64 GB per worker to assess how available memory affects
performance. For each run workers are added with constant
amounts of resources; e.g., for the 5 cores and 32 GB run, the
1 worker mark represents 5 cores and 32 GB total, whereas the
2 worker mark represents 10 cores and 64 GB total. The number
of cores and number of workers are used collectively to measure
overall distribution.

The single-worker runs exhibit the largest variation in run-
time. While the single worker with 10 cores completes 14
minutes faster when more memory is available, the runtimes
for the single workers with 5 and 20 cores are less affected
when memory increases. In general, the total number of cores
and the amount of memory available to each working unit is
more important when there are fewer workers available to a
cluster.

16 Scalable analysis of multi-modal biomedical data

The results show that all runs converge to a point where
the shuffling overhead dominates the total execution time and
what is left is not parallelizable. This shuffling overhead is re-
lated to the expense of the HybridNetworks program, which
requires a significant amount of shuffling to perform a join
on nested attributes. Our previous results reported 470 GB of
shuffled data for the shredded compilation route, whereas the
standard compilation crashed after shuffling nearly 2.1 TB [29].
Even in a situation where large amounts of shuffling cannot
be avoided, the addition of 5 workers has saved 24–78 min-
utes depending on the amount of resources available to each
worker. Overall, these scalability results highlight how adding
cluster resources will improve the performance of current data
pipelines.

Skew-handling experiments

In the skew-resilient processing section, we introduce an ini-
tial example based on grouping that describes the prevalence
of skew in biomedical analyses. This experiment extends upon
that example to show the benefits of using the skew-handling
feature of TraNCE. We explore the cost of grouping Occurrences

by tumor site, gene, pathway, and gene family. We use the
92 tumor sites represented in the TCGA dataset, 58,000 genes
from a gene map file, 2,230 pathways based on curated gene
sets from The Molecular Signatures Database (MSigDB) [56, 57],
and the 8 gene family classifications also from MSigDB. Group-
ing by tumor site follows the structure of the extended run-
ning example TGHybridScores. The grouping of mutations by
gene and pathway is represented by the GMB and PMB pro-
grams, respectively, from Application 1. Gene families are a
special instance of pathway, so this grouping also follows
PMB.

We use a subset of the Occurrences dataset (12.3 GB), which
represents 10% of the full dataset. Each program was run
on a cluster with 5 workers each with 20 cores and 16 GB.
Figure 10 displays the runtimes for the full, partial, sample,
and slice skew-handling techniques as well as without skew-
handling techniques (skew-unaware) for both the standard and
shredded compilation routes. As in the previous experiments,
the standard route is included to represent baseline flattening
methods.

The tumor site and gene groupings exhibit low amounts of
skew; all methods are able to run to completion, with the skew-
aware techniques only adding a slight overhead related to the
cost of performing the heavy key calculation. While partitions
can still be of disproportionate size for low amounts of skew, the
amounts exhibited for these groupings are not enough to over-
whelm any resources on a single node. In addition, the shredded
runs benefit from the natural skew-resilience of the shredded
representation, which stores the groups as a Dataset instead of
a nested collection. This overhead is exhibited in the standard
compilation route runs; there is a 2.5-times advantage to shred-
ding when grouping by tumor site and an 80-times advantage
when grouping by gene. The standard compilation route was un-
able to perform at all for higher amounts of skew regardless of
skew-handling techniques.

The pathway run exhibits moderate amounts of skew. Here
the skew-unaware method cannot perform at all, spilling 540 GB
of data to disk before crashing; this is expected with increased
amounts of skew because the values associated with heavy keys
will completely overwhelm the resources on each node. The
gene family run exhibits high amounts of skew. Again, the skew-
unaware method cannot perform at all. The skew-aware meth-

ods for pathway and gene family highlight the significant perfor-
mance gains of avoiding the key-based partitioning strategy for
heavy keys. The performance gain increases for higher amounts
of skew becausee the majority of the values will be associated to
heavy keys and these values will remain stationary during the
skew-aware operation.

