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Abstract

Background: Mutation impact extraction is a hitherto unaccomplished task in state of the art mutation extraction
systems. Protein mutations and their impacts on protein properties are hidden in scientific literature, making them
poorly accessible for protein engineers and inaccessible for phenotype-prediction systems that currently depend
on manually curated genomic variation databases.

Results: We present the first rule-based approach for the extraction of mutation impacts on protein properties,
categorizing their directionality as positive, negative or neutral. Furthermore protein and mutation mentions are
grounded to their respective UniProtKB IDs and selected protein properties, namely protein functions to concepts
found in the Gene Ontology. The extracted entities are populated to an OWL-DL Mutation Impact ontology
facilitating complex querying for mutation impacts using SPARQL. We illustrate retrieval of proteins and mutant
sequences for a given direction of impact on specific protein properties. Moreover we provide programmatic
access to the data through semantic web services using the SADI (Semantic Automated Discovery and Integration)
framework.

Conclusion: We address the problem of access to legacy mutation data in unstructured form through the creation
of novel mutation impact extraction methods which are evaluated on a corpus of full-text articles on haloalkane
dehalogenases, tagged by domain experts. Our approaches show state of the art levels of precision and recall for
Mutation Grounding and respectable level of precision but lower recall for the task of Mutant-Impact relation
extraction. The system is deployed using text mining and semantic web technologies with the goal of publishing
to a broad spectrum of consumers.

Introduction
Annotation of protein mutants with their new properties
is crucial to the understanding of genetic mechanisms,
biological processes and the complex diseases or pheno-
types that may result. Despite attempts to manually
organize variation information e.g. Protein Mutant Data-
base [1] and Human Genome Variation Society [2], the
amount of information is increasing exponentially so
that such databases are perpetually out of date, and hav-
ing a latency of many years. In recent years the

extraction of mutation mentions from biomedical docu-
ments has been a growing area of research. A number
of information systems target the extraction of mutation
mentions from the biomedical literature to permit the
reuse of knowledge about mutation impacts. These
include work by Rebholz-Schuhmann et al. [3], MuteXt
by [4] and Mutation Miner by [5]. The MutationFinder
system [6] extended the rules of MuteXt for point muta-
tion extraction. The mSTRAP system created by [7] is
developed to extract mutations, represent them as
instances of an ontology and use the mSTRAPviz client
to query the populated ontology and visualize the muta-
tions and annotations on protein structures / homology
models. Mutation GraB[8] proposed the utilization of
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graph bigram to disambiguate the extracted protein
point mutations. The MuGeX system extracts mutation-
gene pairs [9]. Two recent systems by Krallinger et al.
[10] and Winnenburg et al. [11] ground mutation men-
tions, as does the mSTRAP system [7].
However, little work exists on automatically detect-

ing and extracting mutation impacts. An exception is
EnzyMiner [12], which was developed with the aim of
automatic classification of PubMed abstracts based on
the impact of a protein level mutation on the stability
and the activity of a given enzyme. In EnzyMiner, the
predefined patterns of MuGeX are used to extract the
mutations and a machine learning approach was
taken to disambiguate the cell line names and strain
names from mutations. Using a document classifier,
the abstracts containing mutations without any
impacts are removed and the remaining abstracts are
classified into two groups of disease related and non-
disease related documents, after which extracted
mutations are listed for each group. In the case of the
non-disease related abstracts, the documents are sub-
classified into two groups: Documents containing
impacts on stability; and documents containing
impacts on functionality. This method for document
classification can be useful in narrowing down search
results but from the perspective of reuse and docu-
ment annotation, more detailed methods for sen-
tence-level detection, extraction and grounding of
mutation impact information are required. In the cur-
rent paper we present a rule-based approach for the
extraction of mutation impacts on protein properties
categorizing their directionality and grounding these
entities to external resources. The system populates
and RDF triple store and the algorithms are deployed
as semantic web services.

Content overview
The Methods section starts by describing our text
mining pipeline (with named entity recognition and
grounding of named entities to real-world entities), it
continues to outline a mutation impact ontology specifi-
cation and describes methods used to deploy mutation
impact knowledge on the web. The Results section pre-
sents evaluations of the different subtasks and includes
discussion of these results in the context of future
improvements. Finally we provide a Conclusion and an
outline of future work.

Methods
Named entity recognition
The first step of a mutation impact extraction system is
to find named entities throughout the text, these include
mutations, protein properties and words describing
impact directionality as in the following sentence:

