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Nosocomial infection (i.e. infection in healthcare facilities) raises a serious public health problem,

as implied by the existence of pathogens characteristic to healthcare facilities such as methicillin-

resistant Staphylococcus aureus and hospital-mediated outbreaks of influenza and severe acute

respiratory syndrome. For general communities, epidemic modeling based on social networks is

being recognized as a useful tool. However, disease propagation may occur in a healthcare facility

in a manner different from that in a urban community setting due to different network architecture.

We simulate stochastic susceptible-infected-recovered dynamics on social networks, which are

based on observations in a hospital in Tokyo, to explore effective containment strategies against

nosocomial infection. The observed social networks in the hospital have hierarchical and modular

structure in which dense substructure such as departments, wards, and rooms, are globally but

only loosely connected, and do not reveal extremely right-skewed distributions of the number of

contacts per individual. We show that healthcare workers, particularly medical doctors, are main

vectors (i.e. transmitters) of diseases on these networks. Intervention methods that restrict inter-

action between medical doctors and their visits to different wards shrink the final epidemic size

more than intervention methods that directly protect patients, such as isolating patients in single

rooms. By the same token, vaccinating doctors with priority rather than patients or nurses is more

effective. Finally, vaccinating individuals with large betweenness centrality (frequency of mediating

connection between pairs of individuals along the shortest paths) is superior to vaccinating ones

with large connectedness to others or randomly chosen individuals, which was suggested by previous

model studies.

& 2008 Elsevier Ltd. Open access under CC BY-NC-ND license.
1. Introduction

Nosocomial infection, that is, infection in healthcare facilities,
is health-threatening for hospitalized patients and caregivers
(Gastmeier et al., 2005; Grundmann and Hellriegel, 2006).
Pathogens such as methicillin-resistant Staphylococcus aureus

(MRSA) and vancomycin-resistant enterococci (VRE) are mainly
nosocomial in the sense that the majority of cases are hospital-
related (Salgado et al., 2003; Cooper et al., 2004). In addition, as
observed in recent cases of influenza (CDR weekly, 2005) and
severe acute respiratory syndrome (SARS) (Ho et al., 2003;
Leung et al., 2004; Svoboda et al., 2004), nosocomial infection
serves as an initiator or a booster of epidemic outbreaks at
urban community and world-wide levels. In accordance, mathe-
matical models specialized in nosocomial infections and their
asuda).

Y-NC-ND license.
controls have been developed, with intensive emphases on
antibiotic-resistant bacteria (Lipsitch et al., 2000; Pelupessy
et al., 2002; Forrester and Pettitt, 2005; Bootsma et al., 2006;
Boldin et al., 2007) and intensive care units (Pelupessy et al.,
2002; Perencevich et al., 2004; Forrester and Pettitt, 2005;
Boldin et al., 2007). Quantitative statistical models for nosocomial
infection have also been reported (Cooper and Lipsitch, 2004;
Forrester and Pettitt, 2005; Forrester et al., 2007).

In this work we examine the possibility of using the
information on social networks in healthcare facilities for
developing containment protocols. There have been many
modeling reports on disease spreading on complex social net-
works (Meyers et al., 2003, 2005; Christley et al., 2005; Keeling
and Eames, 2005; Pourbohloul et al., 2005; Watts et al., 2005;
Colizza et al., 2006; Green et al., 2006; Riley, 2007; Volz and
Meyers, 2007). A central theoretical finding is that hubs, namely,
those who have contacts to relatively many others, communicate
and enhance disease transmission. Diseases spread to a great
extent with larger probability on heterogeneous networks

www.sciencedirect.com/science/journal/yjtbi
www.elsevier.com/locate/yjtbi
dx.doi.org/10.1016/j.jtbi.2008.07.001
mailto:masuda@mist.i.u-tokyo.ac.jp
http://creativecommons.org/licenses/by-nc-nd/3.0/
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such as scale-free networks in which the number of contacts
that each individual maintains is highly heterogeneous (Hethcote
and Yorke, 1984; Anderson et al., 1986; Albert et al., 2000;
Pastor-Satorras and Vespignani, 2001). Such heterogeneous net-
works are operative in sexually transmitted diseases (Liljeros
et al., 2001) and computer viruses (Pastor-Satorras and Vespignani,
2001).

However, this and other findings in network epidemiology
so far do not seem to have a sufficient descriptive power for
nosocomial infections for two main reasons. First, social networks
of healthcare facilities may be structured differently from net-
works of urban communities or the whole world. In terms
of size, a hospital is typically much smaller than an urban
community. In terms of microscopic structure, contact patterns in
a hospital are regulated by hierarchy defined by departments,
wards, and rooms. To our knowledge, efficient containment
strategies for social networks with such modular structure have
not been established. Second, a healthcare facility is composed
of individuals of distinct roles, such as patients, visitors, and
healthcare workers. Healthcare workers can be subdivided into
different classes, such as nurses and medical doctors. Suscept-
ibility, mortality, infectiousness, and many other factors that
affect how diseases spread depend on the type of individuals.
For example, junior doctors may visit more wards than nurses
do, possibly carrying pathogens from ward to ward (CDR weekly,
2005). Patients may be less active but likely have larger case
fatality (i.e. fraction of death among infected individuals) than
healthcare workers (Leung et al., 2004; Forrester and Pettitt,
2005). In urban community social networks, the role of
different types of individuals in disease propagation may not be
so clear-cut.

