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Colorectal cancer (CRC) is the fourth leading cause of cancer-related deaths worldwide and a major global public health problem.
With the rapid development of the economy, the incidence of CRC has increased linearly. Accumulating evidence indicates that
changes in the gut microenvironment, such as undesirable changes in the microbiota composition, provide favorable conditions
for intestinal inflammation and shaping the tumor growth environment, whereas administration of certain probiotics can
reverse this situation to a certain extent. This review summarizes the roles of probiotics in the regulation of CRC, such as
enhancing the immune barrier, regulating the intestinal immune state, inhibiting pathogenic enzyme activity, regulating CRC
cell proliferation and apoptosis, regulating redox homeostasis, and reprograming intestinal microbial composition. Abundant
studies have provided a theoretical foundation for the roles of probiotics in CRC prevention and treatment, but their
mechanisms of action remain to be investigated, and further clinical trials are warranted for the application of probiotics in the
target population.

1. Introduction

The global incidence of CRC is very high and continues to
increase every year. Data show that CRC accounts for
approximately 9% of all cancer-related deaths and is the third
leading cause of death in women after breast cancer and the
second leading cause of death in men after lung and prostate
cancers [1, 2]. Despite advances in screening and early diag-
nosis of CRC, CRC remains the second leading cause of
cancer-related deaths. Therefore, more research attention to
CRC prevention, treatment, and prognosis is crucial.

Recent evidence has demonstrated that probiotics may
contribute to the treatment of CRC [3]. According to the def-
inition established in 2002 by the Food and Agriculture
Organization of the United Nations (FAO) and the World
Health Organization (WHO), probiotics are “live microor-
ganisms which when administered in adequate amounts con-
fer a health benefit on the host” [4]. Several studies have
highlighted the critical role of probiotics in regulating intesti-
nal disorders, such as diarrhea [5], inflammatory bowel dis-
ease [6], irritable bowel syndrome [7], Helicobacter pylori
infection [8], and lactose intolerance [9]. Probiotics can also
inhibit the development of CRC by modifying the intestinal

microbial composition, intestinal epithelial system, and
intestinal immune responses. Akkermansia muciniphila
(AKK), an intestinal symbiotic bacterium living in the muco-
sal layer, has been shown to exhibit a high antitumor efficacy
with favorable clinical outcomes [10, 11]. One study demon-
strated that AKK initiates an antitumor immune response by
activating the Toll-like receptor signaling pathway through
its outer membrane protein Amuc. Meanwhile, it is found
that the administration of AKK together with interleukin-
(IL-) 2 protects the intestinal barrier function, suggesting a
new therapeutic strategy for CRC [12].

2. Interaction between Probiotics and the Host

Probiotics used in foods are safe for human consumption,
with most being certified as Generally Regarded as Safe
(GRAS) by the U.S. FDA or as Qualified Presumption of
Safety (QPS) by the E.U. EFSA [13]. Recent studies based
on animal models and clinical interventions have demon-
strated the critical role of probiotics in the prevention and
treatment of several human diseases [14]. The interplay
between probiotics and the human gastrointestinal tract
(GIT), comprising the mucus layer, epithelial layer, and
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gut-associated lymphoid tissue, influences the disease pro-
cess in the human host [15]. The mucosal layer of the intes-
tinal tract comprises a loose outer sublayer of gel-forming
mucins and a dense inner sublayer of mucins. The outer sub-
layer is relatively abundant with bacteria, antimicrobial pep-
tides, and immunoglobulin, whereas the inner sublayer has
few or no microbes [16, 17]. The secondary interaction
between probiotics and the intestinal tract occurs in the
intestinal epithelial layer containing different cell subgroups
and spanning across the entire intestinal cavity. The main
functions of this layer are absorption of nutrients, secretion
of mucin, and release of antimicrobial molecules such as
defensin and lysozyme [18]. Bacteria affect the intestinal epi-
thelial barrier function through pattern recognition receptors
[19]. Probiotics interact with host intestinal epithelial cells
(IECs) by adhering to the intestinal wall and stimulating
the production of mucus, thereby enhancing the intestinal
barrier [20]. Through such interaction, probiotics compete
with pathogenic bacteria for niche occupancy [21], prevent
pathogenic bacteria from growing and proliferating in the
intestine by competing with them for nutrition and energy
[22, 23], and reduce intestinal pH by fermenting dietary fiber
to produce short-chain fatty acids (SCFAs) [24].

