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Abstract

The evolutionary process of genetic recombination has the potential to rapidly change the properties of a viral pathogen,
and its presence is a crucial factor to consider in the development of treatments and vaccines. It can also significantly
affect the results of phylogenetic analyses and the inference of evolutionary rates. The detection of recombination from
samples of sequencing data is a very challenging problem and is further complicated for SARS-CoV-2 by its relatively slow
accumulation of genetic diversity. The extent to which recombination is ongoing for SARS-CoV-2 is not yet resolved. To
address this, we use a parsimony-based method to reconstruct possible genealogical histories for samples of SARS-CoV-2
sequences, which enables us to pinpoint specific recombination events that could have generated the data. We propose a
statistical framework for disentangling the effects of recurrent mutation from recombination in the history of a sample,
and hence provide a way of estimating the probability that ongoing recombination is present. We apply this to samples of
sequencing data collected in England and South Africa and find evidence of ongoing recombination.
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Introduction
Ongoing mutation of the SARS-CoV-2 virus has received
significant scientific and media attention since the start of
the pandemic. The process of viral recombination has re-
ceived far less coverage, but has the potential to have a drastic
impact on the evolution of virulence, transmissibility, and
evasion of host immunity (Simon-Loriere and Holmes
2011). Recombination occurs when host cells are coinfected
with different strains of the same virus, and during replication
the genomes are reshuffled and combined before being pack-
aged and released as new offspring virions, now potentially
possessing very different pathogenic properties. This makes
the presence of recombination a crucial factor to consider
when developing vaccines and treatments. Although the role
of recombination between different coronaviruses in the
emergence of SARS-CoV-2 has been widely studied, under-
standing its potential for ongoing recombination within hu-
man hosts has proved difficult.

The detection of ongoing recombination from a sample of
genetic data is, in general, a very challenging problem. Only a
fraction of recombination events significantly change the
shape of a genealogy, and even then, mutations must occur
on the correct branches of the genealogy in order to create
patterns that are detectable in the data (Hein et al. 2004,
Section 5.11). In evolutionary terms, a relatively short time

period has passed since the start of the pandemic, so typical
SARS-CoV-2 sequences differ only by a small number of
mutations, meaning that recombination events are likely to
be undetectable or leave only faint traces. Moreover, the
effects of recombination can be indistinguishable from those
of recurrent mutation (McVean et al. 2002), where mutations
have occurred at the same site multiple times in the history of
the sample; recurrent mutation is known to be a common
feature of SARS-CoV-2 evolution (e.g., van Dorp, Acman, et al.
2020), and thus distinguishing between the effects of recur-
rent mutation and recombination is an important goal.
Coronaviruses are known to have relatively high recombina-
tion rates (Su et al. 2016), and cell culture studies indicate that
this holds true for SARS-CoV-2 (Gribble et al. 2021). This
suggests that ongoing intra-host recombination since the
start of the pandemic should be commonplace, but detection
efforts are thwarted by the slow accumulation of genetic
diversity.

Early evidence of ongoing recombination in SARS-CoV-2
was presented by Yi (2020), who identified the presence of
loops in reconstructed phylogenetic networks, which can
arise as a consequence of recombination. A number of
more recent reports have utilized methods based on classify-
ing sequences into clades, and searching for those that appear
to carry a mix of mutations characteristic to more than one
clade. VanInsberghe et al. (2021) identified 1,175 possible
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recombinants out of 537,000 analyzed sequences; Varabyou
et al. (2021) identified 225 possible recombinants out of
88,000; Jackson et al. (2021) have identified a small number
of putative recombinants circulating in the United Kingdom.
These methods are sensitive to the classification of sequences
into clades, do not allow for the detection of intra-clade
recombinants (thus underestimating the overall extent of
recombination), and do not incorporate a framework for
quantifying how likely it is that an observed pattern of in-
compatibilities has arisen through recombination rather than
recurrent mutation. A number of studies have also failed to
detect recombination signal, through the analysis of linkage
disequilibrium and similar techniques (De Maio et al. 2020;
Nie et al. 2020; Richard et al. 2020; Tang et al. 2020; Wang et al.
2020; van Dorp, Richard, et al. 2020). In general, a relatively
small number of putative recombinant sequences have been
identified to date, and there is a lack of compelling evidence
for widespread recombination in SARS-CoV-2. Given the
aforementioned causes for studies to be underpowered, the
overall extent and importance of ongoing recombination for
SARS-CoV-2 remains not fully resolved.

Phylogenetic analysis of SARS-CoV-2 data largely assumes
the absence of recombination. Recombination can signifi-
cantly influence the accuracy of phylogenetic inference
(Posada and Crandall 2002), distorting the branch lengths
of inferred trees and making mutation rate heterogeneity
appear stronger (Schierup and Hein 2000). Moreover, when
analyzing data at the level of consensus sequences, the gene-
alogy of a sample is related to the transmission network of the
disease, with splits in the genealogy relating to the transmis-
sion of the virus between hosts. Models used for constructing
genealogies and inferring evolutionary rates for this type of
data cannot fully incorporate potentially important factors,
such as geographical structure, patterns of social mixing,
travel restrictions, and other nonpharmaceutical interven-
tions, without making inference intractable. Relying on stan-
dard tree-based models can easily lead to biased estimates
(Jensen and Kowalik 2020), with the extent of the error due to
model misspecification being very difficult to quantify.

