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Two-dimensional Turbulence in 
Symmetric Binary-Fluid Mixtures: 
Coarsening Arrest by the Inverse 
Cascade
Prasad Perlekar1,*, Nairita Pal2,* & Rahul Pandit2,3,*

We study two-dimensional (2D) binary-fluid turbulence by carrying out an extensive direct numerical 
simulation (DNS) of the forced, statistically steady turbulence in the coupled Cahn-Hilliard and Navier-
Stokes equations. In the absence of any coupling, we choose parameters that lead (a) to spinodal 
decomposition and domain growth, which is characterized by the spatiotemporal evolution of the 
Cahn-Hilliard order parameter φ, and (b) the formation of an inverse-energy-cascade regime in the 
energy spectrum E(k), in which energy cascades towards wave numbers k that are smaller than the 
energy-injection scale kin j in the turbulent fluid. We show that the Cahn-Hilliard-Navier-Stokes coupling 
leads to an arrest of phase separation at a length scale Lc, which we evaluate from S(k), the spectrum 
of the fluctuations of φ. We demonstrate that (a) Lc ~ LH, the Hinze scale that follows from balancing 
inertial and interfacial-tension forces, and (b) Lc is independent, within error bars, of the diffusivity D. 
We elucidate how this coupling modifies E(k) by blocking the inverse energy cascade at a wavenumber 
kc, which we show is ≃2π/Lc. We compare our work with earlier studies of this problem.

Binary-fluid mixtures (such as oil and water) have played a pivotal role in the development of the understanding 
of (a) equilibrium critical phenomena at the consolute point, above which the two fluids mix1–3, (b) nucleation4, 
and (c) spinodal decomposition, the process by which a binary-fluid mixture, below the consolute point and 
below the spinodal curve, separates into the two, constituent liquid phases until, in equilibrium, a single interface 
separates the two coexisting phases (this phase separation is also known as coarsening)5,6. In the presence of 
flows, the demixing because of spinodal decomposition gets arrested and an emulsion is formed. This process, 
also known as coarsening arrest, is important in several three-dimensional (3D) and two-dimensional (2D) tur-
bulent flows. The former have been studied recently7–9. Coarsening arrest in a 2D, turbulent, binary-fluid mixture 
is also of relevance to problems such as the dynamics of oil slicks on the surface of the ocean, whose understand-
ing is of clear socio-economic and scientific relevance10–13. Oceanic flows have been modelled successfully as 2D, 
turbulent fluids. Such 2D turbulence is fundamentally different from three-dimensional (3D) fluid turbulence as 
noted in the pioneering studies of Fjørtoft, Kraichnan, Leith, and Batchelor14–18. In particular, the fluid-energy 
spectrum in 2D turbulence shows (a) a forward cascade of enstrophy (or the mean-square vorticity), from the 
energy-injection wave number kinj to larger wave numbers, and (b) an inverse cascade of energy to wave numbers 
smaller than kinj. We elucidate the turbulence-induced arrest of phase separation in a 2D, symmetric, binary-fluid 
mixture.

Coarsening arrest by 2D turbulence has been studied in ref. 19, where it has been shown that, for length scales 
smaller than the energy-injection scale π= k2 /inj inj, the typical linear size of domains is controlled by the aver-
age shear across the domain. However, the nature of coarsening arrest, for scales larger than 

inj, i.e., in the 
inverse-cascade regime, which is relevant for large-scale oceanic flows, still remains elusive. In particular, it is not 
clear what happens to the inverse energy transfer, in a 2D binary-fluid, turbulent mixture, in which the mean size 
of domains provides an additional, important length scale. We resolve these two issues in our study. By combining 
theoretical arguments with extensive direct numerical simulations (DNSs) we show that the Hinze length scale LH 
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(see refs 8,9) provides a natural estimate for the arrest scale; and the inverse flux of energy also stops at a 
wave-number scale π L2 / H. Coarsening arrest has also been studied in simple shear flows (refs 20–25), which 
yield coarsening arrest with domains elongated in the direction of shear.

