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Simple Summary: Bladder cancer is a heterogeneous disease that is composed of epithelia with
varying transcriptional, mutational and lineage signatures. The epithelia of bladder tumors can also
undergo pronounced changes in transcriptional and phenotypical qualities in response to progression,
treatment related stresses and cues from the tumor microenvironment (TME). We hypothesize that
changes in epithelial tumor heterogeneity (EpTH) occur due to the evolving content of epithelial
subpopulations through both Darwinian and Lamarckian-like natural selection processes. We further
conjecture that lineage-defined subpopulations can change through nongenomic and genomic cellular
mechanisms that include cellular plasticity and acquired driver mutations, respectively. We propose
that such processes are dynamic and contribute towards clinical treatment challenges including
progression to drug resistance. In this article, we assess mechanisms that may support dynamic
tumor heterogeneity with the overall goal of emphasizing the application of these concepts to the
clinical setting.

Abstract: Acquired therapeutic resistance remains a major challenge in cancer management and
associates with poor oncological outcomes in most solid tumor types. A major contributor is
tumor heterogeneity (TH) which can be influenced by the stromal; immune and epithelial tumor
compartments. We hypothesize that heterogeneity in tumor epithelial subpopulations—whether de
novo or newly acquired—closely regulate the clinical course of bladder cancer. Changes in these
subpopulations impact the tumor microenvironment including the extent of immune cell infiltration
and response to immunotherapeutics. Mechanisms driving epithelial tumor heterogeneity (EpTH)
can be broadly categorized as mutational and non-mutational. Mechanisms regulating lineage
plasticity; acquired cellular mutations and changes in lineage-defined subpopulations regulate
stress responses to clinical therapies. If tumor heterogeneity is a dynamic process; an increased
understanding of how EpTH is regulated is critical in order for clinical therapies to be more sustained
and durable. In this review and analysis, we assess the importance and regulatory mechanisms
governing EpTH in bladder cancer and the impact on treatment response.

Keywords: bladder cancer; plasticity; intratumoral heterogeneity; treatment resistance; tumoral
heterogeneity

1. Introduction

Tumor heterogeneity (TH) has been referred to as the “Rosetta Stone” of cancer
progression and therapeutic response [1,2]. The importance of TH for tumor progression
and clinical intervention can be demonstrated in preclinical model systems [3–5] and
in patient tumor samples [6–8]. TH can be defined as variation in histological, cellular,
and genetic components throughout an individual tumor (intratumoral heterogeneity) or
between tumors from different patients (intertumoral heterogeneity).

Within a single tumor, TH encompass both the tumor microenvironment, including
stromal and immune cells, as well as the cell autonomous epithelial compartment. TH is
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also regulated by acellular components such as stromal and connective tissues. Together,
such elements form a plastic tumor milieu which can change dynamically during tumor
progression and in response to therapeutic challenges.

When considered on a patient population scale, TH is typically extensive and con-
tributes towards the complexity of understanding for when and how often to administer a
drug for optimal clinical response. In some instances, drugs that are considered beneficial
on a population scale can induce adverse disease progression on certain tumor types, thus
highlighting the need for assigning tumor-specific treatments.

While bladder cancer presents as a mutational disease, genetic changes continue to
occur in pretreated tumor progression and in response to therapy. Thus, the mutational
landscape not only has implications for immune cell infiltration but contributes towards
the pool of cells capable of clonal expansion, treatment resistant disease and metastasis.
Growing evidence supports that lineage transdifferentiation is an important mechanism for
cancer cells to adapt to the stress of therapy [9,10] including acquisition of mesenchymal
properties or phenotypes with neuroendocrine qualities. Thus, we propose that oncogenic
mutations, genetic diversity, clonal evolution and cellular plasticity are drivers of epithelial
heterogeneity in bladder cancer (EpTH) [11].