In this article, we use KwARG (Ignatieva et al. 2021), a
parsimony-based method for reconstructing possible genea-
logical histories, to detect and examine crossover recombina-
tion events in samples of viral consensus sequences. This
approach provides a concrete way of describing their genea-
logical relationships, sidestepping the challenges presented by
discrepancies in clade assignment, enabling the detection of
intraclade recombination, avoiding the need to specify a par-
ticular model of evolution, and allowing for the explicit iden-
tification of possible recombination events in the history of a
sample. Our method naturally handles both recombination
and recurrent mutation, identifying a range of possible ex-
plicit genealogical histories for the data set with varying pro-
portions of both event types. Rather than using summary
statistics calculated from the data, or focusing only on pat-
terns of clade-defining SNPs, our method utilizes all of the
information contained in the patterns of incompatibilities
observed in a sample, allowing for powerful detection and
identification of possible recombinants. Moreover, we

provide a nonparametric framework for evaluating the prob-
ability of a given number of recurrent mutations, thus quan-
tifying how many recombinations are likely to have occurred
in the history of a data set. This allows for a more thorough
and statistically principled assessment of the extent to which
ongoing recombination is occurring.

We investigate the presence of ongoing recombination in
SARS-CoV-2 using publicly available data from GISAID (Elbe
and Buckland-Merrett 2017), collected between November
2020 and February 2021. Using data from South Africa, we
demonstrate that our method can detect recombination both
when the sample contains sequences from multiple distinct
lineages (“interclade”), as well as all from the same lineage
(“intraclade”). Further, we show that our method can accu-
rately detect consensus sequences carrying patterns of muta-
tions that are consistent with recombination, flagging these
sequences for further investigation—and we demonstrate, us-
ing data from England, that it can identify both sequences
arising as a result of sequencing errors due to sample contam-
ination, aiding in identifying quality control issues, as well as
sequences likely to be true recombinants. We validate our
method using extensive simulation studies, and through ap-
plication to MERS-CoV data, for which we find evidence of
recombination, in agreement with previous studies.

Results

Overview of Methods
Our method consists of two main steps. First, using KwARG,
plausible genealogical histories are reconstructed for each
sample under a parsimony assumption, with varying propor-
tions of posited recombination and recurrent mutation
events. Then, using simulation, we approximate the distribu-
tion of the number of recurrent mutations that might be
observed in a data set of the same size as each sample. We
use this to establish which of the identified genealogical his-
tories is more plausible for the data at hand, and thus whether
the presence of recombination events in the history of the
given sample is likely.

This can be framed in the language of statistical hypothesis
testing. The “null hypothesis” is the absence of recombina-
tion. The test statistic T is the number of recurrent mutations
in the history of the data set; the null distribution of T is
approximated through simulation. The observed value Tobs

is the minimal number of recurrent mutations required to
explain the data set in the absence of recombination, as es-
timated by KwARG. The ”P value” is the probability of ob-
serving a number of recurrent mutations equal to or greater
than Tobs. Small P values allow us to reject the null hypothesis,
providing evidence that recombination has occurred. The
reconstructed genealogies then allow for the detailed exam-
ination of possible recombination events in the history of the
sampled sequences.

We emphasize that we make very conservative assump-
tions throughout, both in processing the data and in estimat-
ing the distribution of the number of recurrent mutations.
Moreover, the number of recurrent mutations required to
explain a given data set computed by KwARG is (or is close
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to) a lower bound on the actual number of such events, and is
likely to be an underestimate, making the reported P values
larger (more stringent).

Reconstruction of Genealogies
All of the viral particles now in circulation had a common
ancestor at the time of emergence of the virus, so sequences
sampled at the present time can be united by a network of
evolution going back to this shared ancestor through shared
predecessors, termed the ancestral recombination graph
(ARG) (Griffiths and Marjoram 1997). As the sample consists
of consensus sequences (at the level of one sequence per
host), an edge of this network represents a viral lineage, pos-
sibly passing through multiple hosts before being sequenced
at the present. An example of an ARG topology can be seen in
figure 3. Mutations are represented as points on the edges,
labeled by the sites they affect. Considering the graph back-
wards in time (from the bottom up), the point at which two
edges merge represents the time at which some sequences in
the data coalesced, or have found a common ancestor. A
point at which an edge splits into two corresponds to a re-
combination—the parts of the genome to the left and to the
right of the breakpoint (whose site number is labeled inside
the blue recombination node) are inherited from two differ-
ent parent particles. The network thus fully encodes the evo-
lutionary events in the history of a sample.