The slice procedure exhibits interesting behavior for varying
amounts of skew and the different compilation routes, high-
lighting benefits of this procedure for estimating heavy keys
in large intermediates. For example, the slice procedure is the
most expensive when skew is low and the shredded repre-
sentation is used, whereas slice is the best performing for
the corresponding standard route. In the standard procedure,
Occurrences is flattened before joining with the gene table that
will instantiate the nested mutation groups. This flattening pro-
duces more values for the skew-handling strategy to process,
which is where the slice procedure performs better. On the
other hand, the shredded representation runs the estimate on
the lighter-weight, first-level source of Occurrences and ends
up overestimating the heavy keys. Overestimating heavy keys
can lead to longer processing times due to broadcasting larger
intermediates.

The slice method performs best when using the shredded
representation for the moderate and high amounts of skew
in the pathway and gene family groupings. For these queries,
full, partial, and sample have longer processing times owing
to overestimation. The slice procedure, the best performing of
all methods, can quickly estimate heavy keys while keeping
the amount of broadcasted data low. Given that the full pro-
cedure should accurately identify all heavy keys, this suggests
that it is more advantageous to only apply skew-aware opera-
tions to the most immediately identifiable heavy keys than it
is to fully estimate heavy keys. Our previous results had only
shown benefits of the sample procedure using synthetic data.
These results show that when applied to real-world, biological
datasets the slice procedure tends to have better performance
overall.

Application 3: Clinical exploratory queries

We now present a clinically focused use case that highlights
additional advantages of TraNCE. The identification of person-
alized diagnosis and treatment options is dependent on in-
sights drawn from large-scale, multi-modal analysis of biomed-
ical datasets. Practical clinical application of such targeted anal-
yses requires interfacing with electronic health record systems
to provide a data processing environment that supports ease of
integrating genomic, clinical, and other biomedical data linked
to patients. For example, the Informatics for Integrating Bi-
ology and the Bedside (i2b2) [58] framework facilitates web-
based cohort exploration, supporting selection and report gen-
eration on clinical attributes. Several proposed solutions for in-
tegrating genomic data into i2b2 have been proposed [59–61]. In
these systems, genomic and clinical data are stored in separate
databases and then combined in a back-end plugin using the
i2b2 API.

Figure 11 presents a schematic of an i2b2 instance that
supports aggregate analysis with clinical and genomics data
sources, i.e., Occurrences and CopyNumber. The programs of this
use case are inspired by such a situation. A user makes a re-
quest from a clinical interface. This request represents an anal-
ysis that is sent to the back end. The back-end application com-
municates to each of the external data sources to retrieve the
necessary data and import them into a Spark processing envi-

Smith et al. 17

Figure 10: Performance comparison of the skew-handling techniques for both the standard and shredded compilation routes. Queries are organized based on increasing

amounts of skew, such that tumor sites is representative of low skew and gene families of high skew.

Figure 11: Mock-up of a clinical interface (i2b2) that enables integrative querying

of clinical and genomic attributes.

ronment. The application sends the computed results back to
the user interface for viewing.

The programs below comprise an analysis that would be per-
formed by the back-end application using TraNCE. A major dif-
ference from the prior use cases is that here we are not comput-
ing just flat aggregates. We are returning nested ones that will
be explored interactively at the web interface. The output will
reflect situations where the majority of data fields are returned
for exploration by the user. We now review 3 such applications,
which perform a combination of restructuring, integration, and
aggregation of Occurrences, CopyNumber, and Samples.

Group occurrences by sample
The OccurGroupedprogram groups the somatic mutation occur-
rences in Occurrences by sample based on Samples, producing
a collection of nested mutation information for each sample.
The program also associates a quantitative value to the conse-
quences at the lowest level in the process, as seen previously in
the HybridScores program from the driver gene analysis.