“The W125F mutant showed only a slight reduction
of activity (Vmax) and a larger increase of Km with 1,2-
dibromoethane.” [13].
protein-, gene- and organism names also have to be

recognized in order for the system to be able to properly
ground mutations and protein properties:
“Haloalkane dehalogenase (DhlA) from Xanthobac-

ter autotrophicus GJI0 hydrolyses terminally chlori-
nated and brominated n-alkanes to the corresponding
alcohols.” [14].
We use GATE in combination with gazetteer lists cre-

ated from a variety of resources and rules written in the
JAPE language to find these entities. The following
sections describe these methods in more detail. See
Figure 1 for a system overview.
Mutations
To extract mutation mentions we used the MutationFin-
der system [6]. The system employs a complex set of
regular expressions and is currently the best available
tool for point mutation extraction. Full-text documents
are first run through MutationFinder to create gazetteer
lists containing mutation mentions that are compliant
with the GATE framework. MutationFinder is also able
to normalize mutations into wNm format, where w and
m are one-letter codes for the wildtype and mutation
residues, and N is the position on the amino acid
sequence. Normalization is required prior to the muta-
tion grounding task, we therefore add the normalized
form as a feature to each gazetteer entry.
Proteins, genes and organisms
The protein database Swiss-Prot, a manually annotated
part of UniProt KB [15], was used to select protein,
gene and organism names. The use of Swiss-Prot is
motivated by their high quality naming and mappings
between names and protein sequences. The text format
version of Swiss-Prot was encoded into our gazetteer
lists compliant with GATE. Mappings between names
and primary accession numbers and mappings between
primary accession numbers and amino acid sequences
are exported to a local database named Mutation
Grounding Database (MGDB), for later use in the
grounding / disambiguation step described in the
Grounding section. Protein- and gene names containing
more than one word are separated from names with
only one word. The former are put in a gazetteer list for
case insensitive matching of longer names to increase
recall, and the latter are used for case sensitive matching
of shorter names to increase precision. The organism
names are put in a single gazetteer list for case insensi-
tive matching containing both scientific (Latin genus
and species) and English names.
Protein properties
Functions of proteins, as described in the Gene Ontol-
ogy, are either activities e.g. carbonate dehydratase
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activity, or bindings to another entity e.g. zinc ion bind-
ing. To capture mentions of these functions in text we
look for noun phrases with one of the words activity,
binding, affinity or specificity as the head noun. This is
accomplished by using MuNPEx, which is a multi-
lingual noun phrase extraction component developed
for the GATE architecture [16].
Kinetic variables are used to describe different features

in an enzymatic reaction. They can for example describe
how well the enzyme binds to the substrate or how effi-
cient the overall catalysis is. Although they have to be
interpreted in the context of the specific enzyme and
substrates to be understood fully we still want to extract
how these variables are impacted by mutations. This
information can then be used in further enzyme depen-
dent reasoning or by domain experts that are already
capable of interpreting the meaning of these kinetic
variables. In our implementation we annotate the
Michaelis constant KM, the rate constant kcat and the
compound variable kcat/KM. This is accomplished with
rules written in the JAPE language which also makes
sure variables are not part of a more complex variable
or equation. Other protein properties such as stability
are not considered in the current implementation.
Impact directions
To extract the actual impacts on protein properties we
need terms describing directionality or the existence of
a change. For example the negative impact on carbonate
dehydratase activity of carbonic anhydrase II, which is
due to two point mutations, might be described as: “The
double mutant had intact conformation but reduced cat-
alytic activity (30-40%) compared to HCA IIpwt” [17].

In this example the word reduced and to some extent
intact are keywords describing directionality of impacts.
In our implementation we used five different gazetteer

lists categorized as positive, negative, neutral, non-
neutral and negation. The gazetteers were created by
domain experts who extracted words describing direc-
tionality from sentences containing protein functions.
To escape the need for a stemmer, the gazetteers were
extended with other grammatical forms of words already
extracted. A total number of 337 sentences containing
protein functions were extracted from a corpus contain-
ing documents about mutations on carbonic anhydrases
and apolipoproteins and the resulting gazetteer lists
contain a total of 85 words describing directionality. An
overview of the direction gazetteer lists is presented in
Table 1.

Grounding
Grounding is the task of cross-linking entities found in
text with their real-world counterparts. In the case of
proteins the entities, protein mentions are grounded

Table 1 Categorized directionality words

Positive Negative (cont.) Neutral Negation Non-Neutral

increase abolish loose identical without affect

-increases decrease defect similar no effect

-increased reduce disrupt full not alter

-increasing lower diminish differ

enhance inhibit

higher impair

improve

Figure 1 Extraction and grounding framework. Full-text documents (1) are run through a GATE pipeline with gazetteers derived from Swiss-
Prot (2) and created with MutationFinder (3). Mutations and proteins are grounded (4). Protein properties are extracted with use of MuNPEx and
custom JAPE rules (5) and grounded to the Gene Ontology when applicable. The impact extractor (6) makes use of the previous annotations to
establish relations between mutants and impacts on protein properties. The output consists of annotated text (8).
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when they have been assigned the correct UniProtKB
ID, and for mutation entities, the grounding task is to
map mutation mentions to the correct amino-acid resi-
dues of sequences stored in the UniProtKB [18]. In the
case of protein functions we define grounding as estab-
lishment of a link from these mentions to the correct
Gene Ontology concept. Kinetic variable grounding is
straightforward in our current implementation, as we
only consider three different variables; KM, kcat and kcat/KM.
Links to the substrates being acted upon would serve
as a more granular grounding and would increase the
ability to query for impact information more precisely,
but for the time being we do not establish these links
to substrates.
Proteins and mutations
The method we use for protein and mutation grounding
was previously described by [19] and is summarized
below:
In the first stage a pool of candidate protein accession