Both recombination and recurrent mutation can produce
patterns of incompatible sites in the data, which violate the
four gamete test (Hudson and Kaplan 1985) and could not
have been generated through replication and nonhomoplasic
mutations alone. KwARG reconstructs possible ARGs for a
given data set under the parsimony assumption, seeking to
minimize the posited number of recombination and/or re-
current mutation events. Our method requires the compu-
tation of a lower bound on the number of events in the
evolutionary history (we are, in essence, deliberately seeking
a biased estimate, to make our detection probabilities more
conservative). Crucially, the parsimony approach does this
without requiring the assumption of a particular generative
model for the data (such as the coalescent with exponential
growth) beyond specifying the types of events that can occur.
Although this means that mutation and recombination rates
cannot be inferred, it allows us to sidestep the need to specify
a detailed model of population dynamics, which is particularly
challenging for SARS-CoV-2 data. A parsimony-based ap-
proach is more appropriate when our focus is on interrogat-
ing the hypothesis that recombination is present at all. It also
allows for the explicit reconstruction of possible events in the
history of a sample, and thus allows us to identify recombi-
nant sequences and uncover patterns consistent with the
effects of sequencing errors.

KwARG outputs a set of possible ARGs for a given data set,
including those that explain all incompatibilities through re-
combination events, those that only contain recurrent muta-
tions, and those containing a combination of both event
types. KwARG distinguishes between recurrent mutations
that occur on the internal branches of the ARG from those

can be placed on the terminal branches, which affect only one
sequence in the input data set, so can be examined separately
for indications that they arose due to errors in the sequencing
process.

We ran KwARG on four samples of data: from South
Africa, collected in 1) November 2020 (50 sequences, with
25 from lineage B.1.351, and 25 from other lineages) and 2)
February 2021 (38 sequences, all from lineage B.1.351), and
from England, collected in 3) November 2020 (80 sequences,
with 40 sequences from lineage B.1.1.7 and 40 from other
lineages within GISAID clade GR), and 4) December 2020–
January 2021 (40 sequences within GISAID clade GR). An
overview of the identified solutions is given in table 1a–d.

Evaluation of Solutions
We next determined which of the solutions identified by
KwARG is more likely, by calculating the probability of observ-
ing the given number of recurrent mutations. To avoid making

Table 1. Summary of Solutions Identified by KwARG for Each Sample,
and the Probability of Observing the Corresponding Number of
Recurrent Mutations.

R RM PðRMÞ P

(a) South Africa (Nov.)
10 0 0.28 1.00
8 1 0.35 0.72
6 2 0.23 0.37
4 3 0.10 0.14
3 4 0.03 0.04
2 5 0.01 0.01
1 7 0.00 4310�4

0 9 0.00 7310�6

(b) South Africa (Feb.)
7 0 0.52 1.00
5 1 0.34 0.48
3 2 0.11 0.14
2 3 0.03 0.03
1 4 0.00 5310�3

0 5 0.00 7310�4

(c) England (Jan.)
10 0 0.11 1.00
8 1 0.24 0.89
6 2 0.27 0.65
4 3 0.20 0.38
3 4 0.11 0.19
2 5 0.05 0.08
1 6 0.02 0.03
0 14 0.00 1310�6

(d) MERS-CoV
9 0 0.42 1.00
7 1 0.36 0.58
6 2 0.16 0.22
5 3 0.05 0.06
4 4 0.01 0.01
3 5 0.00 2310�3

2 10 0.00 < 1310�6

1 12 0.00 < 1310�6

0 16 0.00 < 1310�6

NOTE.—First column: number of recombinations. Second column: number of re-
current mutations. Third column: probability of observing a number of recurrent
mutations equal to that in the second column. Fourth column: corresponding P
values (probability of observing a number of recurrent mutations equal to or
greater than that in the second column).
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model-based assumptions on the genealogy of the sample, we
use a nonparametric method inspired by the homoplasy test of
Maynard Smith and Smith (1998), which estimates the prob-
ability of observing the minimal number of recurrent muta-
tions required to generate the sample in the absence of
recombination (i.e., if the shape of the genealogy is constrained
to be a tree). If this probability is very small, then it provides
evidence for the presence of recombination. The method is
particularly powerful when the level of divergence between
sequences is very low, as is the case with SARS-CoV-2 data,
although it appears prone to false positives in the presence of
severe mutation rate heterogeneity along the genome (Posada
and Crandall 2001). We calculated an empirical estimate ~P of
mutation density along the genome from SARS-CoV-2 data,
which does not suggest the presence of extreme heterogene-
ity, and then used this estimate to simulate the distribution of
the number of recurrent mutations that are observed in a
sample. The resulting probabilities and corresponding P values
are shown in the third and fourth columns of table 1a–d.

Validation on Simulated Data
False Positives due to Presence of Highly Homoplasic Sites
The accuracy of the presented method depends on an as-
sumption that there are no highly homoplasic sites (arising
either due to selection or repeated sequencing errors) that
have not been masked. If this assumption were violated, the
estimate ~P would be missing “spikes” of high probability at
the corresponding positions, biasing the simulated null distri-
bution to underestimate the number of recurrent mutations,
and potentially leading to false positive results.