The ellipses represent all the additional fields from
Occurrences. The output type of OccurGrouped is:

[{ sid : string,mutations : [{ contig : string,start : int,end : int,

reference : string,alternate : string,mutationId : string, . . . ,

candidates : [{ gene : string,impact : string,

sift : real,poly : real, . . . ,consequences :

[{ conseq : string,score : real }] }] }] }].

The OccurGrouped program groups a mutation data source,
like Occurrences, based on sample. All information associated
to a mutation is returned, with most of the fields of Occurrences
persisted in the output. The result of this program could feed
into a web-interface that provided a detailed view of annotated
mutations across a cohort of patients.

18 Scalable analysis of multi-modal biomedical data

Integrate copy number and occurrences, group by sample
The next program extends OccurGrouped by associating copy
number information (CopyNumber) to each of the genes in the
candidates collection for each mutation in Occurrences. The re-
sults are returned grouped by sample, and the majority of the
fields from Occurrences are persisted in the output.

The output type of OccurCNVJoin is:

[{ sid : string,mutations : [{ contig : string,start : int,end : int,

reference : string,alternate : string,mutationId : string, . . . ,

candidates : [{ gene : string,impact : string,

sift : real,poly : real,cnum : int, . . . ,consequences :

[{ conseq : string,score : real }] }] }] }].

This program exhibits the integration of copy number data on
a nested attribute, without any aggregation. The OccurCNVJoin

program addresses the situation where additional biomedical
datasets are integrated for exploration in a consolidated view.

Aggregate copy number and occurrences, group by sample
The final clinical program combines all aspects of the first 2 pro-
grams and adds an additional aggregation. As in OccurCNVJoin,
mutations are associated to copy number data to create
an aggregate value with mutational impact from the nested
consequences collection of Occurrences. The scores are re-
turned for each candidate gene within each mutation, and the
final output is grouped by sample.

The output type of OccurCNVAgg is:

[{ sid : string,mutations : [{ contig : string,start : int,end : int,

reference : string,alternate : string,mutationId : string,

candidates : [{ gene : string,score : real }] }] }].

Note that the clinical programs of this use case mimic sce-
narios that arise from web-based data integration in a clinical
setting. Each program adds on a level of complexity—exploring
the effects of grouping, joining, and aggregating nested data in
a setting that is more exploratory than a research-based analy-
sis. The ability to manipulate these biomedical datasets within a
web-based environment that supports front-end clinical explo-
ration presents an interesting application area for the manipu-
lation of nested collections.

Runtime performance
We execute the clinical programs with 5 workers, each with 20
cores and 320 GB memory. We allocate 25 executors per node, 4
cores and 64 GB memory per executor, 32 GB memory allocated
to the driver, and 1,000 partitions used for shuffling data. We
use the full TCGA [6] dataset (Pancancer) and the TCGA BRCA
dataset. The pancancer dataset uses 42 GB of Occurrences with
a 10,000-base flanking region, and 34 GB of CopyNumber (34 GB).
The BRCA dataset is 168 MB of Occurrences with 10,000-base
flanking region and 4 GB of CopyNumber. The runtime of a pro-
gram is measured by first caching all inputs in memory.

Figure 12 shows the runtimes for each clinical program, us-
ing the standard and shredded compilation routes. We also in-
clude the results for unshredding, i.e., the cost of reconstruct-
ing the nested output when using the shredded representation.
The smaller BRCA dataset shows performance benefits of the

shredded representation over flattening methods. The restruc-
turing in OccurGrouped is 80 times faster for shredding in com-
parison to standard, and still 12 times as performant when the
nested output type is returned. As operations are added with
OccurCNVJoin and OccurCNVAgg, the shredded route exhibits up
to 9 times the performance benefits of standard. The results of
this experiment show that the shredded compilation method
can bring major advantages, even for small-scale datasets.