numbers is generated based on mappings of gene and
protein names occurring in the target documents to
accession numbers in MGDB. To ensure a comprehen-
sive pool of candidate accession numbers, and avoid
errors as a result of poor co-reference resolution techni-
ques (i.e. not linking shorter names in text to the pre-
viously mentioned long form stated earlier in text), all
accessions for names in MGDB with additional suffixes
to the original protein or gene name are also extracted.
A pool of candidate accession numbers is generated for
each document and trimmed to contain only the most
frequently occurring accession numbers. For these pro-
teins all extracted organism mentions are cross checked.
Accession numbers not related to any retrieved organ-
ism mentions are discarded and the protein sequences
of candidate proteins are retrieved from MGDB.
In the second step mutations extracted from the text are

mapped onto the candidate sequences using regular
expressions generated from the mutation mentions
extracted from the text. Mapping mentioned mutations to
the correct position on the correct sequence is a non-trivial
task. False positives can occur as a consequence of DNA
level variations, plasmid names and cases where the num-
bering scheme used by authors can differ from the one
used in sequence databases, e.g. as a consequence of N-
terminal methionine cleavage or other post-translational
modifications. These issues are discussed further in [19].
The mutation grounding algorithm briefly works as

follows. For each possible pair of mutations, we create a
regular expression by using the wildtype residues and
the distance between them; for two normalized muta-
tion mentions w1N1m1 and w2N2m2, sorted in the
ascending order of Ni, the regular expression will be w1

• {N2 – N1 – 1}w2. E.g. A378C and S381L will result in
A · ·S. If a regular expression matches a sequence, we

check for the remaining mutations in the set, one after
another, taking into account the numbering displace-
ment found when using the regular expression.
The output of the algorithm is the accession number

and corresponding sequence onto which most mutations
are grounded, which is considered to be the wildtype
sequence of the protein described in the document.
Mutation mentions that do not match the sequence are
discarded and in cases where two sequences are identi-
fied, the sequence with least displacement from the
mutation numbering in the paper is chosen.
Protein functions
For grounding of protein function mentions we use the
Molecular Function part of the Gene Ontology as a
reference vocabulary. The terms in the Gene Ontology
are already used for annotation of Swiss-Prot entries to
describe the properties of proteins. This means that we
can leverage these mappings between the proteins we
have grounded and protein functions we are looking for.
We can then use the information on related functions
to ground protein function mentions found throughout
the document. In addition to creating links to Gene
Ontology concepts the relevance of each protein func-
tion mention is scored based on its similarity to syno-
nyms of a certain Gene Ontology concept. In order to
measure this similarity the protein function mentions
are first split into words, thereafter stop words are
removed and finally the remaining words are stemmed
using the Snowball English stemmer [20]. The resulting
set of words (N) are then compared with each synonym
(G) of the Gene Ontology concept, which are prepared
in the same way, by measuring the relative intersection
as below:

similarity
N G

N G
=

 2

After comparisons have been made to all synonyms
the highest similarity score is chosen and added as a fea-
ture together with the id of the related Gene Ontology
concept to the protein function mention annotation. In
the next section, Relation detection, we show how these
similarity scores together with mutant-impact relation
scores and impact scores are used to solve contradic-
tions in the output annotations. In order to increase the
number of synonyms and hence the number of highly
and correctly scored protein function mentions, syno-
nyms of ancestors to the retrieved Gene Ontology con-
cepts are also used for comparison.

Relation detection
In order to establish legitimate links between previously
recognized and in some cases grounded entities, we
need to detect the relations between them. For the
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purpose of mutation impact extraction we recognize
relations between directionality words and protein prop-
erties which, taken together as a triple, constitute impact
statements. Relations between mutants and these
impacts are also detected. The two methods make use
of heuristics based on entity distance.
Impacts
Impacts can be seen as relations between protein prop-
erties and words describing directionality, or change. In
order to extract these relations we use a set of rules
(Figure 2) which are applied to the documents with
properties (protein functions and kinetic variables) and
directionality words found in them.
Since impacts on different properties can occur in the

same sentence; sentences containing two or more prop-
erties are split by looking for the comma character or
the word and. If none of these delimiters are found the
sentence is split just before or after the next or previous
property, depending on order. The impacts are also
scored according to the distance between directionality
words and protein properties:

score
tokenDistence

= 1

where tokenDistance is the number of space tokens
between the directionality word and the protein prop-
erty. If the directionality word would be a part of the
noun phrase of a property the distance is set to 1.
Mutant-impact relations
When impacts have been extracted and correctly clas-
sified according to directionality, we need to find the
mutant that has this change in protein property rela-
tive to the wildtype. Mutants can be described in
many ways: (i) as a series of mutations e.g.
“Arg172Lys+His65Ala”, (ii) with a short nick name
specific for the paper e.g. “Mut1”, (iii) as a pronominal
reference e.g. “The triple mutant” or (iv) simply by a
single point mutation. In our implementation we say
that each grounded mutation mention constitutes one
single mutant. To extract the relation between
mutants and impacts we say that when an impact is
found, the closest mutants all have that impact. The
closeness is measured by sentence distance and is
scored as:

score
sentence

= 1
Distance

where sentenceDistance equals 1 if a mutation men-
tion occurs in the same sentence as the impact and
increases by 1 for each previous sentence, limited to at
most three previous sentences. Only mutations with the
shortest distance are considered.

