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Abstract: Multiple sclerosis (MS) is an autoimmune, neurodegenerative disease associated with
the central nervous system (CNS). Autoimmunity is caused by an abnormal immune response to
self-antigens, which results in chronic inflammation and tissue death. Ubiquitination is a post-
translational modification in which ubiquitin molecules are attached to proteins by ubiquitinating
enzymes, and then the modified proteins are degraded by the proteasome system. In addition to
regulating proteasomal degradation of proteins, ubiquitination also regulates other cellular func-
tions that are independent of proteasomal degradation. It plays a vital role in intracellular protein
turnover and immune signaling and responses. The ubiquitin–proteasome system (UPS) is primarily
responsible for the nonlysosomal proteolysis of intracellular proteins. The 26S proteasome is a multi-
catalytic adenosine-triphosphate-dependent protease that recognizes ubiquitin covalently attached
to particular proteins and targets them for degradation. Damaged, oxidized, or misfolded proteins,
as well as regulatory proteins that govern many essential cellular functions, are removed by this
degradation pathway. When this system is affected, cellular homeostasis is altered, resulting in the
induction of a range of diseases. This review discusses the biochemistry and molecular biology of the
UPS, including its role in the development of MS and proteinopathies. Potential therapies and targets
involving the UPS are also addressed.

Keywords: autoimmune disease; central nervous system; multiple sclerosis; UPS; therapeutic target;
26S proteasome; E3 ligase

1. Introduction

Paul Ehrlich coined the term “horror autotoxicus” at the turn of the 20th century to
describe the processes through which the immune system assaults the body. Five decades
later, Burnet et al. identified autoantibodies, thus providing a theoretical basis for auto-
reactivity [1]. This concept is currently recognized as a flaw in the immune system involving
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B or T cells and is implicated in adaptive immunological activation, which can lead to
autoimmune disorders causing tissue damage.

There are two types of tolerance of the immune system for self-antigens: central and
peripheral. Central tolerance is induced in the thymus, with medullary thymic epithelial
cells and medullary dendritic cells presenting a wide range of self-peptides on their surfaces
along with specialized proteins that growing T cells recognize as major histocompatibility
complexes (MHC). T cells with T cell receptors that recognize a self-peptide in the milieu
of an MHC molecule, with an affinity greater than a particular threshold, are excluded
by negative selection, which prevents autoreactive T lymphocytes from causing injury to
host tissues [2]. Ubiquitination has been linked to the development and maintenance of
self-tolerance, as well as the control of autoreactive immune cell proliferation [3].

2. Multiple Sclerosis (MS)

Multiple sclerosis is an autoimmune, demyelinating inflammatory disorder of the
central nervous system (CNS) that has various clinical and pathological manifestations [4–6].
Autoantibodies function in the immunopathogenesis of MS; for example, autoantibodies
are intrathecally synthesized after clonal proliferation [4]. Multiple sclerosis causes visual
abnormalities, paresthesia (unusual skin sensations), ataxia, and muscle weakness due
to CNS inflammation and is the primary cause of disability in young adults in Western
countries [7]. Perivenular inflammatory lesions that develop into demyelinating plaques
characterize MS. A small proportion of T lymphocytes, especially the MHC class I-restricted
CD8+ type, are found in inflammatory infiltrates, such as B cells and plasma cells (Figure 1).
Damage to oligodendrocytes and demyelination is caused by inflammation. The axons are
mostly intact during the early stages of the disease, but irreparable axonal damage develops
as the disease advances [8]. One of the most significant structural components of the myelin
sheath, which protects axons and accelerates nerve impulse transmission, is myelin basic
protein (MBP). This protein was discovered as a major autoantigen in MS, in addition to
myelin oligodendrocyte glycoprotein. MBP and its peptides have been investigated for
decades as key players in the autoimmune response and as encephalitogenic agents [3].
Figure 1 shows the mechanism of MS.
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Figure 1. General schematic representation of the mechanism of the autoimmune disorder multiple
sclerosis. Steps: 1, The blood–brain barrier becomes permeable to leukocytes and blood proteins. 2, T
cells interact with B cells, and T cells simultaneously interact with microglia and induce both types of
cells. 3, In response to T cells, microglia and B cells produce cytokines and antibodies, respectively,
against myelin. 4, Neuron demyelination occurs.
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3. Proteinopathies