In spite of seminal modeling work of nosocomial infection
based on network analysis (Meyers et al., 2003; Liljeros et al.,
2007), how diseases spread in potentially hierarchical networks of
healthcare facilities composed of individuals of different classes is
not sufficiently understood. In this work, we model nosocomial
infection in social networks based on observations of contact
frequency in a hospital in Tokyo. We simulate stochastic
susceptible-infected-recovered (SIR) epidemic dynamics on these
networks and evaluate effectiveness of intervention and vaccina-
tion protocols. We show that medical doctors that move between
wards, but not patients or nurses each of whom is attached to a
single ward, are principal vectors (i.e. transmitters) of pathogens.
In accordance, we show that reallocating patients to medical
doctors reduces epidemic spreading to a larger extent than
preparing single rooms to isolate patients. We also show
that the vaccination protocols that principally target health-
care workers, particularly medical doctors, located in key posi-
tions determined by network analysis are more effective than
those focusing on patients or on simply most connected
individuals.
Fig. 1. Construction of (a) Pt–Ns, Pt–Dr, Ns–Dr, Dr–Dr edges, (b) Pt–Pt edges, and

(c) Ns–Ns edges.
2. Methods

2.1. Data

We construct two social networks in a community hospital
located in Tokyo, based on medical records collected at two
instants, namely, a day in a weekend in September 2007 and a
weekday in November 2007. The use of the data in this study was
approved by the Hospital Ethics Committee. These two datasets
are different mainly in that more nurses work on the weekday.
Another minor difference is that some resident doctors occupy
very different parts of the two networks because they change the
department every month. We use these two networks as two
independent snapshots and do not consider longitudinal factors
caused by, for example, shift work, admission of patients, dis-
charge of patients, and seasonality.

This hospital is a 482 bed tertiary referral teaching hospital,
with 16 wards and 129 rooms. Patients occupy either shared or
single rooms. There are relatively few single rooms (37 rooms, or
7.68% of the total beds). A ward has 8.06 rooms on average (max
10, min 4) and usually hosts patients from different departments.
A department typically has patients scattered in different wards.
Therefore, as nurses work in single wards, they are likely to attend
patients from a number of departments. On average, about five
nurses work in a ward (5.88 on the weekday and 4.31 on the
weekend).

As schematically shown in Fig. 1a, one line of the medical
record contains the identity of a patient accompanied by those of
a nurse and medical doctors in responsibility. A patient is
assigned a single nurse and is examined by at least one doctor.
Usually, a couple of doctors form a team so that a patient is
examined by multiple doctors in the team. A typical team consists
of two or three doctors of different ranks. A patient is also
examined by multiple doctors when the patient registers at
multiple departments, but such an occasion is rare (none on the
weekday and just one patient on the weekend). As a note, resident
doctors (25 among 123 doctors on the weekday and 29 among 123
on the weekend) often belong to more than one department,
because they may retain their previous patients in addition to
gaining new ones every month in different departments. All the
other medical doctors are specialists and belong to only one
department. All doctors, including residents, typically visit a
number of wards over which their patients are scattered, the
maximum number of wards visited by a single doctor for these
data being five.

The edges of the networks, which represent social contacts
between pairs of individuals, are defined as follows. We denote
patient, nurse, and medical doctor, by Pt, Ns, and Dr, respectively.
The Pt–Ns, Pt–Dr, Ns–Dr, and Dr–Dr edges (for example, a Pt–Ns
edge is an edge between a patient and a nurse) are determined
based on the medical record (Fig. 1a). All pairs of individuals in the
same line of the medical record are connected to each other.
Accordingly doctors in the same team are connected to each other.
Additionally, a patient is connected to all the other patients in the
same room (Fig. 1b). This is the single source of Pt–Pt edges.
Similarly, a nurse is connected to all the other nurses working in
the same ward to form Ns–Ns edges (Fig. 1c). We neglect other
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Table 1
The number of individuals and each type of edges for the original weekday

network and the networks after intervention

Type of edge Original 1 1 (dup) 2 2 (dup) 3

Total 3046 2823 3016 2717 3004 2382

Pt–Pt 664 664 664 664 664 0

Pt–Ns 388 388 388 388 388 388

Pt–Dr 927 911 927 857 927 927

Ns–Ns 245 245 245 245 245 245

Ns–Dr 661 488 661 444 661 661

Dr–Dr 161 131 131 119 119 161

T. Ueno, N. Masuda / Journal of Theoretical Biology 254 (2008) 655–666 657
possible contacts, such as casual friendships that do not appear in
the medical record.