3. Colorectal Cancer

CRC causes nearly 700,000 deaths every year, making it the
most fatal cancer in the world after lung cancer, liver cancer,
and gastric cancer [25]. Unhealthy eating habits, especially
frequent consumption of low-fiber and high-fat foods char-
acteristic of the Western diet, are crucial factors in the devel-
opment of intestinal disorders [26], which suggests that the
prevalence of the Western diet and lifestyle also increases
the incidence of CRC. CRC is a slow-developing disease,
and survival rates have improved in recent decades owing
to the improvements in preventive cancer screening, which
allows early detection. Screening thus remains the mainstay
for CRC prevention [27]. CRC is believed to be associated
with aging, and the majority of people who undergo regular
screening for CRC are older than 50 years; this underesti-
mates the likelihood of CRC in younger patients, even when
they present with abdominal pain and bloody stools [28].

Further advancements in the prevention and treatment
of CRC warrant a complete understanding of the normal
biology of the colon and the pathogenesis of CRC. The basic
unit of the colon includes crypts and luminal surfaces. When
the intestine is in a state of homeostasis, each colon crypt
contains 14–16 pluripotent stem cells marked with the trans-
membrane protein leucine-rich repeat-containing G protein-
coupled receptor 5 (LGR5). These stem cells can produce all
differentiated cell types in the colon cavity [29, 30]. LGR5+

stem cells can produce rapidly proliferating transit-
amplifying (TA) cells, which account for approximately
two-thirds of the crypts. TA cells mainly differentiate into
four cell types, namely, absorbable IECs, goblet cells, cluster
cells, and intestinal endocrine cells, which are renewed
approximately once a week [31]. The main transcription tar-
get of the Wnt pathway in intestinal crypt stem cells is the
serpentine transmembrane receptor LGR5, which inhibits

the expression of the oncogene Myc and of the basic helix-
loop-helix (bHLH) transcription factor achaete-scute like 2
(ASCL2), which is associated with stem cell self-renewal
[32]. Mutations in the adenomatous polyposis coli (APC)
gene are the potential cause of familial adenomatous polypo-
sis, known as hereditary colon cancer syndrome [33, 34].
APC loss is also the major driver of Wnt signaling in CRC
[35]. Evidence indicates that different APC mutations result
in different levels of Wnt signaling pathway activity, which
is related to the typical tumor location in the large intestine
[36, 37].

4. Gut Microbiota

The human gut microbiota is a rich, diverse, and complex
microbial community composed of fungi, bacteria, archaea,
viruses, bacteriophages, and protozoa living in a symbiotic
relationship with the human host [38]. The composition
and activity of the gut microbiota is a hot topic in the
cross-research field of human microbiology and health, and
it is directly related to the study of probiotics [15]. The com-
mensal bacteria form a tight and complex interaction net-
work with their hosts and are involved in protecting the gut
from harmful substances [39]. Metagenomic evidence sug-
gests that the gene set of different gut microbial species pools
and the functional prediction of the community are the same
and similar, respectively, among individuals. However, the
composition and function of the gut microbiota vary with
diet, location, sex, age, and race [40, 41]. Diet is the main reg-
ulator of the intestinal microbial function. In general, the
ratio of the phyla Firmicutes/Bacteroidetes is higher in indi-
viduals following a Western-style diet, whereas the abun-
dance of the genus Prevotella, belonging to the
Bacteroidetes phylum, is higher in individuals following a
subsistence diet [42–45]. In healthy individuals, more than
90% of the ingested diet is absorbed by the small intestine,
whereas the complex carbohydrates that pass undigested
from the small intestine, such as fiber, protein residues, and
primary bile acids secreted by the body in response to fat
intake, are digested in the colon [46]. These components of
the diet influence the composition and function of the gut
microbiota. Saccharolytic fermentation of complex carbohy-
drates by the colonic bacteria produces SCFAs, with acetic,
propionic, and butyric acids (in a molar ratio of 3 : 1 : 1)
accounting for approximately 90%–95% of colonic SCFAs
[47, 48]. Butyrate regulates mucosal inflammation and anti-
tumor activity by participating in intestinal microbial bal-
ance, proliferation inhibition, immune regulation, and
epigenetic regulation [49].