Proteinopathies are a set of neurological disorders characterized by protein mutations,
aggregation, and misfolding in brain cells. The UPS, which regulates protein turnover,
has a critical role in the pathogenesis of neurological diseases [9]. Misfolded proteins that
collect within the brain due to disease-related gene mutations or faulty protein homeostasis
are frequently associated with neuronal death. The UPS and the autophagy-lysosomal
route are two key degradation processes that remove undesirable or misfolded proteins
from cells, thus preventing their cellular accumulation and maintaining cell viability. Both
of these degradative processes rely on the ubiquitin modification of targets [10,11].

The accumulation of ubiquitin, proteasomes, and ubiquitin conjugates is associated
with specific disease-defining proteins and can result in various chronic neurodegenerative
diseases [12]. However, a direct pathogenic connection with anomalies in the ubiquitin
system has not been firmly established for any of these diseases. A complicating factor is
the finding that most of these illnesses, including Alzheimer disease (AD) and Parkinson
disease (PD), are syndromes with completely different etiologies [13]. The accumulation
of ubiquitin conjugates in Lewy inclusion bodies might be secondary in these diseases, as
many attempts based on the UPS have been unable to remove the abnormal proteins [14]. If
the first hypothesis is that inclusion bodies form due to the tendency of abnormal proteins
to aggregate, then the process involves an active cellular mechanism [15].

The pathogenesis of protein aggregation remains unclear. The UPS can be inhibited
by aggregated proteins. However, a new concept has been introduced, which states that
the aggregation of cytosolic and nucleoplasmic proteins isolates them from the cellular
machinery and is therefore protective [16]. Although the mechanism involved in the
formation of inclusion bodies containing disease-specific aggregated proteins is common
to several neurodegenerative diseases, it is poorly understood [17].

4. The UPS

A group of scientists won the Nobel Prize in Chemistry for their elucidation of the
function of ubiquitin in 2004. Ubiquitin is a component of the UPS, which destroys >80% of
all intracellular proteins, both normal and pathological. The 26S proteasome is a dynamic
multi-subunit proteolytic complex with a molecular weight of 2.5 MDa [18]; it is the
principal enzyme in eukaryotes for non-lysosomal-based protein degradation. This allows
for the maintenance of proteostasis, namely, the balance and optimal biological function
of cellular proteins. Denatured, crushed, misfolded, and unwanted protein moieties are
removed by proteasomal degradation, which also helps regulate the amounts of essential
proteins responsible for cell growth, such as cyclins and transcription factors [19]. The
proteasome holoenzyme comprises a 20S core particle and one or two 19S regulatory
particles [20].

The UPS starts with three enzymes working together to attach a tiny protein called
ubiquitin to a protein substrate to target it for destruction. A cascade of three ubiquitin-
modifying enzymes catalyzes ubiquitination: ubiquitin-activating enzymes E1s, ubiquitin-
conjugating enzymes E2s, and ubiquitin-ligases E3s. In the first step, an E1 activates
ubiquitin in the presence of ATP, establishing a thioester link between ubiquitin’s C-terminal
glycine and E1’s cysteine sulfhydryl group. The activated ubiquitin is then transported to a
cysteine residue in an E2’s active site, which defines the kind of substrate for ubiquitination.
Ubiquitin is covalently linked to the substrate in the last stage, which is coordinated by a
particular E3 that dictates the specificity of the substrate. The three-step process allows
the target substrates to be ubiquitinated quickly and efficiently, allowing cells to adjust to
changes in minutes [7].

