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Editorial
An International Society for Cell and Gene Therapy Mesenchymal
Stromal Cells Committee editorial on overcoming limitations in clinical

trials of mesenchymal stromal cell therapy for coronavirus disease-19:
time for a global registry
Coronavirus disease 2019 (COVID-19)-related respiratory failure
is a significant cause of morbidity, mortality and health care utiliza-
tion. Further, long-term respiratory consequences including fibro-
proliferative changes and chronic respiratory dysfunction remain an
unclear but a growing problem. Vaccinations including boosters have
decreased the incidence of COVID-19 severe respiratory disease, but
significant numbers remain unvaccinated. In addition, some patients
remain particularly vulnerable to severe acute respiratory syndrome
coronavirus 2 infection regardless of vaccine and booster administra-
tion. For instance, patients with significant immunosuppression con-
tinue to have significantly greater rates of symptomatic COVID-19
infection and mortality [1�7].

While the main tool in combating the pandemic is prevention,
drug-discovery pipelines are still required, especially when vaccine
development and deployment are slower than the appearance of
new variants. Current therapies including remdesivir, corticosteroids
and immunotherapies such as tocilizumab and baricitinib have only
partially decreased the incidence, severity and sequelae of respiratory
disease [8,9]. Two new antiviral treatments available, molnupiravir
[10] and a combination of nirmatrelvir and ritonavir (Paxlovid), may
continue to lessen respiratory sequelae [11]. However, molnupiravir
may result in mutagenic activities [12] for the host, whereas nirma-
trelvir/ritonavir can interfere with a number of commonly used drugs
[7,13]. In addition, specific antibodies against severe acute respiratory
syndrome coronavirus 2 have shown efficacy in tempering respira-
tory symptoms and preventing major complications only when
administered in the very early phases of infection and for not all the
viral variants [14].

In this setting, cell-based therapy approaches using systemic
administration of mesenchymal stromal cells (MSCs) and their
derived products have a strong mechanistic rationale and pre-clinical
track record [15]. A number of case series and uncontrolled trials of
both academic and industry sponsorship have demonstrated safety
of systemic MSC administration in patients with COVID-19 with dif-
ferent degrees of respiratory severity [16]. This has provided a plat-
form for a growing number of randomized, blinded, placebo-
controlled trials of systemic MSC administration [17]. MSC adminis-
tration has consistently been found safe without significant infu-
sional toxicities or attributable serious adverse events. Importantly, a
growing number of studies, although not all, have demonstrated effi-
cacy [18�21]. Of note, the published trials to date are from academic
centers. Despite suggestive results in press releases, industry-
https://doi.org/10.1016/j.jcyt.2022.07.010
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sponsored, randomized, blinded, placebo-controlled trials have not
yet undergone peer-reviewed publication.

These trials have been reviewed in several recent systematic
reviews and meta-analyses. Overall, these have demonstrated safety
and positive end points, including reduction of mortality rate
[22�24]. They are, however, limited by the relatively small numbers
of patients studied to date. The meta-analyses have also highlighted
significant issues and lack of consensus on critical study parameters
including but not restricted to the source of MSCs. Of the 11 clinical
investigations included in the recent systematic reviews, including
open label non-randomized or non-controlled trials, eight used MSCs
derived from cord blood or umbilical cord tissue whereas others used
MSCs derived from menstrual blood or bone marrow mononuclear
cells. Another variable included differences in critical process param-
eters used to manufacture the MSCs including medium supplementa-
tion (some studies used fetal bovine serum [25], some used different
types of platelet lysate [18,21], another used serum free medium
[26]). Passage numbers varied between studies [26,27] as well as the
cryopreservant used, reported in only one study [18]. Two studies
reported infusing freshly thawed MSCs, whereas others lacked these
details in the methods [18,21]. Other variables downstream of
manufacturing included doseࣧtypically trials used 1�3£ 106/kg,
although one trial used 240 million MSCs over 3 doses [21] ࣧand dos-
ing (one to four infusions), time of administration, patient population,
symptom heterogeneity, illness severity, and outcome measures.

Overall, these investigations support that use of MSCs as a treat-
ment option for COVID-19 appears to be promising; however, poten-
tial risk of bias was detected in all studies. Although the latest meta-
analyses demonstrated reduced mortality (relative risk of death
28 days after treatment 0.19; 95% confidence interval 0.05�0.78),
outcome measures were not reported consistently and pooled esti-
mates were not calculated. MSC administration tended to improve
radiographic findings, pulmonary function (lung compliance, tidal
volumes, arterial oxygen partial pressure/fractional inspired oxygen,
alveolocapillary injury), and inflammatory biomarker levels. Circulat-
ing interleukin-6 level was the most commonly reported cytokine
and were consistently decreased compared with controls at early but
not later time points [22]. However, no comparisons were made
between MSCs of different sources within any trial. There is further
heterogeneity, as demonstrated by one recently published study
from France using umbilical cord�derived MSCs (not included in the
most-recent meta-analyses) [23]. This study showed that among the
ll rights reserved.
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45 enrolled patients, arterial oxygen partial pressure/fractional
inspired oxygen did not change between day 0 and day 7 as well as
between MSC and placebo groups. Repeated MSC infusions were not
associated with any serious adverse events.

In short, the optimal approaches for MSC administration and
potential approval by regulatory agencies remain uncertain. On
the one hand, this prompts for investigations toward deeper fun-
damental understanding on potential mechanisms of MSC actions,
as a basis to precisely define required MSC attributes and to
design rational clinical investigations, particularly those identify-
ing patients more likely to respond [15]. On the other hand, this
is in part due to the relatively limited numbers of patients
involved in the published trials to date, which limits the power
of observations on potential efficacy. To this end, a combined
global registry of all patients enrolled in these trials, both aca-
demic and industry-sponsored, will provide an invaluable tool to
better understand and apply MSC-based cell therapies to patients
with COVID-19 respiratory disease [28�30]. Data in the registry
could include information on patient phenotypes and inflamma-
tory status, in addition to other clinical outcome measures, as
these are increasingly recognized to influence potential MSC
actions and efficacy. In addition, a registry approach provides the
opportunity to collect information on critical process parameters
used to manufacture the MSCs, and characterization data which
can be harmonized to reflect MSC critical quality attributes. These
data will support efforts such as “living systematic reviews” that
are updated in real-time to provide researchers, patients and
decision-makers with the most up-to-date information [31,32].
Moreover, a registry would facilitate individual patient data
meta-analysis, which will help identify patient, disease and cell
product characteristics that may modify MSC efficacy. Notwith-
standing the logistics of collating and managing a registry and
the need for buy-in from the wide range of investigators, the crit-
ical nature of the COVID-19 pandemic is a strong impetus for the
biomedical community to join forces [33].

As the leading organization promoting development and appli-
cation of MSC-based cell therapies, the International Society for
Cell and Gene Therapy is well situated as an unbiased neutral
agency to coordinate with comparable interested organizations,
funding agencies and regulatory agencies globally to develop
plans to manage the database and to serve as a central source for
communication between the investigative groups. With focus on
COVID-19�associated acute respiratory distress syndrome investi-
gations, this will be a pilot endeavor that can serve as a basis for
larger more broad ranging databases. To this end, we call upon
all investigators and the International Society for Cell and Gene
Therapy to join in this endeavor and strive to help make MSC-
based approaches for COVID-19 respiratory diseases an effective
therapy.
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