The gut microbiota is composed of more than 1,000 bac-
terial species, including beneficial and pathogenic microbes,
and is dominated by Firmicutes and Bacteroidetes. In healthy
individuals, the beneficial microbes surpass the pathogenic
microbes and inhibit their excessive growth [50]. The gut
microbiota can thus be considered as an “organ” that per-
forms significant roles, including the utilization of complex
dietary constituents, anabolism of various important com-
pounds, regulation of immune function, and maintenance
of intestinal barrier integrity [51]. Hence, the role of the gut
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microbiota in the pathogenesis of intestinal disorders cannot
be underestimated, and its role in the pathogenesis of CRC
has received much attention in recent years [52]. Whether
microbiota dysbiosis is the cause or result of CRC is still
unknown, which remains a foundational issue in under-
standing CRC [25]. The occurrence of CRC is usually closely
related to the mucosal microbes near the site of tumorigene-
sis [53–55]. The main bacterial species that influence the
development of CRC are not yet completely clear, but the
available evidence suggests that the abundances of Fusobac-
terium nucleatum (Fn), Escherichia coli, Helicobacter pylori,
and Bacteroides fragilis are closely associated with CRC
[56]. It is also suggested that a decrease in bacterial diversity
is related to the occurrence of tumors, but its role in tumori-
genesis remains to be confirmed in further studies [57].

5. Mechanism Underlying the Role of
Probiotics in the Regulation of CRC

Research on bioactive components and gut microbes has
revealed that probiotics may play an important role in cancer
prevention and treatment in addition to regulating the
homeostasis and immune state of the intestinal epithelial sys-
tem [58]. Multiple mechanisms have been hypothesized for
the CRC-preventive and therapeutic effects of probiotics.
For example, at the level of intestinal ecology, probiotics
may reduce the number of pathogenic bacteria in the gut by
competing with the pathogenic bacteria for intestinal niche
occupancy or reduce the level of carcinogens [59]. In addi-
tion, SCFAs produced by microbial metabolism could stimu-
late the proliferation and differentiation of intestinal cells in
the large and small intestines [60]. For instance, intestinal
acetic acid produced by Propionibacterium can trigger the
release of cathepsin D into the cytosol of cancer cells by
increasing the permeability of their lysosomal membrane,
thereby protecting the cells from apoptosis [61]. In this sec-
tion, we focus on the various roles of probiotics, including
enhancing the intestinal mucosal barrier, reducing intestinal
inflammation, inhibiting the activity of pathogenic bacteria,
regulating redox homeostasis, and reprogramming the com-
position of microorganisms, in the regulation of CRC
(Figure 1).