For the larger sample set, the results show that flattening
methods are unable to scale, overloading the available mem-
ory on the system during each program execution. The results
of Shred highlight benefits to the shredded representation. The
pancancer OccurGrouped is very cheap but becomes more ex-
pensive when the nested output is reconstructed (Unshred); this
suggests that the succinct representation used in shredding is
essential for scaling. On the other hand, more work is done dur-
ing the execution of the shredded OccurCNVAgg program, which
reduces the cost of unshredding to 3 times that of OccurGrouped.
These results highlight how aggregation in shredded programs
can bring further benefits to an analysis even when the output
is returned in nested form.

Sharing in the shredded representation

All the use cases in this section use an Occurrences input that is
based on the occurrences end point of the ICGC data data portal
[5], which returns JSON-formatted data following the structure
of equation (3). In this representation, annotations will be re-
peated within the nested candidates collection for mutations
that are shared across samples. We can exploit this sharing to
create an even more succinct shredded representation of the
Occurrences data source.

With all somatic mutations being in the Mutations data
source and all unique annotations in the Annotations data
source, we can write the following program to construct the data
returned from the occurrences end point:

The output type of the BuildOccur program matches that
of Occurrences, presented at equation (3). The ellipses in the
BuildOccur program include the additional top-level fields from
Mutations and Annotations. This program describes the con-
struction of the Occurrences data source.

Sharing experiment
To explore the benefits of sharing, we execute the above
BuildOccur program using the standard and shredded compila-
tion routes. We use 1 somatic mutation (MAF) file from the BRCA
dataset (Mutations) containing 120,988 tuples, and the associ-
ated unique set of 58,121 VEP annotations (Annotations).

The association in the BuildOccur program translates to a
join in the compiled Spark application. When the somatic mu-
tations are joined with annotations in the standard route, the re-
sult contains 5,170,132 tuples nested within the candidates col-
lections of the whole output. For the shredded route, the somatic
mutations are joined with the top-level source Annotations top,
which has replaced the candidates values with labels. The
first-level output BuildOccur cands is the same as the in-
put Annotations candidates, which has 3,777,092 tuples. The
shredded representation reduces the total size of the transcripts
by >1 million tuples.

The results of this experiment are based on a small dataset.
Because many of the samples will share mutations specific to
cancer, the benefits of sharing will increase for datasets that in-
clude more samples. To further explore the benefits of sharing by
the shredded compilation route, future experiments should per-

Smith et al. 19

Figure 12: Results for the clinical exploration programs. The standard compila-
tion route fails for all runs with the Pancancer dataset.

form the use cases of this section with the output of BuildOccur
in place of the Occurrences data source.

Conclusions

The TraNCE framework provides a foundation for exploring how
query compilation and shredding optimizations can support
scalable processing of nested collections. We present several
use cases that highlight how the framework can support multi-
modal biomedical analyses in research and clinical settings. The
results show that the platform has promise in automating the
challenges that arise for large-scale distributed processing of
nested collections, showing scalable performance for increasing
number of genomic variants and performance when flattening
methods are unable to perform at all. Furthermore, we exhibit
how data integration tasks can feed into machine learning tasks
and analytics pipelines. The framework is experimental and its
development is ongoing, but our work shows that the techniques
applied can provide a basis for many biomedical data integration
tasks.

Future work should examine the interface between learning
analyses and data integration tasks. For example, a user should
be able to describe inference-based tasks within their programs
with an extended language that supports iteration and user-
defined functions.

The clinical exploration programs present an interesting per-
spective for the design of biomedical data integration infrastruc-
ture. Web-based data types are often nested, and our results
show that manipulation of these structures using the standard
flattening methods scales poorly. All the use cases have high-
lighted major advantages for the shredded representation, sup-
porting nested data without compromising the ability to scale.
The ability of biomedical systems and analysis applications to
work on a succinct representation could present interesting op-
portunities for optimization, but requires adjustments in back-
end applications. For example, the clinical exploratory queries
could display somatic mutation and copy number data in inte-
grated format to the user, while persisting the shredded repre-
sentations in the back end. A subsequent request for clinical re-
port generation could use cached inputs that perform localized
aggregate operations and return likelihood measurements or
risk scores. Future work should consider situations where itera-
tive exploration and aggregation occurs on the data, which is ap-

20 Scalable analysis of multi-modal biomedical data

plicable to both research and clinical applications. We have on-
going work in developing front-end interfaces focused on trans-
lations from other languages and web-based interfaces suitable
for users less comfortable with writing data science applica-
tions.