The edges of the networks are assumed to be fixed over
time, undirected, and unweighted, so that disease transmission
occurs bidirectionally with the same strength. Even if a particular
Ns–Dr pair or Dr–Dr pair may appear in multiple lines in the
medical record, we do not double count this relation because
double counting would lead to excessive weighting of Ns–Dr and
Dr–Dr edges. For example, the two doctors in the same team
would be connected by five edges if this team examines five
patients.
Type of individuals Number

Total 605

Pt 388

Ns 94

Dr 123
2.2. Epidemic dynamics

We simulate the stochastic SIR model on the static observed
networks. Each individual takes one of the three states repre-
sented by S (susceptible), I (infected), and R (recovered or dead).
Initially, a prescribed index individual is infected, and all the other
individuals are susceptible. Any susceptible individual is subject
to contagion when that individual has an infected neighbor in the
social network. We assume that the infection rate is frequency-
dependent, that is, proportional to the number of edges that an
individual has (Lloyd-Smith et al., 2004). We denote the unitary
infection rate by l. Assuming that the possibility of infection
events depends the present, but not past, configuration of S, I, and
R on the network, a susceptible is infected by each infected
individual in the neighborhood with probability 1� expð�lDtÞ in
time Dt. Note that, when Dt is small, the probability that a
susceptible becomes infected is approximated by lDt times the
number of infected neighbors. Equivalently, an infected individual
infects each of its susceptible neighbors with probability lDt. The
infection rate l is common for different edges and individuals
unless otherwise stated.

An infected individual continues infecting neighboring indivi-
duals until recovery occurs (and the individual enters state R)
after a random time. The transition rate from state I to state R is
set equal to unity for normalization, so that an infected indi-
vidual transits to state R with probability 1� expð�DtÞ for
time Dt. When Dt is small, this probability is approximated by
Dt, and one recovery event occurs per unit time on average. This
event happens independently of the neighbors’ states. Individuals
in state R are assumed to be either immune or dead. We consider
both interpretations in the following analyses. In either case, they
cannot infect, or be infected by, other individuals.

Because the transition rate from state I to state R is normalized
to unity, the infection rate l controls the strength of a disease.
When l is large enough, with high probability, the number of the
infected grows progressively in the early stages and the number of
the susceptible decreases accordingly. After some delay, state-R
individuals begin to appear, and the number of the infected
individuals begins to decline. Finally the population is composed
of only state S and R individuals, which halts the dynamics. We
perform each numerical simulation until this situation is reached.
Because the SIR dynamics are stochastic, we take averages over
trials for calculating the mean statistics. For each configuration,
the average is taken over 100 trials for each index case and over all
the individuals as index cases.
3. Results

3.1. Network structure

The observed weekday network contains 605 individuals (388
patients, 94 nurses, 123 medical doctors) and 3046 edges (Table 1).
The characteristic path length of the network, which is defined as
the mean shortest path length between all the pairs of individuals,
L ¼ 4:84. The clustering coefficient, which counts the abundance
of local connectivity by the density of triangles normalized
between 0 and 1, C ¼ 0:534. A relatively small value of L and
a large value of C of this network implies the small-world
property (Watts and Strogatz, 1998). Although the hospital
network has a considerably smaller L than spatially structured
networks such as the square lattice (a regular two-dimensional
network), it is not perfectly mixed. If we rewire the edges
randomly with the degree (number of edges that an individual
has) of each individual fixed, L even decreases to 2.97 and
clustering is lost (C ¼ 0:0251). This behavior of L and C upon
random rewiring of edges is similar to that for the Watts–Strogatz
network model (Watts and Strogatz, 1998). The path length L

of the original network is larger than the randomized network
because of some localization of individuals. First, patients are
connected to each other within one room only. Therefore, intra-
room edges are dense relative to interroom edges. Second,
each patient and nurse is attached to a single ward and only
connected to patients and nurses inside that ward; only medical
doctors link different wards. Therefore, intraward edges are
dense relative to interward edges. Third, doctors are localized in
the sense that doctors visit only the wards with patients from
their own department and that doctors in the same team have
correlated contact patterns and mutual connections. The entire
network is composed of relatively dense subnetworks (also called
communities or network modules in network literature, e.g. Girvan
and Newman, 2002; Palla et al., 2005) that are loosely interlinked
in a hierarchical manner.

The degree distribution is shown in Fig. 2 separately for each
class. Unlike social networks underlying sexually transmitted
diseases (Hethcote and Yorke, 1984; Anderson et al., 1986; Liljeros
et al., 2001) and computer viruses (Pastor-Satorras and Vespigna-
ni, 2001), our hospital social networks do not have right-skewed
degree distributions. A skewed degree distribution would imply
that a fraction of caregivers with very large degrees are extremely
busy, whereas others are not.
3.2. Basic epidemic dynamics

The final epidemic size is defined to be the sum of the
state R individuals regardless of the class (Pr, Ns, and Dr) at
the end of the epidemic dynamics, normalized between 0 and 1.
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The average final size calculated numerically is shown in
Fig. 3a (solid line) for the weekday network. The final size
increases as the infection rate l increases, taking off the zero
0

25

50

75

100

10 20 30 40

# 
in

di
vi

du
al

s

degree

Pt
Ns
Dr

Fig. 2. Degree distributions of the weekday network for different classes of

individuals.
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size. (c) Fraction of mortality. (d) Distribution of the fraction of mortality. A brighter p
floor around l ¼ 0:13, for which the basic reproduction number,
which is the expected number of secondary cases originating
from an index case, crosses unity. Beyond this point, a large-scale
(i.e. major) epidemic may occur.