We investigated the validity of this assumption through
simulation as described in supplementary section S4.3.2,
Supplementary Material online, by inflating the mutation
probability of a subset of 0–200 sites in the vector ~P by a
factor H, simulating data with the resulting mutation rate
map in the absence of recombination with parameters that
appear reasonable for SARS-CoV-2, and checking whether our
method would (incorrectly) reject the null hypothesis. The
results are presented in the left panel of figure 1.

False positives were seen in only 0.5% of cases when there
are no highly homoplasic sites, demonstrating that our
method conservatively overestimates the computed P values.
The proportion of false positives only increases significantly
when a large number of extremely homoplasic sites is present,
showing that our method is reasonably robust to violations of
this assumption. As we apply several stringent quality filters
and implement a conservative strategy in masking sites
known to be homoplasic, seeing a large number of extremely
hypermutable sites appears improbable, so our method is
unlikely to falsely indicate the presence of recombination.

Random Site-Level Variation in Mutation Rate
We also investigated the robustness of the method to ran-
dom variation in the site-level mutation rates, which can arise
for various biological reasons, such as the effects of selection
on specific codons. First, as described in detail in supplemen-
tary section S4.4.1, Supplementary Material online, we simu-
lated data sets under a model where sites have Gamma-
distributed mutation rates (keeping the simulation parame-
ters reasonable for SARS-CoV-2), then used our method to
approximate the corresponding null distribution, and ex-
plored how the false positive rate changes as the variance
of the Gamma distribution increases (while the mean stays
fixed at 2� 10�5 per site per generation). We found that the
false positive rate remains low for reasonable values of the
parameters (with the standard deviation of the site-level mu-
tation rate per generation roughly equal to its mean of
2� 10�5), and increases as the variance of the site-level mu-
tation rate distribution grows.

This suggests that the method may not be suitable in cases
where only a small fraction of sites have nonnegligible muta-
tion rates. Although this does not appear to be the case for
SARS-CoV-2, based on the observed number of segregating
sites, we further checked robustness of the reported results
using a phylogeny-based estimate of mutation rate heteroge-
neity. We used a SARS-CoV-2 phylogeny from Nextstrain
(Hadfield et al. 2018; Sagulenko et al. 2018) to fit a Gamma
distribution to site-level mutation rates, based on the
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FIG. 1. Left panel: x-axis shows number of added highly homoplasic sites, with the corresponding entries of ~P multiplied by the factor H (colors); y-
axis shows the proportion of simulated data sets (out of 200 for each combination of parameters) for which the null hypothesis was (incorrectly)
rejected with P< 0.05. Right panel: x-axis shows recombination rate (per site per generation) used to simulate 200 data sets, y-axis shows
proportion of data sets for which the null hypothesis was rejected with P< 0.05.
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observed site-level mutation count (as described in supple-
mentary section S4.4.2, Supplementary Material online). We
re-estimated the null distribution for each of the SARS-CoV-2
samples in table 1, using the Gamma approximation instead
of our estimate of mutation rate heterogeneity ~P. In all cases,
the calculated P values were below the significance threshold
of 0.05, so we did not find that using this alternative
phylogeny-based method changes our findings.

Detectable Recombination Rate
The power of our test in detecting the presence of recombi-
nation was investigated for a range of recombination rates q,
by simulating data sets as described in supplementary section
S4.3.3, Supplementary Material online, and recording how
often the null hypothesis of no recombination could be
rejected (with P< 0.05). The results are shown in the right
panel of figure 1, demonstrating that this occurred in 4.5% of
cases for q ¼ 1� 10�7 per site per generation, rising to
99.5% of cases for q ¼ 1� 10�5. The simulations were per-
formed using parameters that appear reasonable for SARS-
CoV-2; the results suggest that our method is sufficiently
powerful for detecting recombination if the recombination
rate is higher than around q ¼ 1� 10�6 per site per gener-
ation �4� 10�5 per site per year.

Identification of Recombinant Sequences
All sequences collected in England in December 2020–
January 2021, labeled as belonging to clade GR in GISAID,
were downloaded and processed as described in supplemen-
tary section S1.6, Supplementary Material online. The result-
ing sample comprises 40 sequences with 276 variable sites.

An illustration of the sample is provided in supplementary
figure S6, Supplementary Material online. Choosing a solution
with no recombinations, the sites of 14 recurrent mutations
identified by KwARG are highlighted with red (resp. yellow)
crosses, where the recurrent mutations fall on the terminal
(resp. internal) branches of the ARG. The sequencing protocol
used by the COVID-19 Genomics UK Consortium, the sub-
mitters of the data, generates short amplicons of under 400 bp
in length, and none of the identified sites of recurrent muta-
tions fall into the same amplicon region, making it less likely
that the results are due to sample contamination or other
sequencing artifacts. The probability of observing the required
Tobs ¼ 14 or more recurrent mutations is p ¼ 1� 10�6,
which strongly indicates the presence of recombination.