Outside of clinical settings, consortium and data biobanks
could consider using shredded representations in the back
end. Datasets often occur as dump files, which have already
gone through a pre-processing phase that uses flattening.
Adapting the data representation could support the develop-
ment of optimized data analysis pipelines. Overall, the TraNCE
framework presents an interesting angle for systems devel-
opment of research and clinical biomedical applications at
scale.

Availability of Source Code and Requirements
� Project name: TraNCE (TRAnsforming Nested Collections Ef-

ficiently)
� Project home page: github.com/jacmarjorie/trance
� Operating system: Platform independent
� Programming language: Scala 2.12
� Other requirements: Spark
� License: MIT
� RRID:SCR 021252
� bio.tools ID: trance

Data Availability

The dataset supporting the results of this article, primarily raw
runtimes of performance results, is available in the figshare
repository [63]. All supporting data and materials are available
in the GigaScience GigaDB database [62].

Additional Files

Supplementary Section 1. Input data sources.
Supplementary Section 2. Binary models. [63]

Abbreviations

API: Application Programming Interface; BRCA: breast cancer;
CNV: copy number variation; DLBC: lymphoid neoplasm dif-
fuse large b-cell lymphoma; FPKM: fragments per kilobase of
transcript per million mapped reads; GDC: Genomic Data Com-
mons; GMB: Gene Mutational Burden; GTF: General Transfer For-
mat; i2b2: Informatics for Integrating Biology and the Bedside;
ICGC: International Genome Consortium; ID: Identifier; JSON:
JavaScript Object Notation; MAF: Mutation Annotation Format;
MSigDB: The Molecular Signatures Database; NIH: National In-
stitutes of Health; NRC: nested relational calculus; PMB: path-
way mutational burden; RDD: Resilient Distributed Dataset; SO:
Sequence Ontology; SQL: Structured Query Language; SRA: Se-
quence Read Archive; TCGA: The Cancer Genome Atlas; TMB:
tumor mutational burden; TraNCE: Transforming Nested Collec-
tions Efficiently; VCF: Variant Call Format; VEP: Variant Effect
Predictor.

Competing Interests

The authors declare that they have no competing interests.

Funding

The work was funded by EPSRC grant EP/M005852/1 and by Ox-
ford’s EPSRC IAA Technology Fund, grant EP/R511742/1.

Authors’ Contributions

J.S., M.B., and M.N. conceived the idea and design of the frame-
work. J.S. and M.N. built the framework. J.S. and Y.S. conceived
and designed the burden-based analyses; Y.S. performed and
validated the burden-based analyses. J.S. conceived, designed,
performed, and validated the driver and clinical analyses. M.B.
and M.N. supervised the project. J.S. wrote the original draft of
the manuscript. All authors reviewed and edited the manuscript.

Acknowledgements

The authors thank Omics Data Automation, Inc., for supplying
hardware and compute time and contributing to use case dis-
cussions.

References

1. Hodson R. Precision medicine. Nature 2016;537(7619):S49.
2. He KY, Ge D, He MM. Big data analytics for genomic medicine.

Int J Mol Sci 2017;18(2):412.
3. Coppola L, Cianflone A, Grimaldi AM, et al. Biobanking in

health care: evolution and future directions. J Transl Med
2019;17(1):172.

4. Auton A, Abecasis GR, Altshuler DM, et al. A global refer-
ence for human genetic variation. Nature 2015;526(7571):
68–74.