The distribution of the final size is shown in Fig. 3b. The
average of the distribution shown as each vertical cross section,
i.e. for each value of l, corresponds to the solid line in Fig. 3a.
Above a threshold infection rate, the distribution has two masses.
One thin mass is concentrated around zero and indicates that,
despite a large infection rate, the epidemic can quickly decline to
extinction owing to demographic stochasticity of state I indivi-
duals (i.e. minor epidemic). The other mass is centered around a
positive value of the final size and corresponds to the major
epidemic. Precisely speaking, the major epidemic consists of two
peaks. This is because one ward, which is devoted to the
psychiatry department, has 42 (of 605) individuals and is
connected to the rest of the network via only two junior
doctors. These doctors examine patients from departments to
which they previously belonged, in addition to patients from
the psychiatry department. Suppose that the disease starts from
the index case in this ward. Disease must pass through the
narrow channel composed of the two doctors to spread to the rest
of the population. This event occurs with a somewhat low
probability even for very large infection rates. This causes the
lower peak of the upper mass around 0.9 in Fig. 3b, which is
eminent for lX0:8. We confirmed that a two-mass distribution,
possibly with subdivisions of each mass reflecting modular
structure of the network, underlies each of the following
numerical results. In addition, whereas an epidemic whose
final size is near the mean value rarely occurs because of the
two-mass distribution shown in Fig. 3b, a larger mean final
size indicates a larger probability of major epidemic. Therefore
λ
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we will show only the mean values of the final size in later
figures.

Both for nosocomial pathogens such as MRSA (Forrester and
Pettitt, 2005) and other pathogens such as SARS (Leung et al.,
2004), the case fatality of hospitalized patients is much larger
than that of healthcare workers. The final sizes shown in Fig. 3a
and b represent incidences, that is, infection events. Frequency of
observing severe manifestations or deaths needs to be discussed
separately. To highlight differential mortalities between health-
care workers and patients (Leung et al., 2004), we assume that
only patients, not nurses or medical doctors, always die after
being infected for some time (see Discussion for justification). The
nurses and doctors in state R are assumed to be cured after being
infected. These individuals are counted for the final size but not
for the final fraction of mortality. Consequently, the final fraction
of mortality is defined to be the final fraction of state R among the
patients only. The fraction of mortality and its distribution, shown
in Fig. 3c and d, respectively, change little from those for the
final size.

The randomized network yields a larger final size and larger
mortality (dashed lines in Fig. 3a and c) than the original network.
This is because the randomized network has a small L so that, on
average, individuals are linked by a short distance compared to
the case of the original network.

The weekend network has characteristics similar to the
weekday network, with 521 individuals (329 patients, 69 nurses,
123 medical doctors), 2364 edges, L ¼ 4:39, and C ¼ 0:535
(Table A1). The randomized network has L ¼ 3:015 and
C ¼ 0:0286. The degree distribution and the SIR results for the
original and randomized networks are shown in Figs. A1 and A2,
respectively. The final size, the mortality, and their distributions
are shown in Fig. A2. These results are qualitatively similar to
those for the weekday network. The following results for the
intervention and vaccination protocols are also qualitatively
the same for the weekday and the weekend network. Therefore,
we explain the weekday results in the main text and relegate the
weekend results to Appendix A.
3.3. Interventions

We examine the effects of three intervention methods on
the suppression of epidemic spreading. We design these inter-
vention methods so that they may be practiced in real situations
before a potential epidemic happens. The cost of implementation
is presumably the smallest for method 1 and the largest for
method 3.
3.3.1. Intervention 1: reassigning patients to medical doctors

Medical doctors are likely to be efficient vectors of patho-
gens because they examine their patients scattered in multiple
wards. In contrast, nurses and patients are constrained to one
ward. In intervention 1, we reduce visits of doctors to different
wards by reassigning patients to different doctors. Originally a
couple of doctors in the same department formed a team to
examine a set of patients, who were potentially scattered across
different wards. Under the intervention, we reassign the patients
without destroying the team structure; we will relax this
condition in the next intervention method. Suppose that both
teams t1 and t2 examine a patient in ward w1 and another patient
in ward w2. In the example shown in Fig. 4a, teams t1 and t2 trade
one of their patients. Then team t1 examines two patients in ward
w1 and team t2 examines two patients in ward w2, thus allowing
each team to visit just one ward. We apply this operation
wherever possible so that we constrain each team of doctors
to as few wards as possible, often enabling confinement to just
one ward.

By intervention 1, the numbers of Pt–Pt edges, Pt–Ns edges,
and Ns–Ns edges are preserved (Table 1). The number of Pt–Dr
edges slightly decreases because some patients are reassigned
with a team of a smaller number of doctors after intervention
than before intervention. The number of Ns–Dr edges decreases
because a doctor visits a smaller number of wards after the
intervention. Then, for example, doctor Dr1 in Fig. 4a tends to
spend more time with nurse Ns1, whereas this doctor is no longer
connected to Ns2. The number of Dr–Dr edges decreases because,
in some departments, some of the teams are dismissed after
intervention 1. In such departments, some doctors belong to
multiple teams before intervention and to a smaller number of
teams after intervention. The edges in the original network
that link two doctors sharing dismissed team only are absent
in the post-intervention network. Due to the reduction in
doctor-related edges, the total number of edges decreases from
3046 to 2827.