Thereafter, the system depends on a large multicatalytic proteolytic molecule called
the 26S proteasome, which degrades the ubiquitin (Ub)-tagged protein. The 26S proteasome
is an enzyme with various catalytic sites, including a 20S core proteasome and regulatory
19S complexes. After recognizing a tagged protein, proteasome-associated deubiquitinases
(DUBs) recycle the ubiquitin chains, then the substrate is moved to the inner proteolytic
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cavity and digested into short peptides that can be presented on the cell surfaces of related
cells for immunosurveillance, or they can be chopped into free amino acids [21] (Figure 2).
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Figure 2. Schematic representation of the protein degradation process by the ubiquitin protea-
some system.

Ubiquitination is also a reversible post-translational modification that plays a crucial
role in signal transmission and protein stability. DUBs are the main enzymes involved in
the reversal process. Over 100 DUBs in humans have been classified into the following fam-
ilies: ubiquitin C-terminal hydrolases, ubiquitin-specific proteases (USPs), ovarian tumor
proteases (OTUs), Josephins, and JAB1/MPN/MOV34 metalloenzymes (also known as
MPN). To discriminate among the various ubiquitin-like entities, DUB activity is extremely
selective and regulated at many levels.

The UPS is associated with the pathogenesis of PD, AD, rheumatoid arthritis (RA),
amyotrophic lateral sclerosis (ALS), Huntington disease, prion diseases, and other neurolog-
ical disorders. The 26S proteasome is a promising target for the treatment of autoimmune
disorders. Circulating proteasomes and antiproteasome autoantibodies have been iden-
tified in blood samples from patients with autoimmune diseases, such as systemic lupus
erythematosus (SLE), MS, and RA. Proteasome inhibitors (PIs) such as carfilzomib and
bortezomib are approved anticancer drugs that selectively inhibit 26S proteasomes. Both
compounds decrease autoantibodies and halt illness development in animal models of
SLE [22,23].

5. Therapeutic Targets in UPS

The UPS plays a central role in basic cellular processes, which causes difficulties in the
development of drugs that modulate its activity [24]. Inhibiting enzymes that are common
throughout the pathway affect many beneficial and toxic processes. PIs can be useful
for some diseases [25]. In fact, a specific PI has been approved for use against multiple
myeloma (a malignant tumor of immune plasma cells). Drugs can act against neoplasms
by inhibiting cell cycle inhibitors or various antiapoptotic transcriptional regulators and
also act as neuroprotectants by inhibiting NF-κB activation [26]. Self-peptide presentation
is inhibited in autoimmune diseases, together with disrupted signal transmission along
cellular immune cascades [27]. Belogurov et al. (2014) discovered that the 26S proteasome
degrades the myelin multilayered membrane sheath and MBP in mammalian cells in a
ubiquitin-independent manner [3].
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5.1. Targeting E3 in Proteinopathies

The final step of ubiquitin conjugation is catalyzed by E3s, which transfer ubiquitin from
ubiquitin-conjugating enzymes (E2s) to substrates [28]. There are an estimated 600–700 E3
ligase genes representing ~5 percent of the human genome. Mutations in E3 ligase genes
have been found in a variety of neurological disorders, which is not surprising [29]. Recent
advances in drug development include the binding of small molecules to specific E3s,
ultimately leading to their inhibition [30]. Several substrates with phosphorylation target
sites spanning E3 inhibition sites are of interest [31]. When phosphorylation destabilizes
negative regulators such as p27 and IkBα, E3 inhibition can control irregular cell turnover
and reduce unwanted activity of the immune system [32].

Ubiquitination plays an essential role in determining the fate of proteins, as well as the
post-translational regulation of gene expression. E3 ubiquitin ligases are crucially involved
in ubiquitination [33]. These ligases attach a Ub moiety to target proteins, tagging them
for proteasome-dependent destruction. Various types of E3 Ub ligases are target-protein-
specific (Table 1) [34].

Table 1. Characteristics of E3 ubiquitin ligase types.