5. International Cancer Genome Consortium. 2020.
6. Weinstein JN, Collisson EA, Mills GB, et al. The Can-

cer Genome Atlas Pan-Cancer Analysis Project. Nat Genet
2013;45(10):1113–20.

7. Sudlow C, Gallacher J, Allen N, et al. UK Biobank: An open
access resource for identifying the causes of a wide range
of complex diseases of middle and old age. PLoS Med
2015;12(3):e1001779.

8. Cheng F, Zhao J, Zhao Z. Advances in computational
approaches for prioritizing driver mutations and signifi-
cantly mutated genes in cancer genomes. Brief Bioinform
2016;17(4):642–56.

9. Zhang W, Wang SL. A novel method for identifying the poten-
tial cancer driver genes based on molecular data integration.
Biochem Genet 2020;58(1):16–39.

10.Smemo S, Tena JJ, Nóbrega MA. Obesity-associated variants
within FTO form long-range functional connections with
IRX3. Nature 2014;507(7492):371–5.

11.Genomic Data Commons Endpoints. 2020. https://docs.icgc.
org/portal/api-endpoints/. Accessed 12 Sept 2019.

12.Pezoa F, Reutter JL, Suarez F, et al. Foundations of JSON
schema. In: WWW ’16: Proceedings of the 25th Interna-
tional Conference on World Wide Web, Montréal, QC, Canada.
2016:263–73.

13.McLaren W, Gil L, Hunt SE, et al. The Ensembl variant effect
predictor. Genome Biol 2016;17(1):122.

14.Adzhubei IA, Schmidt S, Peshkin L, et al. A method and server
for predicting damaging missense mutations. Nat Methods
2010;7(4):248–9.

15.Vaser R, Adusumalli S, Leng SN, et al. SIFT missense predic-
tions for genomes. Nat Protoc 2009;11(1):1073–81.

https://github.com/jacmarjorie/trance
https://scicrunch.org/resolver/RRID:SCR_021252
https://docs.icgc.org/portal/api-endpoints/

Smith et al. 21

16.Eilbeck K, Lewis SE, Mungall CJ, et al. The Sequence Ontology:
A tool for the unification of genome annotations. Nat Meth-
ods 2005;6:R44.

17.Pandas Development Team. pandas-dev/pandas: Pandas.
Zenodo 2020. https://doi.org/10.5281/zenodo.3509134. Ac-
cessed 6 July 2020.

18.Zaharia M, Chowdhury M, Franklin MJ, et al. Spark: Cluster
computing with working sets. In: 2nd USENIX Workshop on
Hot Topics in Cloud Computing, HotCloud’10, Boston, MA,
USA. USENIX; 2010.doi:10.5555/1863103.1863113.

19.Fegaras L, Maier D. Optimizing object queries using an effec-
tive calculus. ACM Trans Database Syst 2000;25(4):457–516.

20.Afgan E, Baker D, Batut B, et al. The Galaxy platform for ac-
cessible, reproducible and collaborative biomedical analyses:
2018 update. Nucleic Acids Res 2018;46(W1):W537–44.

21.Voss K, Gentry J, Auwera GVD. Full-stack genomics pipelining
with GATK4+ WDL+ Cromwell [version 1; not peer reviewed].
F1000Res 2017;doi:10.7490/f1000research.1114634.1.

22. Introduction to Arvados: A Curoverse White Paper. Curoverse,
Inc.; 2014. https://doc.arvados.org/v1.3/ . Accessed 05 May
2018.

23.Oinn T, Addis M, Ferris J, et al. Taverna: A tool for the compo-
sition and enactment of bioinformatics workflows. Bioinfor-
matics 2004;20(17):3045–54.

24.Masseroli M, Pinoli P, Venco F, et al. GenoMetric Query Lan-
guage: A novel approach to large-scale genomic data man-
agement. Bioinformatics 2015;31(12):1881–8.