The numerical results for the final size and the mortality
after intervention 1 are shown in Fig. 5a and b, respectively (lines
with legend ‘1’). We find considerable decreases in both quanti-
ties compared to the case of the original network. Note that
this intervention does not require introduction of additional
infrastructure.

One may argue that the suppression of epidemics comes from
a significant decrease in the number of Ns–Dr edges. To exclude
this possibility, we examine the network in which the Pt–Dr
and Ns–Dr edges are duplicated through the intervention. With
this modification, doctor Dr1 and nurse Ns1 in Fig. 4a, for example,
is connected by two edges. Equivalently, we increase the
transmission rate of this single edge twofold to account for the
doubled contact rate between them, which comes from the fact
that Dr1 and Ns1 examine twice patients together (two patients
after the intervention versus one patient before the intervention).
The edge duplication is also done for a Pt–Dr edge whenever
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the number of doctors that examine the patient on this
edge decreases as a result of intervention. Consequently, the
number of Pt–Dr edges and that of Ns–Dr edges return to
those of the original network. This implies that the quality of
the medical service that we measure by the number of Pt–Ns and
Pt–Dr edges does not degrade due to the intervention. The
number of edges in total after this modified intervention 1 is 3016,
which is close to the number for the original network (i.e. 3046
edges; also see Table 1).

The numerical results shown in Fig. 5a and b (lines with legend
‘1 (dup)’) indicate that this modification little spoils the
effectiveness of intervention 1. A large portion of the reduced
epidemics is owing to the reassignment of patients, but not to
cutting edges.
3.3.2. Intervention 2: dissolving teams

Next we investigate a more costly intervention method. The
team structure of medical doctors generally enables them to reach
better medical solutions through discussion and knowledge
accumulation in the team. It also helps training junior doctors.
However, team structures provide channels for rapid disease
transmission among wards, with doctors serving as vectors.
Another related negative effect of the team structure is that
patients and nurses are subject to extra infection events because
they are connected to multiple doctors.

We dissolve the team in intervention 2. In the schematic
example shown in Fig. 4b, each patient is examined by both
doctors in the team before intervention. By intervention 2, we
assign each patient to one, but not two, of the doctors. For
example, Pt1 was examined by Dr1 and Dr2 before the interven-
tion, but only by Dr1 after the intervention. In practice, this
intervention may be discouraged if it results in resident or junior
doctors examining patients alone. Therefore, we decompose the
teams as much as possible under the condition that each resident
doctor remains teamed with a senior doctor. The numbers of
Pt–Pt, Pt–Ns, and Ns–Ns edges are preserved through the
intervention. The total number of edges drops from 3046 to
2717 owing to the reduction in doctor-associated edges, as
summarized in Table 1.

The final size and the mortality are shown in Fig. 5 (lines with
legend ‘2’). Intervention 2 is more effective than intervention 1.

To calibrate the effect of the decrease in the number of
edges, we do additional numerical simulations. As an example,
suppose that Pt1 in Fig. 4b is examined by Dr1 for twice as long
after the intervention than in the pre-intervention situation
where Pt1 is examined by two doctors. Accordingly, we duplicate
the edge between Pt1 and Dr1. In addition, we compensate
the contact rate, or the number of edges, between nurses and
doctors by duplicating the corresponding Ns–Dr edges, as in
intervention 1. Taking the edge duplication into account, the
numbers of Pt–Dr and Ns–Dr edges, as well as those of Pt–Pt,
Pt–Ns, and Ns–Ns edges, are preserved. A byproduct of this
modification is that the service quality assessed by the amount of
the Pt–Ns and Pt–Dr edges is restored. The total number of
edges after modified intervention 2 is 3004 (see Table 1 for the
number of each type of edges), which is close to 3046, the
number for the original network. The persisting reduction in
the number of edges comes from that of Dr–Dr edges. As shown in
Fig. 5 (lines with legend ‘2 (dup)’), this modification has little
influence on the effectiveness of intervention 2. As in interven-
tion 1, the reduced mortality is ascribed to the intentional changes
in network structure, but not to simply cutting edges.

3.3.3. Intervention 3: introduction of single rooms

In intervention 3, we attempt to prevent disease spreading
among patients by making all the rooms single, as suggested by
previous literature (Cooper et al., 2004). Accordingly, we isolate
the patients by removing all the Pt–Pt edges, with the other types
of edges and hence the service quality kept intact. The schematic
of this procedure is shown in Fig. 4c. Then, the total number of
edges decreases from 3046 to 2382 (Table 1).

The final size and the mortality results shown in Fig. 5 (lines
with legend ‘3’) suggest that intervention 3 is not as effective as
interventions 1 and 2, except when the infection rate is large. Even
if we focus on the patient cases only, as shown in Fig. 5b, it is more
effective to reduce Dr-related edges (interventions 1 and 2), than
to reduce Pt–Pt edges (intervention 3).