Types Functional Domain Members Reference

HECTs N and C lobes and
flexible lobes in between

NEDD4, ITCH, SMURF1, SMURF2,
WWP1, WWP2, UBR5 HERC1,
HERC2, HERC3, HERC4, E6AP

[35–37]

RINGs
RING folded structure
with or without zinc

binding domain

c-CBL, E4B, cIAP, CHIP,
Mdm2-MdmX, SCF, CRL2s, CRL3s,

CRL4s, CRL5s,
Cullin7/FBXW8, APC/C

[38–40]

RBRs
Two ring domains on

terminal with one
internal ring domain

HHARI, ARIH2/TRIAD1,
NF14/TRIAD2, RNF216/TRIAD3,
PARC/ CUL9, ANKIB1, PAPKIN,

HOIL-1L, HOIP

[41,42]

HECT, homologous to the E6-AP carboxyl terminus; RING, Really Interesting New Gene; RBRs, RING-between-RING.

Helical filament binding to tau (PHF-tau) is altered by polyubiquitins in AD [43].
The lysine residue of PHF-tau accepts ubiquitin at CHIP, an E3 ubiquitin ligase of PHF-
tau [44]. Lysine residues of APP conjugated with ubiquitin in the mouse brain leads to
Aβ40 accumulation [45].

In PD, E3 ubiquitin ligases ubiquitinate α-synuclein. Seven in absentia homolog, an
E3 ubiquitin ligase, leads to α-synuclein monoubiquitination at specific Lys residues, which
increases α-synuclein aggregation and apoptosis [46]. The ubiquitin ligase NEDD4 also
targets α-synuclein, resulting in Lys-63-polyubiquitin [47]. The endolysosomal pathway
leads to the degradation of ubiquitin-α-synuclein, suggesting that it might protect against
PD pathogenesis. Like PHF-tau, mono- or polyubiquitination involves CHIP, whereas
USP9X leads to the deubiquitination of CHIP-monoubiquitinated α-synuclein [48]. The
knockdown of USP9X prompts the accumulation of monoubiquitinated α-synuclein, and
proteolytic inhibition intensifies the formation of α-synuclein inclusions [10]. Lewy bodies
in the brain of PD patients contain the ubiquitin ligase E6-AP and lead to α-synuclein
ubiquitination followed by proteasome-dependent degradation (Figure 3) [49].
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Antiubiquitin antibodies detect Znf179-ubiquitin-ligase-targeted TDP-43 and SOD1,
which cause ALS [50], in three major regions of the brain, namely the cortex, hippocampus,
and midbrain. The knockout of Znf179 suppresses the proteasomal increase of TDP-43, which
leads to insoluble TDP-43 accumulation and the cytosolic inclusion of TDP-43 [51]. Ubiq-
uitin ligase CUL2 can modify the misfolded polyubiquitin TDP-43, which is coordinated
with the von Hippel Lindau protein [52].

The ubiquitination sites Lys-84, -95, -160, -181, and -263 in TDP-43 have been identified
by mass spectrometry [53]. The ubiquitin ligases NEDL1 and gp78 target SOD1 and NEDL1,
and SOD1 inclusions colocalize in motor neurons of the ventral horn of the spinal cord of
patients with ALS and in transgenic SOD1 mutant mice. The ubiquitin ligase gp78 also
plays a role in SOD1 ubiquitination [54].

The Gp78 protein comprises at least five transmembrane domains, including a con-
sensus finger RING sequence; it plays a major role in endoplasmic-reticulum-associated
protein degradation and causes ataxin-3 ubiquitination [55,56]. The overexpression of Gp78
promotes SOD1 and ataxin-3 ubiquitination in cultured cells, whereas eliminating gp78
stabilizes them [57].

Lys-48- and 63-polyubiquitin regulates huntingtin turnover. Clusters of the huntingtin
mutant include Lys-63 polyubiquitin chains [58]. The Huntington’s disease (HD) protein is
ubiquitinated differently by K48 and K63 in ubiquitin. Huntingtin breakdown is promoted
by K48-mediated ubiquitination, whereas huntingtin aggregation is accelerated by K63-
mediated ubiquitination. The ubiquitination mediated by K-48 is dependent on Ube3a,
whose expression decreases with age. Bhat et al., in a study on a mouse model, observed
that in the elderly HD KI mouse brain, overexpression of Ube3a can diminish mutant
huntingtin accumulation and aggregation [59]. The UBR5 ubiquitin ligase mediates the
Lys-48 proteasomal degradation of normal and mutant huntingtin [60].