25.Hail. 2015. https://github.com/hail-is/hail.
26.Massie M, Nothaft F, Hartl C, et al. ADAM: Genomics For-

mats and Processing Patterns for Cloud Scale Computing.
UCB/EECS; 2013. http://www2.eecs.berkeley.edu/Pubs/Tech
Rpts/2013/EECS-2013-207.pdf. Accessed 03 Mar 2018.

27.Nothaft FA, Massie M, Timothy D, et al. Rethinking data-
intensive science using scalable analytics systems. In: SIG-
MOD ’15: Proceedings of the 2015 ACM SIGMOD International
Conference on Management of Data; New York, NY: ACM;
2015:631–46.

28.Glow. 2019. https://github.com/projectglow/glow. Accessed
09 Sept 2020.

29.Smith J, Benedikt M, Nikolic M, et al. Scalable querying
of nested data. In: Proceedings of the VLDB Endowment;
2020:445–57.

30.Smith J, Benedikt M, Nikolic M, et al. Scalable querying of
nested data. arXiv 2020:2011.06381. Accessed 01 Jan 2021.

31.Smith J, Benedikt M, Nikolic M, et al. Scalable querying of
nested data. 2020. github.com/jacmarjorie/trance. Accessed
02 Feb 2021.

32.Armbrust M, Xin RS, Lian C, et al. Spark SQL: Relational data
processing in Spark. In: SIGMOD ’15: Proceedings of the 2015
ACM SIGMOD International Conference on Management of
Data. New York, NY: ACM; 2015:1383–94.

33.den Bussche JV. Simulation of the nested relational algebra
by the flat relational algebra. Theor Comput Sci 2001;254(1-
2):363–77.

34.Wong L. Querying Nested Collections. Ph.D. dissertation, Uni-
versity of Pennsylvania; 1994.

35.Buneman P, Naqvi S, Tannen V, et al. Principles of program-
ming with complex objects and collection types. Theoret
Comput Sci 1995;149(1):3–48.

36.Zaharia M, Chowdhury M, Das T, et al. Resilient Dis-
tributed Datasets: A Fault-Tolerant Abstraction for In-
Memory Cluster Computing. In: 9th USENIX Symposium on
Networked Systems Design and Implementation (NSDI 12);
2016.doi:10.5555/2228298.2228301.

37.PySpark. 2020. http://spark.apache.org/docs/latest/api/pytho
n/. Accessed 04 Apr 2020.

38.scikit-learn. 2020. https://scikit-learn.org/stable/. Accessed
07 Mar 2020.

39.Keras. 2020. https://keras.io/. Accessed 16 Feb 2020.
40.Fancello L, Gandini S, Pelicci PG, et al. Tumor muta-

tional burden quantification from targeted gene panels: ma-
jor advancements and challenges. J Immunother Cancer
2019;7(1):183.

41.Chalmers ZR, Connelly CF, Fabrizio D, et al. Analysis of
100,000 human cancer genomes reveals the landscape of tu-
mor mutational burden. Genome Med 2017;9(1):34.

42. Jiao W, Atwal G, Polak P, et al. A deep learning system accu-
rately classifies primary and metastatic cancers using pas-
senger mutation patterns. Nat Commun 2020;11(1):728.

43.A Java API for high-throughput sequencing data (HTS) for-
mats. 2020. https://samtools.github.io/htsjdk/.

44.Liang Y, Wang H, Yang J, et al. A deep learning framework to
predict tumor tissue-of-origin based on copy number alter-
ation. Front Bioeng Biotechnol 2020;8:701.

45.Zheng Y, Ding Y, Wang Q, et al. 90-gene signature assay
for tissue origin diagnosis of brain metastases. J Transl Med
2019;17(1):331.

46.Wang Q, Xu M, Sun Y, et al. Gene expression profiling for di-
agnosis of triple-negative breast cancer: A multicenter, retro-
spective cohort study. Front Oncol 2019;9:354.