Considering the results in table 1c, three recurrent muta-
tions can have the same effect as six of the identified recom-
bination events (compare row ðR; RMÞ ¼ ð10; 0Þ with
ðR; RMÞ ¼ ð4; 3Þ), suggesting that recurrent mutation offers
a more parsimonious explanation for at least part of the
patterns seen in the data. One of these recurrent mutations
consistently occurs at site 22,227; the other two can be placed
either at the same site 9,693, or at sites 9,693 and 12,067. The
probability of observing five or fewer recurrent mutations is
0.97, which suggests that, with high probability, at least two
recombination have occurred in the history of the sample. An

example of an ARG with two recombination events is shown
in figure 2.

It is striking that eight of the recurrent mutations seen in
supplementary figure S6, Supplementary Material online, can
be placed in the same sequence E39. Indeed, figure 2 shows
that the corresponding incompatibilities in the data can be
resolved by just one recombination event between sequence
E40 and a sequence from lineage B.1.1.7; the corresponding
recombination node is shown in bold. The sequence E39 has
previously been identified as a possible recombinant by
Jackson et al. (2021), demonstrating that our method can
clearly highlight mosaic sequences in addition to quantifying
the probability that recombination has occurred in the his-
tory of the data set.

Detection of Intraclade Recombination
All sequences collected in South Africa in February 2021 were
downloaded and processed as described in supplementary
section S1.4, Supplementary Material online. The resulting
sample comprises 38 sequences with 151 variable sites, all
from the same lineage B.1.351.

Initial examination of the solutions identified by KwARG
show that at least eight recurrent mutations are required to
construct a valid ARG for this sample in the absence of re-
combination. However, it was noted that three of these re-
current mutations occur at the same site 28,254. This may
imply that the site is highly mutable, which could be due to
repeated sequencing errors, or as a consequence of selection.
We note that this demonstrates the usefulness of our ap-
proach in identifying potentially highly homoplasic sites.

This position was masked from the sample before rerun-
ning the analysis. The probability of observing the recalcu-
lated value of Tobs ¼ 5 or more recurrent mutations is
P ¼ 7� 10�4, strongly suggesting the presence of recombi-
nation. The probability of observing two or fewer recurrent
mutations is 0.97, which indicates that with high probability,
at least three recombination events have occurred in the
history of the data set.

Detection of Interclade Recombination
All sequences collected in South Africa in November 2020
were downloaded and processed as described in supplemen-
tary section S1.3, Supplementary Material online, to create a
sample of 50 sequences with 207 variable sites, with 25 be-
longing to lineage B.1.351 (labeled SAN1-SAN25), and 25 to
other lineages (labeled SAO1-SAO25).

An initial run of KwARG demonstrated that, notably, one
recurrent mutation occurs at site 28,254, further suggesting
that this site is excessively prone to recurrent mutation. This
site was therefore masked before rerunning the analysis. An
illustration of the sample is provided in supplementary figure
S7, Supplementary Material online. The sites of nine recurrent
mutations identified by KwARG are highlighted with red
crosses (choosing a solution with no recombinations, and
where the recurrent mutations fall on the terminal branches
of the ARG). The probability of observing the required Tobs¼
9 or more recurrent mutations is P ¼ 7� 10�6, strongly
suggesting the presence of recombination.
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The probability of observing three or fewer recurrent
mutations is 0.96, which indicates that, with high probability,
at least four recombination events have occurred in the his-
tory of the data set. Indeed, table 1 shows that three recurrent
mutations can remove the necessity of six recombination
events, suggesting that recurrent mutation offers a more par-
simonious explanation than recombination for the remaining
incompatibilities in the data. Examination of the KwARG
solutions shows that these recurrent mutations consistently
occur at sites 4,093, 11,230, and 25,273. An ARG with recur-
rent mutations at these three sites is shown in figure 3; edges
carrying the characteristic mutations of lineage B.1.351 are
highlighted in red.

The sequences SAO21 and SAO22 carry three and two of
the identified nine recurrent mutations, respectively, when
recombination is prohibited in reconstructing the genealogy.
Both of these sequences carry some of the mutations char-
acteristic of lineage B.1.351; this is demonstrated in figure 4,
where the two sequences are compared with two other typ-
ical sequences from lineage B.1.351. Examination of the
KwARG solutions shows that a recombination in Sequence
SAO21 just after site 22,812 has the same effect as the recur-
rent mutations at sites 22,813 and 23,012, and a recombina-
tion in Sequence SAO22 just after site 23,011 has the same
effect as the recurrent mutations at sites 23,012 and 23,063.
This suggests that the patterns of incompatibilities observed
in these two sequences are consistent with recombination; a
possible sequence of recombination events generating these
sequences can be seen in the ARG in figure 3.

Identification of Sequencing Errors due to
Cross-Contamination
All sequences labeled as GISAID clade GR, collected in England
in November 2020, were aligned, masked, and processed as
detailed in supplementary section S1.5, Supplementary
Material online. The quality criteria detailed in supplementary
section S1.2, Supplementary Material online, were not applied
in this case. The resulting sample comprises 80 sequences with
363 variable sites, 40 of which belong to lineage B.1.1.7 (labeled
EN1-EN40) and 40 to other lineages (labeled EO1-EO40).