To solve contradictions in the output annotations, e.g.
when a mutant is said to have both negative and posi-
tive impact on a specific property the arithmetic mean
of all scores gathered through the process are used, i.e.
the mutant-impact relation score, the impact score and
the similarity score between function mentions and
Gene Ontology concepts. For kinetic variables the simi-
larity score is omitted since it is not measured. A higher
score means higher similarity to the Gene Ontology
concept and shorter distance between directionality,

Figure 2 Rules for impact classification.
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property and mutant terms making the overall assertion
more likely to be correct.

Mutation impact ontology
In order to ensure the results of our text mining pipe-
line are reusable and understandable by both humans
and machines we have formally specified the concepts
used by our system in an OWL-DL ontology, with a
small set of SWRL rules added for more convenient
querying. The ontology we use is an extension of the
ontology proposed by [21] and will serve as both the
T-Box for a triple store populated with results from our
text mining pipeline and for publishing our text mining
pipeline as SADI services, making it possible to deploy
our pipeline as semantic web services connected to
other existing services. These two ways of publishing
knowledge will be described in more detail in the next
section, Web based deployment. Table 2 shows more
precise definitions of the most important concepts and
Figure 3 displays a schematic view of the concepts and
the relations between them. In addition to object prop-
erties connecting instances of concepts, datatype proper-
ties are also used to associate data values with such
instantances, e.g. hasSequence and hasWildtypeResidue
associate string values with instances of Protein and
PointMutation respectively. Some of the concepts are
closely related to concepts in already existing ontologies.
For example, the concept ProteinFunction in our ontol-
ogy can be considered as equivalent to Molecular Func-
tion in the Gene Ontology. When making these
alignments, it is possible to further enhance the query-
ing ability and options for knowledge discovery. A user
could, for example, search for all mutations that have
positively impacted on a specific protein function, speci-
fied as a sub-concept of MolecularFunction. This type of
query would not be possible without the grounding of
protein properties, provided by our algorithm. The
ontology, hereafter named Mutation Impact Ontology, is
made publicly available [22].

Web based deployment
The most straightforward way to deliver the results of
our text mining pipeline to end users is to run the pipe-
line on available publications, store the results in a tri-
plestore and provide a query interface. We have set up
such a triplestore using Sesame [23], which is a frame-
work that allows different storage and querying engines
to be used via a unified interface. Our users can query
the populated RDF triplestore via a SPARQL [24] end-
point [25]. Figure 4 shows an example query which,
translated into a natural language question, reads
“Which proteins have been mutated so that there is a
negative impact on haloalkane dehalogenase activity and
what are the sequences of the corresponding mutants?”.
Figure 5 shows how mutation impact information is
made available for the user through both SPARQL end-
points and SADI clients as discussed below.
SADI-compliant semantic web services
Although querying the triplestore can serve many useful
information requests, such as searching for publications
related to various biological entities, or just searching for
links between the entities, we are aiming to make this data
available in a format that is suitable for rapid data integra-
tion. This can be achieved by integrating our pipeline with
other sources of semantically described biological data and
analytical resources, so that queries can be made to our
data combined with external data and data generated by
externally hosted algorithms. For example, if some other
resource is able to link proteins to pathways, combining it
with our pipeline (that can link mutations to proteins)
would make it possible to find a pathway in which a
mutated protein participates. The SADI framework [26]
provides a convenient way to facilitate such combinations.
SADI is a set of conventions for creating Semantic Web
Services (SWS) that can be automatically discovered and
orchestrated. A SADI-compliant SWS consumes an RDF
graph with some designated node (individual) as input.
The output is an RDF graph similar to the input but with
some new property assertions. The most important feature

Table 2 Concepts in the Mutation Impact Ontology and their descriptions

Concept Description

Protein Proteins, also known as polypeptides, are organic compounds made of amino acids arranged in a linear chain and folded into
a globular form.

Protein Mutant A protein mutant is a protein where the amino acid sequence is altered compared to the wildtype protein. These alterations
are called mutations.

Protein Property The physical, chemical and biological properties of proteins. Stability and Function to mention a couple.

Elementary
Mutation

An elementary change in the amino acid sequence of a protein.

Mutation Series A set of elementary mutations.

Mutation
Specification

An umbrella concept introduced as a link between mutations, their corresponding proteins, the impacts they cause and the
texts.