47.Grewal JK, Tessier-Cloutier B, Jones M, et al. Application
of a neural network whole transcriptome-based pan-cancer
method for diagnosis of primary and metastatic cancers.
JAMA Netw Open 2019;2(4):e192597.

48.Xu B, Wang N, Chen T, et al. Empirical evaluation of rectified
activations in convolutional network. arXiv 2015:1505.00853.

49.Srivastava N, Hinton G, Krizhevsky A, et al. Dropout: a sim-
ple way to prevent neural networks from overfitting. J Mach
Learn Res 2014;15(1):1929–58.

50.Kingma DP, Ba J. Adam: A method for stochastic optimiza-
tion. arXiv 2014:1412.6980.

51.Zhao X, Guan S, Man KL. An output grouping based approach
to multiclass classification using Support Vector Machines.
In: Park JJJH, Jin H, Jeong YS , et al., eds. Advanced Multimedia
and Ubiquitous Engineering. Singapore: Springer; 2016:389–
95.

52.Greenman C, Stephens P, Smith R, et al. Patterns of
somatic mutation in human cancer genomes. Nature
2007;446(7132):153–8.

53.Kichaev G, Yang WY, Lindstrom S, et al. Inte-
grating functional data to prioritize causal vari-
ants in statistical fine-mapping studies. PLoS Genet
2014;10(10);doi:10.1371/journal.pgen.1004722.

54.Sudmant PH, Rausch T, Gardner EJ, et al. An integrated
map of structural variation in 2,504 human genomes. Nature
2015;526(7571):75–81.

55.Szklarczyk D, Gable AL, Lyon D, et al. STRING v11: Protein-
protein association networks with increased coverage, sup-
porting functional discovery in genome-wide experimental
datasets. Nucleic Acids Res 2019;47(D1):D607–13.

56.Mootha VK, Lindgren CM, Eriksson KF, et al. PGC-1alpha-
responsive genes involved in oxidative phosphorylation are
coordinately downregulated in human diabetes. Nat Genet
2003;34(3):267–73.

57.Subramanian A, Tamayo P, Mootha VK, et al. Gene set enrich-
ment analysis: a knowledge-based approach for interpreting
genome-wide expression profiles. Proc Natl Acad Sci U S A
2005;102(43):15545–50.

https://doi.org/10.5281/zenodo.3509134
https://doc.arvados.org/v1.3/
https://github.com/hail-is/hail
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2013/EECS-2013-207.pdf
https://github.com/projectglow/glow
https://github.com/jacmarjorie/trance
http://spark.apache.org/docs/latest/api/python/
https://scikit-learn.org/stable/
https://keras.io/
https://samtools.github.io/htsjdk/

22 Scalable analysis of multi-modal biomedical data

58. i2b2. 2020. http://www.i2b2.org/. Accessed 06 July
2018.

59.Gabetta M, Limongelli I, Rizzo E, et al. BigQ: a NoSQL based
framework to handle genomic variants in i2b2. BMC Bioin-
formatics 2015;16(1):415.

60.Murphy SN, Avillach P, Bellazzi R, et al. Combining clinical
and genomics queries using i2b2 – Three methods. PLoS One
2017;12(4):e0172187.

61.Smith JM, Lathara M, Wright H, et al. Advancing clinical co-
hort selection with genomics analysis on a distributed plat-
form. PLoS One 2020;15(4);doi:10.1371/journal.pone.0231826.

62.Smith J, Shi Y, Benedikt M, et al. Supporting data for “Scal-
able analysis of multi-modal biomedical data.” GigaScience
Database 2021; http://dx.doi.org/10.5524/100914.

63 Smith J. Scalable analysis of multi-modal biomedical data.
Figshare; https://doi.org/10.6084/m9.figshare.13363502.v4.

file:i2b2.org/software/index.html
http://dx.doi.org/10.5524/100914
https://doi.org/10.6084/m9.figshare.13363502.v3