The results showed that in the absence of recombination,
at least 15 recurrent mutations were required to explain the
incompatibilities observed in this sample. However, it was
identified that six of these recurrent mutations could be
placed in the same sequence EO40, as illustrated in figure 5.
The sequence EO40 appeared to carry some of the mutations
carried by sequence EO32, and some of the mutations char-
acteristic of lineage B.1.1.7, strongly suggesting that this se-
quence was a recombinant.

Our findings prompted further investigation by the sub-
mitters of this sequence, which revealed the signal to be the
result of significant contamination of the genetic sample
causing multiple errors in the consensus sequence, rather
than a result of intrahost recombination. The sequence has
subsequently been removed from GISAID.

Recombination Detection for MERS-CoV Data
MERS-CoV sequences collected in Saudi Arabia in January–
March 2015 were downloaded from the NCBI virus database

FIG. 2. Example of an ARG for the England (January) data set. Recombination nodes are shown in blue, labeled with the recombination breakpoint,
with the offspring sequence inheriting part of the genome to the left (right) of the breakpoint from the parent labeled “P” (“S”). Recurrent
mutations are prefixed with an asterisk. Edge carrying the characteristic mutations of lineage B.1.1.7 is highlighted in red; nodes corresponding to
sequences from lineage B.1.1.7 are colored purple. For ease of viewing, some parts of the ARG have been collapsed into nodes labeled “E. . ..” Edges
are labeled by positions of mutations (some mutated sites are not explicitly labeled and are denoted by a dot instead).
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(Hatcher et al. 2017), and aligned, masked, and processed as
described in supplementary section S2, Supplementary
Material online. The resulting sample consists of 19 sequences
with 197 variable sites.

The data set is illustrated in supplementary figure S8,
Supplementary Material online. The locations of recurrent
mutations identified by KwARG are shows as red and
yellow crosses, corresponding to recurrent mutations occurring
on the terminal and internal branches of the ARG, respectively.
In the absence of recombination, at least Tobs ¼ 16 recurrent
mutations are required, which has probability P < 1� 10�6,
strongly suggesting the presence of recombination. The prob-
ability of observing three or fewer recurrent mutations is 0.99,

suggesting that at least five recombinations have occurred in
the history of the sample. An ARG with five recombination
nodes, showing a possible history of the data set, is shown in
supplementary figure S9, Supplementary Material online.

A group of four identical sequences (M16–M19, shown in
purple in supplementary figure S9, Supplementary Material
online) appear to carry a characteristic set of shared muta-
tions that strongly differentiates them from the other sequen-
ces in the sample. Five of the identified recurrent mutations
affect this group, occurring in a relatively short stretch of the
genome, suggesting that these patterns are indicative of re-
combination with other sequences in the sample carrying
these mutations.

FIG. 3. Example of an ARG for the South Africa (November) data set (the “SA” prefix of each sequence reference number is dropped for ease of
viewing). Recombination nodes are shown in blue, labeled with the recombination breakpoint, with the offspring sequence inheriting part of the
genome to the left (right) of the breakpoint from the parent labeled “P” (“S”). Recurrent mutations are prefixed with an asterisk. For ease of viewing,
some parts of the ARG have been collapsed into nodes labeled “O. . .” and “N. . .” (containing sequences labeled SAO and SAN, respectively). Edges
are labeled by positions of mutations (some mutated sites are not explicitly labeled and are denoted by a dot instead).

FIG. 4. Comparison of sequences SAO21, SAO22 and the characteristic mutations for lineage B.1.351. Columns correspond to positions along the
genome; uninformative sites (with all 0’s or 1’s) and those with singleton mutations (with exactly one 1) are not shown. Light blue: ancestral state,
dark blue: mutated state, white: missing data. Red crosses highlight sites of recurrent mutations identified by KwARG. Sites bearing the charac-
teristic (nonsynonymous) mutations of lineage B.1.351 (Tegally et al. 2021) are highlighted in orange.

FIG. 5. Comparison of sequences EO32, EO40 and the characteristic mutations of lineage B.1.1.7. Columns correspond to positions along the
genome; uninformative sites (with all 0’s or 1’s) and those with singleton mutations (with exactly one 1) are not shown. Light blue: ancestral state,
dark blue: mutated state, white: missing data. Red crosses highlight locations of the recurrent mutations identified by KwARG. Sites bearing the
characteristic mutations of lineage B.1.1.7 (Rambaut et al. 2020) are highlighted in green.
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Five of the other identified recurrent mutations can be
placed in one sequence (M11), which appears to carry a mix-
ture of mutations from the group identified above and other
sequences in the sample, which is consistent with recombi-
nation. This sequence does not match any others in the data
set, so it is possible that this is the result of sequencing errors
or sample contamination. If this sequence is removed from
the sample, at least Tobs ¼ 9 recurrent mutations are still
required to explain the observed incompatibilities, which
has probability P < 1� 10�6, still strongly suggesting that
recombination is present. This agrees with previous reports of
within-host recombination for MERS-CoV (Dudas and
Rambaut 2016; Sabir et al. 2016; Zhang et al. 2016).