5.1. Enhancing the Intestinal Mucosal Barrier. The complete
intestinal mucosal barrier includes physical, chemical, bio-
logical, and immune barriers. In a healthy state, the intestinal
barrier can protect the gut from toxins and pathogens [62].
Probiotics stimulate mucus secretion by IECs, which func-
tions as a barrier between the mucosa and microorganisms
that prevents the translocation of bacteria and toxins and also
inhibits the adhesion and invasion of pathogenic bacteria in
IECs [63]. Probiotics enhance the intestinal barrier by regu-
lating the expression of tight junction proteins, such as
claudin-1 and occludin, and stimulating intestinal cells to
suppress inflammation and accelerate epithelial cell remodel-
ing by promoting mucin secretion [64–66]. Occludin is a
transmembrane tight junction protein that forms the
mechanical barrier of epithelial cells, and the level of occludin
is a functional indicator of the intestinal mechanical barrier

[67]. Bifidobacterium infantis and Lactobacillus acidophilus
were found to protect intestinal permeability by regulating
the expression of occludin and claudin-1 proteins and pro-
tecting the activation of nuclear factor kappa-B (NF-κB)
induced by IL-1β in Caco-2 cells [68]. Lactobacillus plan-
tarum ZLP001 reversed the decrease in claudin-1 and occlu-
din protein levels induced by enterotoxigenic E. coli and
decreased the levels of the inflammatory cytokines IL-6, IL-
8, and tumor necrosis factor alpha (TNF-α) [69]. Mucin-2
glycoprotein (MUC2) formed by goblet cells in the form of
a disulfide cross-linked network is the main component of
colonic mucus [70]. Muc2 gene inactivation in mice has been
shown to increase close contact between bacteria and IECs,
leading to inflammation and eventually colon cancer [71].
SCFAs produced by microbes through fermentation of com-
plex carbohydrates can enhance barrier function by G
protein-coupled receptor-mediated sensitization of the IEC
inflammasome and reducing the oxygen concentration of
IECs to induce hypoxia-inducible factors [56].

5.2. Reducing Intestinal Inflammation. Immunotherapy
involves the stimulation of innate immunity and the subse-
quent activation of antitumor immune responses [72]. Evi-
dence suggests that the mechanism of inflammation is a
driver of tumor maturation and that inflammation is closely
associated with the risk of CRC [73]. The gut microbiota
plays an important role in the formation of an inflammatory
microenvironment, and the occurrence of inflammation in
turn affects the composition of the gut microbiota. Intestinal
tumorigenesis is driven by inflammation, microbes, and
immunity [74]. Probiotics contribute to the normal function-
ing of the immune system and affect the host immune status
by participating in the differentiation of immune cells and
stimulating the production of anti-inflammatory substances,
antioxidants, and antitumor components [66, 75, 76]. The
colonic immune system contains many types of immune
cells, with macrophage being one of the most abundant
immune cell types [77–79]. A possible mechanism by which
probiotics improve the stability of the colonic environment is
by acting on the colonic macrophages [80]. Macrophages
perform probiotic phagocytosis in a strain-dependent man-
ner and prevent deep tissue destruction after infection by
secreting anti-inflammatory mediators [60]. Evidence has
revealed that the interaction between probiotics and Toll-
like receptors expressed on IECs leads to the production of
TNF in the cells, which inhibits NF-κB in macrophages and
stimulates the production of IL-8 required for neutrophil
production [81]. A study showed that heat-killed Enterococ-
cus faecalis could reduce caspase-1 activity and IL-1β matu-
rity, thereby achieving consistent activation of the NLRP3
inflammasome in macrophages [82]. Furthermore, SCFAs
produced by dietary fiber fermentation are not only the main
energy source for IECs but also the regulator of the intestinal
immune response [83]. Mechanistically, the induction of a
tumor phenotype may be due to the proliferation of colon
epithelial cells induced by butyrate. However, butyric acid
and its receptor GPR109A can also inhibit colitis and
tumorigenesis, indicating that butyrate has anticancer
potential [84].
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5.3. Regulating the Generation of Reactive Oxygen Species.
Oxidative stress plays a vital role in the occurrence of CRC
[85]. Reactive oxygen species (ROS) are by-products of nor-
mal cell metabolism in the GIT. The control of redox homeo-
stasis by the intestinal epithelium, that is, the balance
between antioxidation and oxidative stress, is a vital factor
affecting intestinal functions such as digestion and absorp-
tion of nutrients, immune response, stem cell proliferation,
and apoptosis of apical enterocyte [86–88]. ROS and its oxi-
dation products may damage the antioxidant system of intes-
tinal tissues and destroy the normal function of the intestine,
potentially leading to intestinal mucosal hyperplasia [89–91].
DNAmutations caused by ROS are thought to be involved in
the early inflammatory process of CRC development [92, 93].
Nicotinamide adenine dinucleotide phosphate oxidase
(NOX), expressed on the surface of inflammatory phagocytes
such as neutrophils and phagocytes, participates in ROS gen-
eration. It is also involved in the proliferation and invasion of
epithelial tumor cells. ROS produced by NOX1 can in turn
trigger angiogenesis in the epithelial tumor cells by inducing
angiogenic factors, thus promoting their vascularization and
proliferation [94, 95]. Gut microbial dysbiosis caused by the
mucosa-associated immune system may promote
leukocyte-induced inflammation and oxidative overreaction,
consequently aggravating intestinal mucosal injury [96]. Of
the colonic commensal bacteria considered to play a crucial
role in CRC development, enterotoxigenic Bacteroides fragilis
(ETBF) is suggested to cause inflammatory diarrhea by
secreting toxins [97]. B. fragilis toxin promotes the produc-
tion of ROS in IECs and dendritic cells [98, 99]. A study
showed that commensal bacterial rapidly produced ROS on
IECs both in vitro and in vivo and caused oxidative inactiva-
tion of the catalytic cysteine residue of Ubc12, resulting in the