Mutation Impact A mutation impact describes a directional alteration of a protein.
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of SADI is that the predicates for these property assertions
are fixed for each service. A declaration of these predi-
cates, available online constitutes a semantic description of
the service. For example, if a service is declared with the
predicate myontology:isTargetOf Drug described in an
ontology as a relation linking proteins to drugs, we know
that we can use the service to search for drugs targeting a
given protein. More importantly, such semantic descrip-
tions allow completely automatic discovery and composi-
tion of SADI services (see, e.g., [27,28]). Practically, this
means that the publication of our pipeline as SADI ser-
vices will allow automatic integration with hundreds of
external resources dealing with mutations, proteins and
related biomedical entities, e.g., pathways and drugs. As an
initial implementation with SADI, we created a service
that takes a reference to a text, and outputs the property
assertions derived from the input text, such as links to the
identified grounded mutations. Note that those grounded
mutations also have links to ungrounded mutations, pro-
teins and impacts. This service can be mostly useful in
combination with services that find documents, as well as

for users just wishing to use our pipeline remotely (with
no installation effort). In fact, we use this service ourselves
to populate the previously mentioned RDF triple store. As
the service output already constitutes an RDF graph no
intermediate processing is necesssary.
We also created services that provide mappings in dif-

ferent directions: from entities to texts and from entities
to entities derived from texts. In fact, all these services
produce instances of MutationSpecification, which are
blank nodes linked to other objects that may be of inter-
est. For example, we can ask about grounded mutations
applying to a certain protein, and the extracted Muta-
tionSpecification instances will lead us to relevant
impacts, or just to the documents mentioning them.
Our entity-to-text and entity-to-entity services serve
data from the same triplestore providing the SPARQL
interface. Our services are registered at the SADI Regis-
try and can be viewed at [29].
Automatic data integration example
To exemplify SADI service composition, we present an
example of a query which in natural language reads:

Figure 3 Mutation impact ontology structure. Visualization of top level concepts as Mutation Specification, Protein, Mutation Impact and
Protein Property being connected through object properties. Detailed descriptions of the concepts are provided in Table 2.

Figure 4 SPARQL query and answers. A SPARQL query expressing the natural language question “Which proteins have been mutated so that
there is a negative impact on haloalkane dehalogenase activity and what are the sequences of the corresponding mutants?” is shown to the
left. The first four answers (result rows) are displayed to the right.
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“Retrieve all mutated proteins, together with their
3D-structure information and mutant sequence, where
mutations had a positive impact on haloalkane dehalo-
genase activity.”
To answer this query, two services have to be used

together. The first service is represented by the predi-
cate impactIsSpecifiedBy (inverse for specifiesImpact)
and, for a given mutation impact, retrieves a mutation
specification containing protein and mutant information,
which in part answers the service request. The second
service is represented by the predicate has3DStructure
from the central SADI ontology [30]. It makes use of
the protein information retrieved by the first service to
further retrieve the related 3D structure information in
the form of Protein Data Bank identifiers.
The discovery and integration of these two services

can be done automatically by the use of SHARE
(Semantic Health and Research Environment) [28], a
SPARQL query engine that enables composition of
registered SADI services.

Results
Evaluation
To evaluate the methods of mutation grounding and
impact extraction a gold standard corpus was built as an
extension to the corpus used by [5] containing docu-
ments about haloalkane dehalogenases. Full-text papers
mainly about a single haloalkane dehalogenase were
chosen. They also had to contain more than one point
mutation in order for our grounding algorithm to work
properly. The resulting corpus contains 13 documents
and a domain expert was able to extract 54 unique (per
document) mutation mentions and 73 unique mutant-
impact relations from the text of these documents, with
tables and figures excluded. Mutants containing more
than one point mutation were split so that each muta-
tion was considered as one mutant, this was made to

better evaluate the impact extraction task without inter-
ference from the variety of ways to describe mutants.
For both tasks we measure performance with precision

and recall. In the case of mutation grounding precision
is defined as the number of correctly grounded muta-
tions over all grounded mutations and recall is defined
as the number of correctly grounded mutations over all
uniquely mentioned mutations. For mutant-impact rela-
tions precision is defined as the number of correct rela-
tions over all retrieved relations and recall is defined as
the number of correct relations over all uniquely men-
tioned relations. In order for an extracted mutant-
impact relation to be considered correct all the parts
have to be correct i.e. the protein property that is being
impacted, the direction of the impact and the causal
mutation. The results are displayed in Table 3.

Discussion
The performance of the underlying algorithms for muta-
tion grounding and mutation-impact detection show
respectable levels of precision and recall. The perfor-
mance of the grounding algorithm is in line with our
previous evaluation on a medical corpus built from the
COSMIC database [31] with an average precision = 0.84
and recall = 0.63. The lower performance of Mutant-
Impact relations retrieval (recall = 0.34) in our current
study is caused by several factors. Out of 45 false nega-
tives (correct relations that were not retrieved) 16 were
influenced by mutation mentions that were not
grounded and 14 were caused by co-reference issues,
e.g. when “double mutant” was used instead of mentions
of single point mutations. Other contributing factors
include shortcomings in our rules for extracting kinetic
variables and protein functions which gave rise to 12
false negatives and lastly, our method for extracting
directionality words which accounts for 8 false negatives.
The two latter categories of false negatives can in some
cases be illustrated by the special case when there is a
total loss of function. This can be described in text as
an inactive enzyme instead of a decrease of function
relative to wildtype as in the below example sentences:
“Replacement of Trp-125 or Trp-175 with arginine

leads to a nonactive enzyme.” [32].
“Mutation of Asp260 to asparagine resulted in a cata-

lytically inactive D260N mutant.” [33].
We believe these issues can be addressed by develop-

ing methods for co-reference resolution of mutation

Figure 5 Mutation impact knowledge flow. The text-to-entity
SADI service uses the text mining pipeline to extract mutations and
impacts from a given text. The results are saved in an RDF triple
store. The triple store can then be interrogated, either by a user
through a SPARQL endpoint or by a second layer of entity-to-entity
SADI services that in turn can be accessed through a SADI client.