Discussion
The method presented in this article offers a clear and prin-
cipled framework for recombination detection, which can be
interpreted as a hypothesis testing approach. We make very
conservative assumptions throughout, demonstrating on
both real and simulated data that the method achieves a
very low rate of false positive results (if mutation rate hetero-
geneity is not extreme), while offering powerful detection of
recombination at even relatively low values of recombination
rate. We use nonparametric techniques at each stage, to
avoid making assumptions on the process generating the
data, and thus circumvent issues with model misspecification.
Our method allows us to gain clear insights into the evolu-
tionary events that may have generated the given sequences,
offering easily interpretable results. The method detects
sequences carrying patterns consistent with recombination,
demonstrating its effectiveness as a tool for flagging sequen-
ces with distinctive patterns of incompatibilities for further
detailed investigation.

Our results clearly indicate the presence of recombination
in the history of the analyzed SARS-CoV-2 sequencing data,
suggesting a recombination rate greater than around 4
�10�5 per site per year. One of the main limitations of our
method is that KwARG does not scale well to large data sets.
However, although studies relying on clade assignment and
statistics such as linkage disequilibrium have identified that
recombination occurs at very low levels (VanInsberghe et al.
2021; Varabyou et al. 2021) or is unlikely to be occurring at a
detectable level (De Maio et al. 2020; Nie et al. 2020; Richard
et al. 2020; Tang et al. 2020; Wang et al. 2020; van Dorp,
Richard, et al. 2020) even when analyzing vast quantities of
sequencing data, our method is powerful enough to detect
the presence of recombination using even relatively small
samples. Several alternative methods are available for recon-
structing genealogies explicitly in the presence of recombina-
tion, both with (Lyngsø et al. 2005) and without (Rasmussen
et al. 2014; Kelleher et al. 2019; Speidel et al. 2019) making the
parsimony assumption, but none is tailored to the particular
problem of detecting recombination in the presence of re-
current mutation. Our testing framework could potentially
be used in combination with these other methods for recon-
structing ARGs, with appropriate modifications to control the
false positive rate and ensure validity of the results.

Recombination can occur when the same host is coin-
fected by two different strains, which has been noted to occur
in COVID-19 patients (Samoilov et al. 2021), and could be-
come more likely with the emergence of more transmissible
variants. We note that the potential mosaic sequences we
identified in the South Africa sample from November are
represented only once in the data. This could be due to a
lack of onward transmission, as recombinants are likely to
reach a detectable level at a relatively late stage in the infec-
tion cycle. It could also indicate that the sequences arose
due to either contamination of the sample during processing,
or the misassembly of two distinct (nonrecombinant) strains
present in the same sample, as was identified to be the case
for one sequence in the England sample from November. We
believe one of the main uses of our method will be for flagging
such sequences for further investigation.

We also note that although we sought to mask any sites
known to be highly homoplasic, we cannot rule out that
some of the identified recurrent mutations did arise multiple
times as a consequence of selection or as a result of repeated
sequencing errors. However, we have demonstrated that
the solutions presented by KwARG can be examined for
the presence of highly mutable sites, and have identified using
both samples from South Africa that this appears to be the
case for site 28,254 (located proximal to the stop codon of
ORF8).

Our findings suggest that care should be taken when per-
forming and interpreting the results of analysis based on
the construction of phylogenetic trees for SARS-CoV-2
data. The presence of recombination, as well as other factors
complicating the structure of the transmission network of the
virus, strongly suggests that tree-based models are not appro-
priate for modeling SARS-CoV-2 genealogies, and inference of
evolutionary rates based on such methods may suffer from
errors due to model misspecification that are difficult to
quantify.

Due to the high level of homogeneity between sequences,
the effects of recombination will be either undetectable or
indistinguishable from recurrent mutation in the majority of
cases. However, as genetic diversity builds up over longer
timescales, the effects of recombination may become more
pronounced. Particularly in light of the recent emergence of
new variants, the rapid evolution of the virus through recom-
bination between strains with different pathogenic properties
is a crucial risk factor to consider. This highlights the need for
continuous monitoring of the sequenced genomes for new
variants, to enable the early detection of novel recombinant
genotypes, and for further work on the quantification of re-
combination rates and identification of recombination hot-
spots along the genome.

Materials and Methods

SARS-CoV-2 Data
Sequences were downloaded from GISAID and aligned as
described in supplementary section S1.1, Supplementary
Material online. Masking was applied to sites at the endpoint
regions of the genomes, any multiallelic sites, regions with
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many missing nucleotides in multiple sequences, and sites
identified by De Maio et al. (2020) as being highly homoplasic
or prone to sequencing errors. Strict quality criteria were ap-
plied, as detailed in supplementary section S1.2,
Supplementary Material online, to remove any sequences
with a large number of ambiguous nucleotides, multiple
non-ACTG characters, excessive gaps, and groups of clustered
SNPs; additionally, sites identified by van Dorp, Acman, et al.
(2020) as being prone to recurrent mutation were masked.
These measures were aimed at reducing the possibility of
including poor quality or contaminated sequences in the
analyzed samples, and also masking sites that are known to
be highly homoplasic (either due to recurring sequencing
errors, or due to the effects of selection).