suppression of the cullin-1 ubiquitination and the conse-
quent inhibition of NF-κB and β-catenin signaling pathways
[100].

Research on the role of the gut microbiota in regulating
gastrointestinal redox homeostasis is still in its infancy. How-
ever, some preliminary data have uncovered the relationship
between the microbiota and redox status, which plays an
important role in the regulation of gastrointestinal health.
Evidence suggests that the hosts’ ROS is associated with the
balance of the gut microbial composition; for instance, the
oxidation state of the host is negatively correlated with the
abundance of Lactobacillus and Bifidobacterium and posi-
tively correlated with that of E. coli [101]. Findings from
mouse models have indicated that a high abundance of Bac-
teroidetes in the colon controls pathogen loads by inducing
proinflammatory and prooxidative reactions, which play a
key role in preventing intestinal infections [102]. The results
of a study in a mouse model of CRC induced by azoxy-
methane showed that the structure of the intestinal microbi-
ota was regulated by Clostridium butyricum administered by
gavage, which involved a reduction of the ratio of Firmicu-
tes/Bacteroidetes, an increase in the relative abundance of
probiotics, an increase in tumor cell apoptosis, inhibition of
the NF-κB pathway and IL-6 levels, and a reduction in CRC
incidence [103]. In one study, the supernatants of Musa
paradisiaca inflorescence fermented with Lactobacillus casei
and Bifidobacterium bifidum were found to induce DNA
damage, promote ROS generation, and initiate the apoptosis
signaling pathway in HT-29 colon cancer cells [104].
Another study showed that Lactobacillus paracasei subsp.
paracaseiM5L suppressed HT-29 cell proliferation and could
promote HT-29 cell apoptosis through ROS production and
calreticulin translocation [105]. Moreover, Lactobacillus can