Table 3 Performance evaluation made on a haloalkane
dehalogenase corpus

Task Precision Recall

Mutation grounding 0.83 0.73

Mutant-Impact relation extraction 0.86 0.34
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mentions and by improving mutation extraction and
grounding algorithms, as well as extending gazetteers
containing words describing directionality. Textual
descriptions of kinetic variables could also be used as an
extension to our current abbreviation-centric method
and therefore improve recall of Mutant-Impact relation
extraction. Finally, the special cases where the impact is
a total loss of function can be handled by a new set of
rules connecting terms describing enzymes/mutants and
terms describing inactivity. Until now the tools for the
extraction of mutation mentions from text have been
considered appropriate for augmenting the manual cura-
tion of mutation databases, providing candidate protein
point-mutation impact suggestions [34], de novo. How-
ever the number of reuse cases where mutation informa-
tion is used to facilitate new annotation and prediction
algorithms is growing [7,11,35,36] albeit dependent on
semi-automatic processing of information from data-
bases or text mining pipelines.
The dedicated infrastructure we have developed for

fully automated mutation impact extraction from
unstructured text has a respectable level of precision of
0.86, albeit with moderate recall. Although further test-
ing of these grounding and impact extraction algorithms
on a larger corpus of documents from open access
journals is required, using such platforms it will
become possible to assess the range of impacts that
have been investigated though mutational analysis of
target protein sequences and the outcomes of these
investigations. This will give researchers insight
into the type and scale of improvements that have
been made to enzymes using existing mutagenesis
approaches. Moreover, cross referencing of these
improvements with the methodologies used to generate
the mutations will provide further guidance to scien-
tists in deciding on strategies for further enzyme
improvement, e.g. site directed mutagenesis versus
directed evolution. Beyond the summarization of such
information for trend analyses, extracted and grounded
mutation impact annotations will also aid protein engi-
neers when reviewing 3D visualizations of protein
structures, as described by [7]. Finally the publishing
of services delivering mutation impact information in a
format that can be readily integrated with other ser-
vices will facilitate the reuse of mutation impacts to
other communities. e.g. as training data for Machine
Learning algorithms [36], so that tools that predict the
impacts of mutations can be improved.

Conclusion
The challenges we addressed, namely extraction and
publication of mutation impacts, required the develop-
ment and deployment of advanced solutions leveraging
named entity recognition, grounding techniques,

knowledge representation for mutation impacts as well
as the setup and registration of semantic web services.
The major innovations were to: design novel impact
grounding techniques and to couple this with existing
approaches for mutation grounding to protein
sequences; exploit the utility of the SADI framework to
expose the grounding and relation detection algorithms
as semantic web services. Once operational these ser-
vices are readily findable and easy to integrate with
existing semantic web services in the SADI registry.
This combination provides enhanced access to legacy
information using a contemporary publishing medium.

Abbreviations used
GATE: General Architecture for Text Engineering; MuNPEx: Multi-lingual Noun
Phrase Extractor; JAPE: Java Annotation Patterns Engine; MGDB: Mutation
Grounding Database; OWL: Web Ontology Language; SWRL: Semantic Web
Rule Language; SADI: Semantic Automated Discovery and Integration; RDF:
Resource Description Framework; SPARQL: SPARQL Protocol and RDF Query
Language; SWS: Semantic Web Service; SHARE: Semantic Health and
Research Environment; COSMIC: Catalogue Of Somatic Mutations In Cancer;

Acknowledgements
This research was funded in part by the New Brunswick Innovation
Foundation, New Brunswick, Canada; the NSERC, Discovery Grant Program,
Canada and the Quebec-New Brunswick University Co-operation in
Advanced Education - Research Program, Government of New Brunswick,
Canada.
This article has been published as part of BMC Genomics Volume 11
Supplement 4, 2010: Ninth International Conference on Bioinformatics
(InCoB2010): Computational Biology. The full contents of the supplement are
available online at http://www.biomedcentral.com/1471-2164/11?issue=S4.

Author details
1Department of Computer Science & Applied Statistics, University of New
Brunswick, Saint John, New Brunswick, E2L 4L5, Canada. 2Department of
Computer Science & Software Engineering, Concordia University, Montréal,
Québec, H3G 1M8, Canada.

Authors’ contributions
JBL developed the rules for grounding of mutations and protein properties,
contributed to the ontology design and corpora annotation. NN contributed
to the pipeline design and corpora preparation. RW participated in
coordinating the work and contributed to the ontology design. AR
developed the web based deployment and wrote the corresponding
section. AK contributed to the methods for relation scoring. CJOB led the
work coordination and study design. All authors contributed to the
manuscript.

Competing interests
The authors declare that they have no competing interests.

Published: 2 December 2010

References
1. Nishikawa K, Ishino S, Takenaka H, Norioka N, Hirai T, Yao T, Seto Y:

Constructing a protein mutant database. Protein Eng 1993, 7(5):733.
2. Cotton RG, Horaitis O: The Challenge of Documenting Mutation Across

the Genome: The Hu-man Genome Variation Society Approach. Hum
Mutat 2004, 23:447-452.