Note that the number of removed edges is much larger ð¼ 642
3046Þ

than for intervention 1 ð¼ 223
3046Þ and intervention 2 ð¼ 332

3046Þ.

Generally speaking, cutting down more edges typically results in
a reduced epidemic size. However, this pattern does not appear
for the present network. This is because patients are largely
confined to their rooms and Pt–Pt edges do not play an important
role in epidemics on a large scale. For a very large infection rate,
intervention 3 is better than intervention 1. However, the final size
and the mortality for intervention 3 are still larger than those for
intervention 2. For an extremely large infection rate for which
more than two-thirds of the population becomes infected,
intervention 3 is more efficient at control than intervention 2.
Our claim that introducing single rooms may be ineffective is
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consistent with an observation analysis (Cepeda et al., 2005) and a
modeling study (Bootsma et al., 2006) of MRSA.

3.3.4. Sensitivity analysis

To show the generality of the intervention results, we
perform three sets of numerical simulations in which we
change infection rates of individuals differently. First, the rate
at which each susceptible nurse and doctor is infected is
halved, representing the biological possibility that patients
are more likely to be infected than healthcare workers. Second,
the rate at which each infected patient infects susceptible
neighbors is halved, representing the possibility that healthcare
workers have higher infection rates than patients. Third, the rate
at which each infected nurse and doctor infects susceptible
neighbors is halved, corresponding to the opposite of the second
variation.

The effects of different intervention protocols on the final size
are compared in Fig. 6 for the three variations described above.
The mortality results are quantitatively very close to the final size
results in Fig. 6 (not shown). In all the three variations,
interventions 1 and 2 (particularly, intervention 2) are more
efficient than intervention 3 at low to intermediate infection rates,
which agrees with the results for the original SIR model shown in
Fig. 5.

3.4. Vaccination

We explore efficient vaccination strategies under the condition
that vaccines are available only to a proportion of individuals.
The simplest strategy would be to randomly pick individuals
for vaccination. However, a number of studies suggest that
random vaccination is inferior to a contact-based vaccination
strategy in which those with largest degrees are vaccinated
(Albert et al., 2000; Cohen et al., 2003; Pourbohloul et al., 2005;
Bansal et al., 2006). In theory, a degree-based vaccination strategy
is effective for well-mixed heterogeneous networks in which
individuals are connected at random. However, as shown in
Section 3.1, the observed hospital networks are not entirely
mixed in this sense, but instead have a modular, hierarchical
structure.

We compare the degree-based vaccination strategy with
other strategies. The degree is a local measure of centrality by
which individuals connected to many others are regarded to
be important. Many centrality measures have been proposed
(e.g. Junker et al., 2006). In a well-mixed network, the degree is
correlated well with most other centrality measures so that hubs
are central in most senses. However, the observed hospital
network is not entirely well-mixed. As an example, we consider
the betweenness centrality, which is a count of how often an
individual mediates the communication between arbitrarily
chosen pairs of individuals along the shortest paths (Freeman,
1979). Fig. 7, which compares the degree and the betweenness
centrality of each individual in the hospital, indicates that the
most connected individuals are not necessarily those with the
greatest betweenness centrality values.

For a fixed centrality measure, we vaccinate the 20 individuals
with the largest centrality values, thus effectively remove them
from the network. Then we run the SIR dynamics on the reduced
network. The drops in the final size and the mortality size relative
to those for the original network are interpreted as the effective-
ness of a vaccination method.

The final size (Fig. 8a) and the mortality (Fig. 8b) with each of
four vaccination protocols are compared to those for the original
network. Degree-based vaccination is more effective at reducing
epidemics than random vaccination (compare lines with legend
‘random’ and ones with legend ‘degree’ in Fig. 8), which
agrees with the results in previous literature (Albert et al., 2000;
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Cohen et al., 2003; Pourbohloul et al., 2005; Bansal et al., 2006).
The degree-based vaccination is superceded by the betweenness-
based vaccination for a wide range of l, agreeing with the
previous modeling work by Holme et al. (2002). The between-
ness-based vaccination is effective because interward commu-
nication is inhibited after vaccination of key individuals. These key
individuals are mostly medical doctors and sometimes nurses. In
our simulations, the two doctors who connect the nearly isolated
ward to the remainder of the network, whom we mentioned in
Section 3.2, have the largest and the third largest betweenness
centrality values. These doctors are actually vaccinated in the
betweenness-based protocol. A disease does not enter a subnet-
work if the entire network is fragmented after removing such key
individuals. Even if the network is not fragmented after vaccina-
tion, a chain of transmission has to make detours, which makes
disease spreading less likely. This is presumably because im-
portant shortcuts owned by central individuals have been cut out.

If we recalculate the betweenness centrality every time after
removing the most central individual, the network generally falls
apart in an earlier stage (Girvan and Newman, 2002; Holme et al.,
2002). By doing so, epidemic spreads are more suppressed (Fig. 8a
and b, lines with legend ‘recal-betw’). The improvement is
eminent for a large infection rate for which the disease tends to
spread over many wards, infecting more than half the individuals
in the hospital (l around 0.8 and beyond). However, the final size
and the mortality for nearly threshold infection rates (l around
0.2) are slightly increased compared to the standard betweenness-
based vaccination.