Intestinal inflammation & redox Intestinal microbe Intestinal cell renewal

Intestinal mucosal barrier:
(i) Claudin-1, occludin, mucin-2

(ii) G protein-coupled receptor
(iii) NF-𝜅B, NLRP3
(iv) SCFAs

Redox homeostasis:
(v) ROS, NOX1

Inhibiting pathogenetic bacteria:
(i) Staphylococcus aureus

(ii) Enterococcus
(iii) Salmonella

Increasing beneficial bacteria:
(i) Lactobacillus

(ii) Bifidobacteria

Intestinal cell proliferation and apoptosis:
(i) Bax, Casp3, and p53

(ii) TNF𝛼, COX–2
(iii) NF–𝜅B–p6
(iv) Butyric acid
(v) Caspase–3

(vi) Histone acetylation

Probiotics

Figure 1: The various roles of probiotics in colorectal cancer prevention and treatment.
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exert anticancer effects by producing antioxidants such as
glutathione, superoxide dismutase, and catalase, suppressing
inflammation and tumor size, and inhibiting the expression
of tumor-specific proteins and polyamine components.
However, the mechanism of the anticancer effect of Lactoba-
cillus in relation to CRC needs to be investigated further
[106–108].

5.4. Inhibiting the Enzyme Activity of Pathogenic Bacteria.
Endogenous toxic compounds, such as N-nitroso, cresol,
aglycones, and phenols, promote the development of CRC
by participating in antiapoptotic pathways in the intestine.
The carcinogenic effects of endogenous toxic and genotoxic
compounds in the intestinal microenvironment may be fur-
ther influenced by pathogenic bacterial enzymes such as 7-
β-dehydroxylase, nitroreductase, β-glucuronidase, β-gluco-
sidase, and azoreductase [109, 110]. For example, pathogenic
bacteria such as Staphylococcus aureus, Enterococcus, and
Salmonella synthesize azoreductase, which metabolizes dyes
and drugs to generate toxic aromatic amines [111]. Polyke-
tide synthase (pks) islands present in some strains of E. coli
encode the genotoxin colicin, which can induce single-
stranded DNA breaks [112]. Furthermore, the DNA damage
response signaling pathway activated in infected cells tends
to increase the mutation rate [113]. Enterotoxigenic B. fragi-
lis has been reported to participate in CRC initiation by pro-
ducing a toxin [114]. Nevertheless, studies have shown that
probiotic supplementation may suppress the activity of bac-
terial enzymes [115, 116]. For example, Lactobacillus could
suppress the dehydrogenation of L. rhamnosus GG (LGG)
and reduce the level of primary bile acid by reducing the
activity of β-glucuronidase [117]. Animal model studies have
shown that yogurt starter bacteria could reduce the activity of
bacterial enzymes, which may be the mechanism underlying
the CRC-preventive effects of probiotics [118]. However, in
healthy subjects, L. acidophilus A1, L. plantarum 299V, and
L. rhamnosus DR20 could not decrease glucuronidase activ-
ity [119, 120].

5.5. Regulating the Proliferation and Apoptotic Responses of
CRC Cells. Apoptosis plays a key role in regulating the num-
ber of cells by balancing cell renewal and eliminating mutant
cells, which is one of the main mechanisms of tumor cell
death in CRC. The decrease in apoptosis is an important dis-
ease event and is accompanied by disruption of cell prolifer-
ation regulation [121]. Therefore, apoptotic pathways are a
promising target for disease prevention and treatment to
manage cell survival and death through apoptosis regulation.
Accumulating evidence has highlighted the critical role of
probiotics in the regulation of cell proliferation and apopto-
sis, which may thus be a vital therapeutic and preventive
measure against CRC [122]. In rat models, LGG decreased
the incidence and size of dimethylhydrazine-induced tumors
while inhibiting the expression of inflammatory proteins,
namely, TNF-α, COX-2, and NF-κB–p6, reducing the
expression of the antiapoptotic protein Bcl-2, and increasing
the expression of the proapoptotic proteins Bax, Casp3, and
p53, suggesting that LGG has the potential to prevent colon
cancer [123]. In another study, L. plantarum DY-1 showed

a strong antiproliferative activity in an HT-29 cell model that
involved retarding the development of the cell cycle fromG0-
G1 phase to G2-M phase and induction of cell apoptosis pos-
sibly via caspase-3, indicating that L. plantarum DY-1 has
antitumor potential [124]. In addition, SCFAs reduce cancer
risk by reducing tumor growth and activating apoptosis cas-
cades via hyperacetylation of histones [125]. Propionibacter-
ium freudenreichii, a probiotic in the human gut microbiota,
has been found to suppress colorectal adenocarcinoma cells
via SCFA-mediated apoptosis [126]. Butyric acid was found
to prevent CRC by regulating the cell cycle, differentiation,
and apoptosis of colon cancer cell lines [127–129].