The timing of samples was selected to coincide with peri-
ods of high transmission numbers, as this increases the prob-
ability of coinfection of the same host with multiple strains,
which is a requirement for recombination to occur.
Collection dates were also restricted to reasonably narrow
windows, as KwARG assumes that the sequences are sampled
contemporaneously.

Four samples were analyzed; details of sample selection
and processing are given in supplementary sections S1.3–
S1.6, Supplementary Material online.

Reconstruction of Genealogies
The first step in our approach is to use a parsimony-based
method to reconstruct possible genealogical histories for the
given data sets.

Incompatibilities in the Data
Suppose that each site of the genome can mutate between
exactly two possible states (thus excluding the possibility of
triallelic sites, which we have masked from the data). Then the
allele at each site can be denoted 0 or 1. If the commonly used
infinite sites assumption is applied, at most one mutation can
affect each site of the genome. The four gamete test (Hudson
and Kaplan 1985) can then detect the presence of recombi-
nation: if all four of the configurations 00, 01, 10, 11 are found
in any two columns, then the data could not have been
generated through replication and mutation alone, and at
least one recombination event must have occurred between
the two corresponding sites; the sites are then termed incom-
patible. If the infinite sites assumption is violated, the four
gamete test no longer necessarily indicates the presence of
recombination, as the incompatibilities could instead have
been generated through recurrent mutation (McVean et al.
2002).

Parsimonious Reconstruction of Histories
A sample of genetic sequences may have many possible his-
tories, with many different corresponding ARGs. The parsi-
mony approach to reconstructing ARGs given a sample of
genetic data focuses on minimizing the number of recombi-
nation and/or recurrent mutation events. This does not nec-
essarily produce the most biologically plausible histories, but
it does provide a lower bound on the number of events that
must have occurred in the evolutionary pathway generating
the sample. Thus, recombination can be detected in the his-
tory of a sample by considering whether the most plausible
parsimonious solutions contain at least one recombination
node.

KwARG
KwARG (Ignatieva et al. 2021) is a program implementing a
parsimony-based heuristic algorithm for reconstructing plau-
sible ARGs for a given data set. KwARG identifies
“recombination only” solutions (all incompatibilities are re-
solved through recombination events) and “recurrent muta-
tion only” solutions (all incompatibilities are resolved through
additional mutation events), as well as interpolating between
these two extremes and outputting solutions with a combi-
nation of both event types. KwARG allows for missing data
and disregards insertions and deletions (we have deleted
insertions from the alignment and treat deletions as missing
data). KwARG seeks to minimize the number of posited re-
combination and recurrent mutation events in each solution,
and the proportions of the two event types can be controled
by specifying “cost” parameters. KwARG was run on the
data samples as detailed in supplementary section S3,
Supplementary Material online.

Evaluation of Solutions
In order to evaluate which of the solutions identified by
KwARG is more likely, we calculate an estimate ~P which
captures the mutation rate heterogeneity along the genome,
and use a simulation-based approach to estimate the prob-
ability of observing a given number of recurrent mutations in
the history of a given data set.

The ith entry of the vector ~P, for i 2 f1; . . . ; 29; 903g,
gives an estimated probability that when a mutation occurs,
it affects the ith site of the genome. Details of our method for
estimating ~P are presented in supplementary section S4,
Supplementary Material online. Briefly, this estimate is calcu-
lated by examining the locations of sites that have undergone
at least one mutation (segregating sites) using GISAID data
collected in February 2021. If the mutation rate were constant

FIG. 6. Estimate ~P of the probability of a mutation falling on each site of the SARS-CoV-2 genome. Colors show the nucleotide type at each position.
Blue vertical lines mark endpoints of the labeled ORFs and genes as per Wu et al. (2020).
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along the genome, we would expect segregating sites to be
spread uniformly throughout the genome; uneven clustering
of the mutations gives an indication of mutation rate hetero-
geneity. We use a nonparametric method (wavelet decom-
position) to estimate ~P from the observed positions of
segregating sites, taking into account the dependence of
the mutation rate on the base type of the nucleotide under-
going mutation, which is significant for SARS-CoV-2 (Koyama
et al. 2020; Simmonds 2020). The resulting estimate is shown
in figure 6.

The estimate of ~P is then used to approximate the distri-
bution of the number of recurrent mutations observed in a
sample, using a simulation approach. We simulate the process
of mutations falling along the genome until the simulated
number of segregating sites matches that observed in the
sample; the vector ~P controls where on the genome each
mutation falls. The number of recurrent mutations (instances
where mutations fall on the same site multiple times) is
recorded. This procedure is repeated for 1,000,000 iterations
and a histogram of the results is constructed. The resulting
probabilities and corresponding P values are shown in the
third and fourth columns of table 1a–d.

Supplementary Material
Supplementary data are available at Molecular Biology and
Evolution online.

Code Availability
Code used in processing the data (with step-by-step instruc-
tions for carrying out the analysis) is available at github.com/
a-ignatieva/sars-cov-2-recombination.
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