Recently, single-cell technologies have greatly leveraged our ability to understand the
remarkable transcriptional diversity present in bladder cancers. Such technologies provide
opportunities to understand the evolutionary changes in tumor cell composition commenc-
ing from pretreated primary tumors through to post-treatment, resistant metastasis. We
will address the importance of single-cell technologies to increase our understanding of
EpTH both with respect to bulk changes in subpopulations as well as single-cell changes in
cellular identity (lineage transformation). Improved single-cell techniques will provide the
sensitivity and spatial information needed to address critical questions of whether EpTH
can be experimentally manipulated to enhance treatment and reduce lethal phenotypes
including bladder cancers with neuroendocrine-like (NE-like) signatures. While such
processes have proven to be reversible under certain experimental conditions [12,13], the
potential to modulate TH in the clinical setting remains to be determined.

As the importance of TH and relevance for tumor progression encompass a large body
of information, our discussion and analysis will focus on the tumor epithelial compartment.

2. Implications of Patient-Patient Tumor Heterogeneity for Therapeutic Intervention

Clinical bladder cancer typically presents with substantial pathological heterogeneity
and a high mutational burden [14]. Multiple transcriptomic classification systems have
been proposed to better categorize both muscle invasive bladder cancer (MIBC) and
non-muscle-invasive bladder cancer (NMIBC). In MIBC, these systems have included
molecular subtyping based on gene signatures that define the cellular lineage qualities
including those with basal, luminal, squamous, or neuroendocrine properties [8,15–20].
These classification systems were developed based on different datasets of RNA sequencing
and gene expression array profiles and used different clustering methodologies. This has
resulted in multiple classifiers, the inconsistent use of subtype definitions and limited their
use in the stratification of patients for progression or treatment decisions.

In an effort to reconcile previously published MIBC classification schemes, large-
scale studies conducted by Kamoun et al. analysed 1750 transcriptomic profiles from
18 datasets and have identified a consensus molecular classification of MIBC that includes
six molecular subtypes: luminal papillary (LumP), luminal nonspecified (LumNS), luminal
unstable (LumU), stroma-rich, basal/squamous (BaSq) and NE-like [21].

In this instance, consensus classifiers were associated with distinct mRNA signatures
which strongly associated with clinical outcome and overall survival [21]. The utility
of classifying pre-treatment MIBC molecular subtypes includes the patient selection for
cisplatin based neoadjuvant chemotherapy (NAC) [8,22].

Strikingly, only approximately 30% to 40% of residual bladder tumors following NAC
or immunotherapy were of the same lineage subtype as the pretreatment tumors [23,24].
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In a cohort of 20 chemo resistant matched pre- and post-NAC specimens, resistance to
chemotherapy was associated with the development of a p53 pathway signature in the post-
treatment specimens [8]. These data underscore that within a pretreated bladder cancer,
tumor subpopulations have differential growth kinetics and response to clinical therapies.
Moreover, these data highlight the tremendous changes in lineage composition occurring
because of therapy in a high percentage of tumors [8]. Finally, previous investigations using
warm autopsy specimens revealed tremendous mutational evolution in patient matched
primary and metastatic tumor samples [25]. Further understanding of such temporal
changes in mutational burden and how these relate to treatment response will help apply
appropriate therapies during tumor evolution.

Molecular analysis using bulk RNA seq data has increased our understanding of TH
and the potential clinical utility in selecting patients for different systemic treatment [26].
However, a major drawback of this classification strategy is the inability to easily assess
individual tumor subpopulations either qualitatively or quantitatively. Data obtained from
bulk analysis often produce a predominant lineage signature without the consideration of
secondary signatures or tumor subpopulations [27].

The use of single transcriptomic technologies such as single-cell RNA sequencing
(scRNA-seq), single-cell DNA seq (scDNA-seq) and spatial sequencing (sp-seq) in research
will prove superior for defining clinically viable information, over bulk molecular analysis,
by allowing the ability to study TH and to characterize rare cell epithelial subpopula-
tions [28,29]. However, at present, these approaches are both costly and typically require
weeks of processing, thus making their application for clinical use challenging.