3. Rebholz-Schuhmann D, Marcel S, Albert S, Tolle R, Casari G, Kirsch H:
Automatic extraction of mutations from Medline and cross-validation
with OMIM. Nucleic Acids Res 2004, 32:135-142.

4. Horn F, Lau AL, Cohen FE: Automated extraction of mutation data from
the literature: application of MuteXt to G protein-coupled receptors and
nuclear hormone receptors. Bioinformatics 2004, 20:557-568.

Laurila et al. BMC Genomics 2010, 11(Suppl 4):S24
http://www.biomedcentral.com/1471-2164/11/S4/S24

Page 9 of 10

http://www.biomedcentral.com/1471-2164/11?issue=S4
http://www.ncbi.nlm.nih.gov/pubmed/15108276?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15108276?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/14704350?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/14704350?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/14990452?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/14990452?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/14990452?dopt=Abstract


5. Baker CJO, Witte R: Mutation Mining-A Prospector’s Tale. Information
Systems Frontiers 2006, 8:47-57.

6. Caporaso J, Jr WB, Randolph D, Cohen K, Hunter L: MutationFinder: a high-
performance system for extracting point mutation mentions from text.
Bioinformatics 2007, 23:1862-1865.

7. Kanagasabai R, Choo KH, Ranganathan S, Baker CJO: A Workflow for
Mutation Extraction and Structure Annotation. J Bioinform Comput Biol
2007, 5(6):1319-1337.

8. Lee LC, Horn F, Cohen FE: Automatic Extraction of Protein Point
Mutations Using a Graph Bigram Association. PLoS Comput Biol 2007,
3(2):e16.

9. Erdogmus M, Sezerman U: Application of automatic mutation-gene pair
extraction to diseases. J Bioinform Comput Biol 2007, 5(6):1261-75.

10. Krallinger M, Izarzugaza JM, Rodriguez-Penagos C, Valencia A: Extraction of
human kinase mutations from literature, databases and genotyping
studies. BMC Bioinformatics 2009, 10(Suppl 8):S1.

11. Winnenburg R, Plake C, Shroeder M: Improved mutation tagging with
gene identifiers applied to membrane protein stability prediction. BMC
Bioinformatics 2009, 10(Suppl 8):S3.

12. Yeniterzi S, Sezerman U: EnzyMiner: automatic identification of protein
level mutations and their impact on target enzymes from PubMed
abstracts. BMC Bioinformatics 2009, 10(Suppl 8):S2.

13. Kennes C, Pries F, Krooshof GH, Bokma E, Kingma J, Janssen DB:
Replacement of tryptophan residues in haloalkane dehalogenase
reduces halide binding and catalytic activity. Eur J Biochem 1995,
228:403-407.

14. Pries F, Kingma J, Janssen DB: Activation of an Asp-124-Asn mutant of
haloalkane dehalogenase by hydrolytic deamidation of asparagine. FEBS
Lett 1995, 358(2):171-174.

15. Boeckmann B, Bairoch A, Apweiler R, Blatter M, Estreicher A, Gasteiger E,
Martin M, Michoud K, O’Donovan C, Phan I, Pilbout S, Schneider M: The
Swiss-Prot Protein Knowledgebase and its supplement TrEMBL in 2003.
Nucleic Acids Res 2003, 31:365-370.

16. Multi-lingual Noun Phrase Extractor. [http://www.semanticsoftware.info/
munpex].

17. Svedhem S, Enander K, Karlsson M, Sjbom H, Liedberg B, Lfs S,
Mrtensson LG, Sjstrand SE, Svensson S, Carlsson U, Lundstrm I: Subtle
Differences in Dissociation Rates of Interactions between Destabilized
Human Carbonic Anhydrase II Mutants and Immobilized Benzenesul-
fonamide Inhibitors Probed by a Surface Plasmon Resonance Biosensor.
Anal Biochem 2001, 296(2):188-196.

18. Witte R, Baker CJO: Towards a Systematic Evaluation of protein Mutation
Extraction Systems. J Bioinform Comput Biol 2007, 5(6):1339-1359.

19. Laurila JB, Kanagasabai R, Baker CJO: Algorithm for Grounding Mutation
Mentions from Text to Protein Sequences. Lecture Notes in Computer
Science 2010, 6254/2010:122-131.

20. Snowball. [http://snowball.tartarus.org/index.php].
21. Witte R, Kappler T, Baker CJO: Enhanced semantic access to the protein

engineering literature using ontologies populated by text mining. Int J
Bioinform Res Appl 2007, 3(3).

22. Mutation Impact Ontology. [http://unbsj.biordf.net/ontologies/mutation-
impact-ontology.owl].

23. Broekstra J, Kampman A, van Harmelen F: Sesame: A Generic Architecture
for Storing and Querying RDF and RDF Schema. The Semantic Web ISWC
2002 2002, 54-68.