The huntingtin mutant containing the Lys-63-ubiquitin chain can be stimulated by
tumor-necrosis-factor-receptor-associated factor 6, which contributes to its autophagic
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clearance [61]. Ubiquitin ligase causes the ubiquitination of several neurodegenerative-
disease-associated proteins and removes pathogenic proteins (Figure 3) [62].

E3 ligases control disease pathogenesis in various ways by regulating the levels of
susceptible proteins. Hence, defining new targets of E3 ligases and identifying new E3
ligases will provide detailed molecular information that will deepen our understanding
of the pathogenesis of several neurological disorders and lead to the development of new
therapies [63].

5.2. Potential Therapeutic Targets in MS

Multiple sclerosis is a CNS-associated disease that causes visible muscle dysfunction
and impairment. Its major impact is on the brain and spinal nerves [64]. Research studies
on the pathophysiology of MS showed that the UPS plays a significant role [65,66]. The lo-
calization of Ub conjugates in patients with MS might indicate UPS deterioration. Although
the UPS participates in the pathogenesis of MS, details of the relationship between UPS
and MS remain unknown [67]. Increased functional repression of the UPS and of interferon
beta-1b (IFN-β1b) levels results in the development of MS. A better understanding of the
molecular network of the UPS should provide more insight into the pathogenesis of MS.
Myeloid leukemia 1 (MCL-1) is regulated by the UPS and is upregulated in MS [68].

Type-I interferon (IFN)-induced ubiquitin-specific peptidase 18 (USP18) is a DUB
enzyme that negatively regulates the type-I IFN signaling pathway [69]. Two haplotypes
of USP18 are linked to MS, and USP18 gene expression is decreased in peripheral blood
mononuclear cells and increased during clinical disease activity. USP18 is involved in
MS etiology and the IFN-β1b therapeutic response [70]. Table 2 shows the USPs targeted
for MS treatment (USP30, USP18, USP16, USP15, etc.). USP18 is also associated with
MS pathogenesis.

USP16 is a DUB that has been discovered to be essential for mitotic chromosomal seg-
regation. USP16 aids the correct alignment of chromosomes by promoting the localization
and maintenance of polo-like kinase 1 (PLK1) on kinetochores [71]. When combined with
the protein regulator of cytokinesis 1, USP16 can deubiquitinate histone H2A and control
gene expression (PRC1). USP16 has a novel function and method in regulating mature
T cell activation, suggesting that it could be a new therapeutic target for T cell-mediated
autoimmune disorders. Zhang et al. looked at USP16 expression in autoimmune illnesses
such MS, SLE, and RA to see what function it plays in T cell-mediated inflammation [72].

It is well-known that the NF-κB inhibitor IκBα is degraded via ubiquitin before NF-
κB is translocated to the nucleus. USP11 overexpression prevents IκBα ubiquitination.
In vitro, recombinant USP11 catalyzes the deubiquitination of IκBα. TNF-induced IB
ubiquitination and NF-κB activation are also enhanced when USP11 expression is reduced.
These findings show that USP11 modulates IκBα stability and thus plays a crucial role in
the downregulation of TNFα-mediated NF-κB activation [73].

USP15 is a member of a large family of USPs that process inactive ubiquitin precur-
sors, remove ubiquitin from cellular adducts and ubiquitinylated proteins, and keep the
26S proteasome free of inhibiting ubiquitin chains. USP15 was found to be capable of
deubiquitinating IκBα in order to block TNFα-induced NF-κB activation by the COP9
signalosome [74,75].

Only two DUBs have a transmembrane domain, and USP30 is one of them. Peroxi-
somes and the outer mitochondrial membrane are the only places where it is found. In
cell systems that have been designed to overexpress Parkin, USP30 can restrict Parkin-
dependent ubiquitylation of certain substrates and depolarization-induced mitophagy [76].
USP30 prevents TOM20 from being ubiquitylated by Parkin, and its absence increases
depolarization-induced cell death in Parkin-overexpressing cells. USP30 also regulates
BAX/BAK-dependent apoptosis, and its loss makes cancer cells more susceptible to BH3-
mimetics [77].