3. Intratumoral Heterogeneity Is Prevalent in Pretreated Primary Bladder Tumors

Intratumoral molecular and genetic heterogeneity have been associated with poor
prognosis in multiple cancers including lung cancer, head and neck cancers and chronic lym-
phocytic leukemia [1,6,7,30–32]. In bladder cancer panel of 83 cystectomy specimens’ with
significant heterogeneity in molecular subtypes were observed with the basal-squamous
subtype being most prevalent [27]. In our recent studies, we have applied single-cell RNA
sequencing (scRNA-seq) to analyse transcriptome profiles at the cellular level using a
preclinical mouse model of carcinogen (BBN) induced bladder cancer [33]. We showed
that tumor epithelia can simultaneously express gene signatures of more than one lineage
subtype. Using triple-labeling immunofluorescence, we identified single, double, and
triple-lineage marker-positive cells [33]. We made similar observations in our analysis of
primary human bladder tumors [33]. Recently, Sirab et al. used dual GATA3/KRT5/6
immunohistochemistry to demonstrate high intratumoral heterogeneity in bladder cancer
of the Ba/Sq subtype [34].

Together, these findings demonstrate significant intratumoral heterogeneity in bladder
cancer and suggest that categorical molecular subtyping may not be adequate for optimal
therapeutic outcomes.

4. Mechanisms Regulating Tumor Heterogeneity

Mechanisms promoting Intra-EpTH in pretreated bladder tumors can be broadly
divided into mutational and nonmutational. Mutational mechanisms induce heterogeneity
in genomic DNA which in turn can translate to phenotypic heterogeneity. Nonmutational
mechanisms of heterogeneity induce phenotypic variability without any genetic modifica-
tions [35]. The presence of Intra-EpTH and its ability to promote cellular evolution provides
a significant limitation or barrier to the long-term durability of targeted therapies. The role
of mutational and non-mutational drivers of EpTH in treatment resistance is discussed in
the following sections.

5. Genetic Heterogeneity in Bladder Tumor Epithelia

Pretreated urothelial carcinoma is characterized by a high mutational burden that
contributes to TH. With a median of 8.1 mutations per mega base pair, bladder cancer
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ranked 11th in terms of mutational burden when compared with 166 other cancer types [14].
Phylogenic analysis, using next-generation targeted sequencing of metachronous blad-
der tumors showed that urothelial cancer growth follows a branching evolution with a
common ancestral origin [36,37]. As new mutations are introduced through different mech-
anisms, multiple intratumoral subclone populations with varying genomic, phenotypic,
and transcriptomic profiles accumulate and contribute towards EpTH [37].

Multiple genetic driver mutations are associated with bladder cancer carcinogenesis
and progression [38]. Cells with such mutations are often spatially distributed in a het-
erogeneous manner [39] between the superficial and deep tissue components of muscle
invasive bladder tumors [40]. In FGFR3 mutant cells, sensitivity to FGFR targeted therapies
such as erdafitinib may be variable across different epithelia including distinct lineage
defined subpopulations. In this instance, treatment mayselect for cell types negative for
FGFR3 mutants, thus altering the lineage composition. The potential for these individual
epithelial populations to respond and adapt to therapy are areas of clinical importance
requiring further investigation using single-cell technologies.

Drivers of bladder cancers with high mutational burden remain poorly understood.
Although DNA replication occurs with high fidelity, occasional transcriptional errors still
occur even in the absence of mutagens, thereby introducing de novo genetic mutations. This
stochastic mutational process is involved in tumorigenesis and disease progression [41].
Exposure to certain carcinogens such as cigarette smoke, radiation or chemicals is also
known to induce DNA damage and to play a role in the initiation and the progression of
bladder cancer.