24. SPARQL Query Language for RDF, W3C Recommendation 15 January
2008. [http://www.w3.org/TR/rdf-sparql-query/].

25. Mutation Impact RDF triplestore SPARQL endpoint. [http://unbsj.biordf.
net/openrdf-workbench/repositories/mutation-impact-db/query].

26. SADI framework. [http://sadiframework.org].
27. Wilkinson MD, Vandervalk BP, McCarthy EL: SADI Semantic Web Services -

’cause you can’t always GET what you want! APSCC 2009, 13-18.
28. Vandervalk BP, McCarthy EL, Wilkinson M: SHARE: A Semantic Web Query

Engine for Bioinformatics. The Semantic Web (ISWC 2009) 2009, 367-369.
29. Registered SADI Services. [http://unbsj.biordf.net/mutation-impact].
30. Central SADI Ontology. [http://sadiframework.org/ontologies/predicates.

owl].
31. Forbes S, Bhamra G, Bamford S, Dawson E, Kok C, Clements J, Menzies A,

Teague J, Futreal P, Stratton M: The Catalogue of Somatic Mutations in
Cancer (COSMIC). Curr Protoc Hum Genet 2008, 57:10.11.1-10.11.26.

32. Lau EY, Kahn K, Bash PA, Bruice TC: The importance of reactant
positioning in enzyme catalysis: A hybrid quantum mechanicsymolecular
mechanics study of a haloalkane dehalogenase. Proc Natl Acad Sci USA
2000, 97:9937-42.

33. Krooshof GH, Kwant EM, Damborsky J, Koca J, Janssen DB: Repositioning
the Catalytic Triad Aspartic Acid of Haloalkane Dehalogenase: Effects on
Stability, Kinetics, and Structure. Biochemistry 1997, 36:9571-9580.

34. Caporaso JG, Deshpande N, Fink JL, Bourne PE, Cohen KB, Hunter L:
Intrinsic evaluation of text mining tools may not predict performance
on realistic tasks. Pac Symp Biocomput 2008, 13:640-651.

35. Bauher-Mehren A, Furlong LI, Rautschka M, Sanz F: From SNPs to
pathways: integration of functional effect of sequence variations on
models of cell signalling pathways. BMC Bioinformatics 2009, 10(Suppl 8):
S6.

36. Bromberg Y, Rost B: SNAP: predict effect of non-synonymous
polymorphisms on function. Nucleic Acids Res 2007, 3823-3835.

doi:10.1186/1471-2164-11-S4-S24
Cite this article as: Laurila et al.: Algorithms and semantic infrastructure
for mutation impact extraction and grounding. BMC Genomics 2010 11
(Suppl 4):S24.

Submit your next manuscript to BioMed Central
and take full advantage of: 

• Convenient online submission

• Thorough peer review

• No space constraints or color figure charges

• Immediate publication on acceptance

• Inclusion in PubMed, CAS, Scopus and Google Scholar

• Research which is freely available for redistribution

Submit your manuscript at 
www.biomedcentral.com/submit

Laurila et al. BMC Genomics 2010, 11(Suppl 4):S24
http://www.biomedcentral.com/1471-2164/11/S4/S24

Page 10 of 10

http://www.ncbi.nlm.nih.gov/pubmed/17495998?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17495998?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18172931?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18172931?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17274683?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17274683?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18172928?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18172928?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19758464?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19758464?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19758464?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19758467?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19758467?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19758466?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19758466?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19758466?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/7705355?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/7705355?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/7828730?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/7828730?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12520024?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12520024?dopt=Abstract
http://www.semanticsoftware.info/munpex
http://www.semanticsoftware.info/munpex
http://www.ncbi.nlm.nih.gov/pubmed/11554714?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11554714?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11554714?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11554714?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18172932?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18172932?dopt=Abstract
http://snowball.tartarus.org/index.php
http://www.ncbi.nlm.nih.gov/pubmed/18048198?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18048198?dopt=Abstract
http://unbsj.biordf.net/ontologies/mutation-impact-ontology.owl
http://unbsj.biordf.net/ontologies/mutation-impact-ontology.owl
http://www.w3.org/TR/rdf-sparql-query/
http://unbsj.biordf.net/openrdf-workbench/repositories/mutation-impact-db/query
http://unbsj.biordf.net/openrdf-workbench/repositories/mutation-impact-db/query
http://sadiframework.org
http://unbsj.biordf.net/mutation-impact
http://sadiframework.org/ontologies/predicates.owl
http://sadiframework.org/ontologies/predicates.owl
http://www.ncbi.nlm.nih.gov/pubmed/10963662?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10963662?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10963662?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9236003?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9236003?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9236003?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17526529?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17526529?dopt=Abstract

	Abstract
	Background
	Results
	Conclusion

	Introduction
	Content overview

	Methods
	Named entity recognition
	Mutations
	Proteins, genes and organisms
	Protein properties
	Impact directions

	Grounding
	Proteins and mutations
	Protein functions

	Relation detection
	Impacts
	Mutant-impact relations

	Mutation impact ontology
	Web based deployment
	SADI-compliant semantic web services
	Automatic data integration example


	Results
	Evaluation

	Discussion
	Conclusion
	Abbreviations used
	Acknowledgements
	Author details
	Authors' contributions
	Competing interests
	References