Through the suppression of NF-kB, the anti-inflammatory enzyme A20, also known as
TNF-associated protein 3 (TNFAIP3), is regarded as a crucial gatekeeper in inflammation
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and peripheral immune system control. The development of various autoimmune and
inflammatory illnesses, including MS, has been linked to an A20 malfunction [78].

OTUB1 is a DUB from the OTU family that prefers to cleave Lys48-linked polyubiquitin
chains [79]. OTUB1 has a canonical DUB activity that eliminates Lys48-linked polyubiquitin
chains directly from substrates, as well as a noncanonical DUB activity that prevents the
transfer of Lys48- or Lys63-specific ubiquitin from E2-conjugating enzymes to E3 ligases,
preventing target protein ubiquitination. During MS, the DUB OTU domain, ubiquitin-
aldehyde-binding 1 (OTUB1), was found to be upregulated in astrocytes [80].

The levels of transcripts encoding E3 ligases such as Cbl-b and ITCH are reduced in the
brains of patients with MS, but their levels increase during treatment with IFN, indicating
that Cbl-b and ITCH are involved in MS pathogenesis [81,82]. Therefore, molecular targets
of the UPS should be further identified; this could provide more insights into the molecular
pathogenesis of MS as well as promote the identification of new drug targets.

Both the RAS-MEK-ERK and PI3K-AKT-mammalian target of rapamycin (mTOR)
pathways can downregulate or upregulate each other, which suggests a pathway-directed
treatment for MS [83]. Thoracic mTOR is a key component sensor [84]. The downstream
target of the PI3K/AKT signaling pathway—mTOR—is a catalytic subunit of mTORC1 and
mTORC2 complexes that regulates processes such as mRNA translation [85]. The activity
of mTORC1 can be regulated by the AKT-activated tuberous sclerosis complex (TSC) in
cell membranes. TSC has GTPase-activating protein activity for Rheb (a small GTPase
molecule), which directly binds to mTOR and upregulates protein synthesis by activating
the kinases 4E-BP1 and p70S6 [86].

Table 2. Selected USPs targeted for neuro-autoimmune diseases.

USP Nature Characteristics/Signaling Therapeutic Target Ref.

USP30

Deubiquitinating
enzyme with a
transmembrane

domain

Mitochondria-anchored DUBs;
PINK1/Parkin-mediated

mitophagy in cells

Potential target for
neuro-autoimmune disease [87]

USP18 Deubiquitinating
enzyme

Acts as a negative regulator of
type-I interferon (IFN) signaling;

involved in IFN-β signaling

Low level of USP18
Expression is directly
related to the severity

of MS

[70,88]

USP16 Deubiquitinating
enzyme

Deubiquitination of PLK1 and
histone H2A to control
chromosome function

Specific USP16 inhibitors
may be effective in treating

MS caused by T cells.
[72]

A20
Deubiquitinating

and E3 ligase
domains

Encoded through TNFAIP3 gene;
crucial gatekeeper of immune

homeostasis/ involved in
NF-κB signaling

Mutation in TNFAIP3 gene
leads to autoimmune
diseases including MS

[70,89]

USP15 Deubiquitinating
enzyme

Regulates type-I interferon
response; activation of the

transcription factor NF-κB and
regulation of its inhibitor IκBα

Potential target for
neurodegenerative diseases [90]

USP11 Deubiquitinating
enzyme

Suppresses TNFα-and stimulates
activation of NF-κB by

targeting IκBα

DUB inhibitor targets the
USP11 and acts as an

immunosuppressive drug
to protect against
multiple sclerosis

[91]

OTUB1 Deubiquitinating
enzyme

It inhibits IFN-γ-activated
JAK2-STAT1 signaling via Lys48
deubiquitinating and stabilizing

SOCS1, the JAK2 inhibitor.