The apolipoprotein B mRNA-editing enzyme catalytic polypeptide-like (APOBEC)
can induce tumoral genetic heterogeneity leading to an APOBEC mutational signature
present in urothelial cancers and other solid tumors [42]. Using whole-exome sequencing
of 412 invasive high-grade urothelial tumors, Robertson et al. identified an APOBEC-
signature and showed that ABOPEC3 is a major driver of mutagenesis in bladder cancer.
Strikingly, they found that more than two thirds of the detected mutations were associated
with the APOBEC-signature [15,42]. Moreover, more than half of the APOBEC-signature
mutations were clonal and occurred early in the disease process [15]. APOBEC also plays
a role in urothelial cancer mutagenesis following chemotherapy [25]. While the clinical
importance of APOBEC remains incompletely defined, high levels of APOBEC-mediated
mutagenesis in urothelial cancer has been associated with disease progression and higher
tumor stage [43,44]. Interestingly, others have shown APOBEC to associate with better
clinical outcomes [15,45]. These observations may be partially explained by the varying
functions of the seven APOBEC3 family members on tumoral immune response [46].
Another compelling hypothesis is that, beyond a certain level, excess APOBEC-mediated
mutagenesis leads to increased antigen presentation and immune activation, thus, resulting
in decreased tumor fitness and increased response to therapy [47]. Taken together, this
suggests that APOBEC plays a significant role in the genetic evolution of urothelial cancer
and that modulation of APOBEC activity could influence disease progression. Indeed,
several strategies are available to inhibit APOBEC expression and function including
Protein Kinase A inhibition [48] or single-stranded DNA analogues [49].

6. Mutational Heterogeneity and Treatment Response

The genetic heterogeneity in tumor epithelial plays a significant role in disease pro-
gression and development of drug resistance largely due to either de novo or acquired
therapy-resistant clones [1]. High intratumoral genetic heterogeneity has been associated
with poor clinical survival in multiple cancers [6,50]. This was exemplified in an analysis
of 77 urothelial tumors from 38 patients, showing that aggressive disease associates with
higher mutational heterogeneity [51]. The mechanism for these observations likely relates
to cancer treatments exerting a Darwinian-like selection pressure on total cell populations,
after which subpopulations most capable of survival persist and ultimately expand to form
lethal disease (Figure 1D). In triple negative breast cancer (TNBC), Kim et al. used scRNA-
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seq and scDNA-seq to explore mechanisms of chemotherapy resistance and showed that
resistant genotypes were pre-existing and adaptatively selected by chemotherapy [52].
Whole-exome sequencing in metastatic bladder cancer demonstrates that chemotherapy
creates a selection pressure for pre-existing resistance associated gene signatures and is
associated with a significant change in the mutational landscape. This analysis showed
that only 28% of mutations were common between pre- and postchemotherapy matched
samples [25]. Longitudinal DNA sequencing of metastatic breast cancer patients showed
that systemic treatment resulted in a genetic bottleneck event and selection of resistant
subclones [53]. Together, this data suggests that tumors with high pretreatment TH increase
the chances that a pre-existent, resistant subclone will be present and survive the selection
pressure induced by treatment, thus resulting in cancer recurrence [54,55].

Figure 1. Mechanisms and impact of tumor heterogeneity in clinical bladder cancer progression. (A) Pretreated primary
bladder tumors are heterogeneous consisting of lineage defined subpopulations with potential to change in relative
proportions during progression or treatment. (B) Bladder cancer cells can acquire transcriptional and phenotype changes
(EMT, NE-like) in response to therapeutic stress. (C) Drug tolerant persisters (DTPs) increase in abundance during clinical
therapies. This process may be accelerated using drugs at maximum tolerated dosages (MTD). (D) Acquired driver
mutations can promote the clonal expansion of cell populations having more aggressive progression kinetics and reduced
response to therapies.

Although mutational burden has been associated with response to immune checkpoint
inhibitors (ICI), recent evidence suggests that tumors with high Intra-TH have decreased
response to ICI. Using a preclinical melanoma mouse model, investigators evaluated the as-
sociation of total mutational burden and intra-TH with respect to antitumor immunity [56].
They showed that increased intra-TH was associated with decreased antitumor immu-
nity and increased tumor aggressiveness independent of TMB. Clinically, high intra-TH
was associated with decreased survival and decreased response to ICI in patients with
melanoma [56]. These observations may be explained by findings demonstrating that
immune-mediated cell rejection does not occur when tumoral antigens are expressed on
a small fraction of tumor cells [57]. This suggest that high intra-TH is associated with
neoantigens being expressed by a smaller proportion of cells compared to more homoge-
neous tumors, thus leading to decreased immune rejection and decreased response to ICI
(Figure 2A).
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Figure 2. Tumor heterogeneity and the consequences of treatment. (A) The lineage composition of post-treatment metastatic
tumors can differ significantly because of nonmutational and mutational mechanisms causing differential subpopulation
selection. This results in altered immune cell infiltration and response to immune therapies. (B) The use of maximum
tolerated dose (MTD) of drugs causes initial tumor regression but rapid acquisition of drug resistant tumor cells or DTPs
(top). Conversely, the cycled use of drugs at lower doses can prolong the effects of cancer therapies and reduce the
acquisition of DTPs (bottom).