Our vaccination protocols up to this point do not take into
account whether vaccinated individuals are patients, nurses, or
medical doctors. We compare these class-mixed protocols to ones
in which central individuals of a specific class are vaccinated with
priority. For example, we vaccinate 20 doctors with the largest
centrality values (doctor-first vaccination).
Based on the betweenness centrality, the final size and the
mortality for patient-first, nurse-first, doctor-first, and class-
mixed vaccination protocols are shown in Fig. 8c and d. The
corresponding results based on the recalculated betweenness
centrality are shown in Fig. 8e and f. For both centrality measures,
the nurse-first strategy is less effective than the class-mixed
and the doctor-first strategies. This is because, even though
some nurses have large centrality values (Fig. 7b) comparable to
those of the most central doctors (Fig. 7c), vaccinating nurses
does not lead to dissociation of different wards; only doctors
connect wards. The patient-first strategy is the least effective
at reducing both the final size (Fig. 8c and e) and the mortality
(Fig. 8d and f), because the patients have low centrality values
irrespective of centrality measure (Fig. 7a). The doctor-first
strategy is more effective than class-mixed strategy for the non-
recalculated betweenness centrality (Fig. 8c and d) and vice versa
for the recalculated betweenness centrality (Fig. 8e and f).
The doctor-first strategy is better for both the non-recalculated
and recalculated betweenness centrality for the weekend data
(Fig. A4c–f).

We have also examined the vaccination protocols based
on other centrality measures. For each of the centrality measures
examined (closeness centrality, eigenvector centrality, power
centrality, information centrality, and random-walk centrality;
see Junker et al., 2006, for a list of centrality measures), the
overall tendency that the class-mixed and doctor-first vaccina-
tions are superior to the nurse-first vaccination, which super-
cedes the patient-first vaccination, is reproduced (not shown).
Betweenness-type centrality measures such as the random-
walk centrality turn out to be more effective at reducing
epidemics than others. Whether the class-mixed strategy is
superior to the doctor-based strategy depends on the centrality
measure and whether the weekday network or the weekend
network is used.
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4. Discussion

We have investigated the effects of intervention and vaccina-
tion strategies using numerical simulations of the SIR model on
hospital social networks. Both the intervention and vaccination
results suggest that medical doctors that link different wards are
main spreaders of nosocomial pathogens. To rewire the Pt–Dr
relationship (interventions 1 and 2; particularly, intervention 2) is
more efficient than suppressing Pt–Pt communication (interven-
tion 3). Note that, in spite of the relative ineffectiveness of
intervention 3, it involves construction of single rooms, which
presumably costs more than interventions 1 and 2, and may result
in reduction in the hospital admission capacity. Vaccinating
doctors first suppresses epidemics more than vaccinating patients
or nurses first. Importantly, doctor-centered containment strate-
gies are more effective than patient-centered ones at reducing not
only the final size of the entire population but also that of the
patients.

We have found that the observed social networks do not have
extremely right-skewed distributions of the degree, which
differs from many other disease-related networks that have
scale-free degree distributions (e.g. Albert et al., 2000; Liljeros
et al., 2001). Instead, our observed networks in the hospital
have modular and hierarchical structure regulated by wards,
rooms, teams of medical doctors, and departments. Different
modules are bridged by healthcare workers, especially by
medical doctors. Therefore, the common result that scale-free
networks boost epidemics owing to hubs, which hold for
well-mixed networks with right-skewed degree distributions
(Hethcote and Yorke, 1984; Anderson et al., 1986; Albert et al.,
2000; Pastor-Satorras and Vespignani, 2001; Meyers et al.,
2003, 2005; Christley et al., 2005), seems to be rather irrelevant
to the current situation, as has been pointed out for other
situations (Holme et al., 2002; Watts et al., 2005; Green et al.,
2006; Ichinomiya, 2007). For our networks, we have shown that
the vaccination protocols based on the betweenness centrality,
which target individuals that tend to maintain shortcuts, are more
effective than that based on the degree. The network structure
identified in this work may serve as a basis for network-based
quantification studies.

Healthcare workers have been suggested to be primary
vectors and spreaders because they visit different wards (Elder
et al., 1996; Carman et al., 2000; Meyers et al., 2003; Ho et al.,
2003; CDR weekly, 2005; Burls et al., 2006). Therefore, vacc-
inating healthcare workers may be more effective than vaccinat-
ing patients in preventing nosocomial infection (Carman et al.,
2000; Meyers et al., 2003). These results are consistent with
ours. We have further distinguished roles of different classes of
healthcare workers, namely, medical doctors and nurses,
which was ignored in an observation study of nosocomial
infection in which only patients were considered (Liljeros et al.,
2007). We also examined the effects of individuality in terms of
their position in the networks. We suggest that healthcare
workers, doctors in particular, with large betweenness centrality
values are of high mobidity in nosocomial infection. Because the
betweenness centrality is an ad hoc measure for our purpose,
there may be alternative measures more directly related to
mobidity of individuals.