Potent target as T and NK
cells are important

mediators in MS and
OTUB1 hinders the

activation of T cells and
NK cells

[80,92]
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5.3. UBE2L3 as a Potential Target for Autoimmune Diseases

The E2 ubiquitin-conjugating enzyme UBE2L3 is a potential target for several autoim-
mune disorders [79,93]. A genome-wide association study has revealed that UBE2L3 is a
unique therapeutic target for SLE. The linear ubiquitin chain assembly complex (LUBAC)
is required for LUBAC-mediated NF-κB activation, and UBE2L3 is a key E2 enzyme [94].
Overexpressed UBE2L3 increases the activation of NF-κB, which is implicated in the control
of inflammatory and autoimmune illnesses [95,96].

6. Discussion

When the immune system fails to initiate or maintain tolerance, autoreactive cells
become inappropriately activated. Immune tolerance refers to the inability of the immune
system to respond appropriately to itself and other harmless antigens, such as allergens. In
other words, tolerance mechanisms guarantee that immune cells do not attack the host and
are only triggered in response to risks such as injury or exposure to pathogens. Immune
tolerance comprises central and peripheral types. Central tolerance develops during
lymphocyte maturation [97]. Recent neuropathological and neuroradiological findings
have revealed structurally altered axons in plaques and apparently normal white matter in
patients with MS. More information about axonal injury in MS is critical, as it might be the
main cause of long-term impairment [98].

Because of their propensity to (a) impede nuclear factor (NF)-kB activation and tran-
scriptional modulation of proinflammatory cytokine release and/or (b) prompting apopto-
sis in triggered immune cells, PIs are another class with potential as investigational drugs.
The rationale for using PIs as anti-inflammatory medicines in the treatment of autoimmune
illnesses has recently been investigated. The intricate diversity and importance of constitu-
tive and immunoproteasome subtypes in immunologically competent cells in autoimmune
disorders as well as numerous classes of reversible and irreversible PIs for therapeutic
intervention are discussed herein. Given the chronic nature of MS, the long-term effects
of PIs and the possibility of developing resistance to PIs should be investigated [22]. The
ubiquitin-independent degradation of MBP by proteasomes appears to occur at physio-
logically relevant concentrations of MBP [3]. MS is characterized by immune-activated
demyelination, neural injury, and plaque development, as well as macrophage, T cell,
and B cell invasion. This process is clear in MS, with the accumulation of toxic protein
aggregates, indicating UPS malfunction and its probable role in MS pathogenesis. Both
protein accumulation and inflammatory responses are aided by the UPS.

Ubiquitination safeguards autoreactive antigens released from the immune system,
and if hindered, might trigger autoimmunity. DUBs diminish ubiquitination by either
directly eliminating ubiquitin(s) from target proteins or inhibiting the synthesis of ubiquitin
chains, which can counteract this dynamic and reversible process. E3 ligases have evolved
in critical signaling pathways for the regulation of T cell tolerance toward self-antigens, and
their level of ubiquitination is governed by T cell tolerance and apoptosis [99]. While the
UPS is required for the degradation of damaged and misfolded proteins, it also participates
in lymphocyte growth, activation, and differentiation via the inflammatory process. In
addition, the UPS is involved in the regulation of inflammatory factors, such as cytokines
and NF-κB. The enzymatic activities of proteasomes are elevated in the CNS of patients with
MS. The UPS is a key regulator of the NF-κB activation pathway during the inflammatory
response [100].

7. Conclusions

Ubiquitination, which is fine-tuned by DUBs, regulates immune responses in CNS
autoimmunity. DUBs are becoming popular treatments for various disorders, including
cancer and autoimmune diseases. However, given the complex nature of MS, blocking one
or more cytokines is usually insufficient, and inhibiting signaling pathways, such as the
NF-κB pathway, might cause severe complications because these pathways are essential for
preserving normal cellular functions. Inhibitors or agonists of DUBs are sufficiently specific
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and powerful to reduce neuroinflammation in MS, while avoiding the risk of harmful
side effects. More information about DUB expression in immune cells (B cells, T cells,
and macrophages), preferably from blood and CSF, along with brain-resident cells in MS
lesions, is needed. The development of specialized DUB inhibitors and agonists to treat
CNS autoimmune diseases is underway.
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