7. Nonmutational Mechanisms of Tumor Heterogeneity

As opposed to mutational mechanisms where variability in cellular DNA is the
source of heterogeneity, nonmutational drivers of tumoral heterogeneity do not involve
modification in the cellular genetic code. Embryological development is an example of
nonmutational process of changing heterogeneity where cells with the same DNA code
differentiate into multiple cellular phenotypes. Different from genetic heterogeneity, tumor
cells contributing toward nonmutational heterogeneity can be highly plastic and have
important contributions towards tumor development [1,58].

At a baseline or pretreatment setting, fluctuating cellular transcription constitutes a
source of cellular heterogeneity. Upon the exposure to drugs, cells meeting a threshold of
resistance-related gene expression will survive and be selected for [59,60]. For example,
Shaffer et al. showed that in melanoma, cells undergoing continuous drug exposure can
evolve from a state of transcriptional fluctuation to a stable drug-refractory state through
epigenetic modification [60]. Interestingly, if drug exposure is stopped before the surviving
cells acquire drug-resistance mutations, they can regain their baseline transcriptional
variability and revert to a drug-sensitive state. Such changes in transcriptional levels
provide a framework to explain retreatment responses observed clinically in different
cancers and underscores the impact of nonmutational heterogeneity in cancer treatment
resistance [61–63]. In prostate cancer, persistent exposure to androgen deprivation leads to a
decrease in androgen receptor signaling. However, subsequent re-exposure to testosterone
before the development of an androgen-independent state will induce reappearance of
androgen receptor function and maintain a castration sensitive state [64]. Clinically, this has
resulted in the use of intermittent androgen deprivation therapy (ADT) for the treatment
of biochemical recurrence and has been shown to delay progression to a castrate-resistant
status while limiting total ADT exposure [65].

8. Evidence for Cellular Plasticity and Implications for Treatment Response in
Bladder Tumors

Cellular plasticity represents the capacity of cells to adopt different phenotypes and
switch between different lineage identities [66]. Together, plasticity mechanisms involve
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reactivation of developmental cellular programs and include epithelial-mesenchymal
transition (EMT), acquisition of cancer stem-cell properties and transdifferentiation po-
tential [12,58,59,67]. Over the last decade, the standard stem-cell model of hierarchical
tumor development has been challenged by cell lineage-tracing studies demonstrating
that hierarchical cellular plasticity was more common than initially thought and that
committed progenitor cells retain the capacity to revert back to a multipotent stem-like
phenotype [68–72] (Figure 1A). Cellular plasticity of cancer cells adds further complexity to
the concept of tumoral heterogeneity as plasticity is both reversible and can evolve either
through dedifferentiation or transdifferentiation [12,13]. In de-differentiation, cells with
differentiated properties such as polarity and epithelial marker expression revert back to
a less differentiated state within the same cell lineage [73]. During transdifferentiation, a
differentiated cell converts to another type of differentiated cell lineage [73,74] (Figure 1B).