5.6. Reprogramming the Composition of Gut Microbes. The
ultimate goal of probiotic intervention is to exert regulatory
effects, including immune regulation, immune barrier
strengthening, and regulation of the gut microbial composi-
tion, against certain disorders [15]. Changes in the gut micro-
bial composition are inextricably linked to the development
of CRC. Substantial evidence from animal model studies sug-
gests that probiotics, such as Lactobacillus and Bifidobacter-
ium, have significant effects on intestinal microbial
composition [130, 131]. The colon is teeming with microbes,
and this large population is mostly benign, but some are
pathogenic bacteria, and the increase in the abundance of
these pathogens in the colon is associated with acute or
chronic conditions, such as obesity, inflammatory bowel dis-
ease, and CRC [132]. E. coli is an intestinal symbiotic bacte-
rium, and certain strains of it can promote intestinal
inflammation leading to the production of colicin, a potential
carcinogen [133]. Pathogenic E. coli exists in CRC tissues and
is thus used as a marker in tumor staging and prognosis
[134]. Furthermore, as noted earlier, E. coli containing pks
islands, which encode colibactin, can induce single-
stranded DNA breaks, and thus, changes in the E. coli gene
set influence the phenotype of the disease [112, 135]. Com-
pared with mice injected with E. coli, those injected with
Bacillus polyfermenticus showed reduced tumor size, while
HT-29 cells injected with B. polyfermenticus showed reduced
expression of ErbB2 and ErbB3 at the protein and mRNA
levels [136, 137]. Intestinal pathogenic microbes such as Bac-
teroides and Clostridium are associated with the pathogenesis
of CRC [138]. A double-blind test of synbiotics (LGG, Bifido-
bacterium lactis Bb12, and oligofructose) in 37 patients with
CRC and 43 colonic polypectomy patients demonstrated that
the abundance of Lactobacillus and Bifidobacterium
increased, whereas that of Clostridium perfringens decreased
in CRC patients, and synbiotic intervention inhibited the
colorectal cell proliferation ability and colon cell necrosis
ability and improved epithelial cell barrier function in
colonic polypectomy patients [139].

6. Perspectives

Although certain bacterial species are classified as probiotics
due to their benefits to the host health, changes in host health
status require the regulation of specific probiotic bacteria
rather than the probiotic community in the gut. Substantial
research has explored the role of probiotics in the prevention,
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treatment, and prognosis of CRC. Such dedicated research
has revealed a variety of regulatory roles of probiotics, such
as enhancing the immune barrier, regulating the intestinal
immune state, inhibiting pathogenic enzyme activity, regu-
lating CRC cell proliferation and apoptosis, and regulating
the intestinal microbial composition. Although the evidence
from clinical or animal model experiments has provided a
theoretical foundation for the application of probiotics, evi-
dence from clinical trials on the benefits of probiotics in the
prevention and treatment of CRC is lacking. Therefore, fur-
ther clinical trials are warranted to explore the mechanisms
of probiotics in the regulation of CRC. In addition, it remains
unknown whether gut microbial dysbiosis is the cause or
result of CRC. To address this knowledge gap, further studies
on the interactions between probiotics and intestinal micro-
organisms in CRC development are warranted. Meanwhile,
although the gut microbiota contains fungi and viruses in
addition to bacteria, there is little evidence supporting the
role of fungi and viruses in the gut microbial dysbiosis lead-
ing to CRC development.
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