An implicit assumption underlying the vaccination strate-
gies based on the betweenness and most other centrality
measures is that the information on the global network structure
is available. This assumption is not justified for urban commu-
nity infections where the number of individuals involved is
large and exhaustive contact tracing is infeasible. In this situation,
a powerful vaccination strategy based on only the local informa-
tion is ring vaccination in which vaccinations are provided
along chains of contacts reconstructed by querying friends’
names (Ferguson et al., 2001; Cohen et al., 2003; Pourbohloul
et al., 2005). An alternative strategy is to abandon hetero-
geneous contact rates at the level of individuals and employ
a population-based approach in which distributions of contact
rates are approximated using discrete population groups such as
age groups (Wallinga et al., 2006). However, the use of
global information can be practical in the nosocomial setting
because healthcare facilities are limited in size. In addition,
the information about contacts between individuals may be
more available than in the case of urban community
infection. We have obtained this information by analyzing
medical records.

To measure the mortality, we have assumed that the
patients always die after being infected, whereas health-
care workers do not. However, the results are robust with
respect to the definition of mortality. The difference between
(i) the pattern of infection events for the entire population
(Figs. 3a, b, 5a, and 8a, c, e) and (ii) that for the patients (Figs. 3c, d,
5b, and 8b, d, f) is unnoticeable, even quantitatively. This
implies that, even if all the infected individuals are assumed to
eventually die (corresponding to (i)), or healthcare workers die of
infection with an intermediate probability (corresponding to
mixture of (i) and (ii)), the results would rarely change. In
addition, the results are expected to be robust against reduction in
the case fatality of patients because reinterpretation of a fraction
of state R patients as being recovered instead of dead little
changes the results.

There are some limitations to the current work. First, we
have neglected the weight of edges, or equivalently, hetero-
geneity in the transmission rate of individuals, except partial
consideration in interventions 1 and 2 and in the sensitivity
analysis. In reality, a Pt–Pt edge may be stronger than a Pt–Dr edge
because the patients in the same room spend much time together,
whereas a doctor examines a patient possibly for a couple of
minutes per day. We have ignored this factor because the
information available is limited (but see Bansal et al., 2006) and
because the actual edge weights will depend on the type of
diseases. Related to this, we have assumed frequency-dependent
transmission in which the infection rate is proportional to
the number of edges involved. Although this assumption is
valid for sexually transmitted diseases (Lloyd-Smith et al.,
2004), whether this assumption holds for nosocomial pathogens
is not known.

Second, our networks do not include some types of relations
and individuals. For example, there are three medical doctors
for diabetes and one doctor for infection control in the hospital.
These specialist doctors examine patients belonging to different
departments upon request. However, our medical records
miss such Pt–Dr relations. These doctors are expected to interact
with more wards than ordinary doctors to play a leading role
in epidemic spreading. We have also neglected radiographers
and pharmacists that interact with patients in multiple depart-
ments, and visitors that would link the hospital to the outside
community. We have also omitted social contacts outside of
official hospital business. For example, two doctors may be friends
such that they have lunch together on a daily basis, and doctors in
different teams may share a office.

Third, we have assumed the simple transmission rule defined
by the SIR model. Nosocomial pathogens such as MRSA and
VRE cause asymptomatic infection in which carriers, of which
there are many types, do not necessarily infect others. In the
SIR model, incubation periods are ignored and all the individuals
are as susceptible and infectious as others at a common infection
rate. However, given the robustness of our results against
heterogeneous infection rates for different individuals shown
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in Section 3.3.4, we expect that our finding is extended to
more general situations of disease spreading. Modeling dynamics
of particular nosocomial pathogens is an important future
problem.

Fourth, we have not considered dynamics of social networks
(Volz and Meyers, 2007), except that we have confirmed that the
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peaks nearby. This is because just a single junior doctor links the ward devoted to the
main results are qualitatively the same at two time points (see
Appendix for the other data set). In reality, the members of a
hospital change on a very short time scale due to, for example,
admission and discharge of patients (Bootsma et al., 2006; Liljeros
et al., 2007).

In conclusion, the present study examined the spread of
nosocomial infection in explicitly structured and observation-
based social networks in a hospital, emphasizing the importance
of controlling medical doctors as a potential major vector of
diseases. Despite the necessity of various improvements, we
believe that our exercise highlights specific hierarchical structure
of social networks of hospitals and associated disease spreading
patterns.
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Appendix A. Results for the weekend network

In the main text, we explained the numerical results for the
weekday network data. We show the results for the weekend
network data in Figs. A1–A4, and Table A1. The main results are
qualitatively the same at these two time points. Some differences
are in the relative effectiveness of the class-based vaccination
strategies (Fig. A4c–f).
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Table A1
The number of individuals and each type of edges for the original weekend network and the networks after intervention

Type of edge Original 1 1 (dup) 2 2 (dup) 3

Total 2364 2168 2346 2094 2335 1872

Pt–Pt 492 492 492 492 492 0

Pt–Ns 329 329 329 329 329 329

Pt–Dr 753 710 753 675 753 753

Ns–Ns 124 124 124 124 124 124

Ns–Dr 513 378 513 350 513 513

Dr–Dr 153 135 135 124 124 153

Type of individuals Number

Total 521

Pt 329

Ns 69

Dr 123
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