In bladder cancer, cellular plasticity has been observed by Yang et al. using single-cell
sequencing to demonstrate that nonstem cells, in urothelial cancers, can acquire stem-like
properties and develop self-renewal capabilities [75]. Cellular plasticity and phenotype
switching has also been observed in patient-derived bladder cancer organoids [76]. Our
previous studies have used the in vitro culture of tumor cells isolated from a carcinogen
(-BBN) induced mouse model of bladder cancer, to show that cell populations enriched
for Epcam and CD49f expression have enhanced capacity to undergo microenvironment-
independent plasticity. We also demonstrated cell lineage plasticity of human muscle
invasive bladder cancer in an in vivo mouse model [33]. An important body of literature
also supports the presence of cellular plasticity in breast cancer. Flow cytometry isolation
was used to isolate three mammary epithelial cell states and demonstrate that luminal
and basal cells can revert back to a functional stem-like phenotype and regenerate all
three cell phenotype linage using both in vitro and in vivo models [77]. Further studies
support the presence of cellular plasticity in other solid tumors such as colon cancer, breast
cancer and lung cancer [78–82]. In general, cellular plasticity is thought to be dynamically
involved at the invasive edge of tumor cells as they undergo cytoskeletal changes in order
to accommodate cellular expansion and invasion [83].

9. Epithelial-Mesenchymal Transition (EMT)

EMT is a tightly regulated process involved in embryonal development and in tissue
healing and represents the most studied example of cellular plasticity [84]. EMT should not
be regarded as a strictly binary process as cells are usually in a continuum of transitional
states between epithelial and mesenchymal phenotype [85]. Cancer cells with mesenchymal
properties are characterised by loss of polarity, decreased cell-to-cell adhesion and increase
in migration capabilities [86,87]. In bladder cancer, tumoral RNA expression of EMT
markers such as N-cadherin, Vimentin, Slug and Snail have been linked to increased
clinical stage, grade, and worse clinical outcome [88,89]. Weak expression of E-cadherin
and strong expression of MMP-9 and TWIST, measured by immunohistochemistry, were
also shown to be independently associated to tumor recurrence in a cohort of 161 non-
muscle-invasive bladder cancer [90]. Mesenchymal characteristics of circulating tumor
cells have been linked to cancer progression and resistance to treatment in breast cancer
patients [91]. In human bladder cancer cell lines, the transcription factor TWIST, a known
marker of EMT, has been associated with anthracycline resistance [92].

10. Neuroendocrine-Like Phenotypes

The formation of epithelia with neuroendocrine qualities constitutes another lineage
occurring frequently during therapeutic stress [93] (Figure 1B). For example, in prostate
cancer, prolonged exposure to androgen pathway inhibitors induce the development of
aggressive disease characterized by low androgen receptor expression and response to
most standards of care treatments [93,94]. In bladder cancer, transcriptomes from 34 small
cell bladder cancer were compared to 84 conventional urothelial cancer specimens to
study the role of epithelial transition in bladder cancer. Analysis of mRNA and miRNA
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transcriptome profiles suggested that bladder cancer progression to the more aggressive
small cell variant was driven by dysregulated EMT leading to an epithelial to neuronal
lineage plasticity [95]. Mechanisms underlying development of small-cell bladder cancer
are incompletely understood, but it has been suggested that anticancer treatment such as
chemotherapy could induce transdifferentiation to a neuroendocrine phenotype, similar to
what has been observe in prostate cancer and hormone therapy [26]. These data suggest
that multiple types of therapies have the potential to induce sufficient cellular stress to
cause changes in lineage identity.

Taken together, this suggests that plasticity is important in the evolution of bladder
cancer. We conjuncture that plasticity represents a clinically important resistance mecha-
nism as cells switch from a treatment-sensitive lineage to treatment-resistant lineages in
order to accommodate the stress of therapy.

11. Reversal of Cellular Plasticity as a Therapeutic Strategy

While mounting evidence supports that lineage plasticity is a bona fide mechanism
for cancer cells to adapt to therapy, less is understood as to whether plasticity can be
reversed in a controlled manner. Due to its important role in tumor progression and
aggressiveness, EMT represents an attractive target for the development of targeted ther-
apies. Multiple pathways regulating EMT are being investigated as potential treatment
targets with clinical trials investigating drugs capable of targeting EMT being con-
ducted in solid tumors such as breast cancer, lung cancer and colorectal cancer [96,97].
Interestingly, purposed for other clinical purposes, such as the analgesic etodolac and
the cholesterol lowering agent, simvastatin, possess some inhibitory effects on EMT
and are currently evaluated for roles in cancer treatment [98]. While incompletely
understood, in vitro studies on bladder cancer cells suggest that simvastatin may alter
EMT by deactivating the PI3K/AKT and the MAPK/ERK signalling pathways [99].
We suggest that the use of EMT targeting agents will lead to increased durability of
current clinical therapies when used in combination [99]. Despite these opportunities,
challenges in targeting cellular transition states include identifying which patients
to treat and when, during clinical progression. Currently strategies have considered
assessing bloodborne CTCs or even secreted markers expressed in the sera.

12. Drug-Tolerant Persisters and Post-Treatment Lineage Heterogeneity

In response to drug exposure, a subpopulation of cancer cells termed drug-tolerant
persisters (DTPs) will acquire a poorly differentiated phenotype and enter a dormant,
slow-cycling and drug tolerant state [59] (Figure 1C). DTPs can survive in a quiescent state
for prolonged periods of time. A similar phenomenon is observed in bacteria, where a
subpopulation of cells exhibits reversible antibiotic-tolerant properties and can survive
treatment [100].

Although tolerant cells may pre-exist in the tumor, it has been shown that some
cells become DTPs through EMT and phenotype plasticity following drug
exposure [101–103].While there is currently no consensus on specific markers asso-
ciated with DTPs [103], the accumulation of DTPs can occur in different tumor types by
seemingly different mechanisms.

In basal-like breast cancer cell lines, exposure to MEK and PI3K/mTOR inhibitor
resulted in development of DTPs through epithelial plasticity driven by therapeutic chal-
lenge [104]. In EGFR mutant non-small-cell lung cancer (NSCLC) cell lines treated with an
EGFR TKI, DTPs represented 0.3–5% of cell population. Once drug exposure was stopped,
DTPs resumed growth and reacquired EGFR TKI sensitivity, suggesting a nonmutational
mechanism of resistance [105]. DTPs can survive for months, allowing time for the devel-
opment of new resistant clones through the acquisition of driver mutations and creating a
link between nonmutational and mutational resistance mechanisms [103,106]. Therefore,
an increased understanding of cellular plasticity and of the mechanisms surrounding the
development DTPs will be key in preventing cancer drug tolerance.
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13. Follow Up

Tumor heterogeneity is a dynamic process that serves an important role in tumor
progression and response to therapies. Changes in TH through clinical evolution are
likely a consequence of both changing proportions of lineage defined subpopulations as
well as processes of cellular plasticity. Understanding how clinically approved therapies
regulate these processes on a temporal scale will help define therapies. Adaptive therapy
is an example of a novel treatment approach that incorporates these concepts and aims to
maintain a population of treatment-sensitive cells to prevent the expansion of treatment-
resistant cell populations (Figure 2B).

Using mouse models of breast cancer, Enriquez-Navas et al. showed that low doses of
paclitaxel are effective in controlling tumor volume and preventing unopposed proliferation
of treatment-resistant cell populations [107]. Adaptive therapy is also being explored
with hormonal therapy in delaying castration-resistant prostate cancer [108]. Directed
plasticity is another interesting approach where the aim of treatment is to guide cellular
plasticity to induce transdifferentiation of malignant cells to a benign phenotype [109,110].
In bladder cancer, development of therapies focussing on cellular plasticity mechanisms
could force cellular lineage switching from malignant phenotypes to more benign and
indolent phenotypes. Therapies preventing plasticity towards a DPT phenotype could
also increase long-term response to current treatments by preventing treatment resistance.
Preclinical research of this nature is studying the transcriptional repressor of CDK7/12,
THZ1, in mouse models of bladder cancer [111].

A better understanding of cancer cell heterogeneity and plasticity will allow clinicians
to consider tumor heterogeneity in a dynamic and adaptive fashion, rather than in a static
manner in the elaboration of new treatment approach.

14. Conclusions

Tumor heterogeneity and cellular plasticity are hypothesized to play important
roles in the evolution and management of bladder cancer. The limitations of homoge-
nous and static classifications of urothelial cancer need to be acknowledged. The
heterogeneous and dynamic nature of this disease should be emphasized paving the
way for further research on specific mechanisms regulating the dynamics of tumor
subpopulations and cellular plasticity.
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