Forced, 2D, statistically steady, Navier-Stokes-fluid turbulence displays a forward cascade of enstrophy, from 
inj  to smaller length scales, and an inverse cascade of energy to length scales smaller than 

inj . In the 
inverse-cascade regime, on which we concentrate here, E(k) ~ k−5/3 (see, e.g., refs 15,18) and the energy flux Π​
(k) ~ ε ≡​ 〈​ε(t)〉​t assumes a constant value. For the Cahn-Hilliard model, if it is not coupled to the Naiver-Stokes 
equation, ∼S k t k t( , ) ( ( )) , for large times, where the time-dependent length scale  ∼t t( ) 1/3, in the early 
Lifshitz-Slyozov26–29 regime; if the Cahn-Hilliard model is coupled to the Navier-Stokes equation, then, in the 
absence of forcing,  ∼t t( ) , in the viscous-hydrodynamic regime, first discussed by Siggia27–30, and  ∼t t( ) 2/3, 
in the very-late-stages in the Furukawa31 and Kendon32 regimes. For a discussion of these regimes and a detailed 
exploration of a universal scaling form for  t( ) in 3D we refer the reader to ref. 33. We now elucidate how these 
scaling forms for E(k) and S(k, t) are modified when we study forced 2D turbulence, in the inverse-cascade regime 
in the coupled Cahn-Hilliard-Navier-Stokes equations.

Results
Cahn-Hilliard-Navier-Stokes equations.  We model a symmetric binary-fluid mixture by using the 
incompressible Navier-Stokes equations coupled to the Cahn-Hilliard or Model-H equations34,35. We are inter-
ested in 2D incompressible fluids, so we use the following stream-function-vorticity formulation36–38 for the 
momentum equation:

ω ν ω φ µ∂ + ⋅ ∇ = ∇ − ∇ × ∇ + ωu f( ) ( ) , (1)t
2

φ µ∂ + ⋅ ∇ = ∇ ∇ ⋅ = .u uM( ) , and 0 (2)t
2

Here u(x, t) ≡​ (ux, uy) is the fluid velocity at the point x and time t, ω = ∇ × ˆu e( ) z, φ(x, t) is the Cahn-Hilliard 
order parameter that is positive in one phase and negative in the other, p(x, t) is the pressure, 
µ δ φ δφ=x xt t( , ) [ ]/ ( , )  is the chemical potential,  ∫φ φ ξ φ= Λ − + ∇ xd[ ] [( 1) /(4 ) /2]2 2 2 2  is the free 
energy, Λ​ is the mixing energy density, ξ controls the width of the interface between the two phases of the 
binary-fluid mixture, ν is the kinematic viscosity, the surface tension ξ= Λs 2 2 /3( / ), the mobility of the 
binary-fluid mixture is M, and fω is the external driving force. For simplicity, we study mixtures in which M is 
independent of φ and both components have the same density and viscosity33. We use periodic boundary condi-
tions in our square simulation domain, with each side of length L =​ 2π. To obtain a substantial inverse-cascade 
regime, we stir the fluid at an intermediate length scale by forcing in Fourier space in a spherical shell with 
wave-number π= k 2 /inj inj. Our choice of forcing ω ω= ∑ω =

ˆ ˆ ˆk k kf t t t( , ) ( , )/ ( , )k kinj
, where the caret indicates a 

spatial Fourier transform, ensures that there is a constant enstrophy-injection rate. The higher the Reynolds num-
ber Re ∝​ 1/ν, the more turbulent is the flow; and the higher the Weber number We ∝​ 1/σ, the more the fluctua-
tions in the domains (see Table 1 for definitions of Re, We, and other parameters in our study). To elucidate the 

N ν M ξ(×10−2) Λ(×ξ2) D 〈fωω〉 E εν εμ We Lc

R1 1024 10−4 10−2 1.76 1.0 10−2 5.0 3.3 · 10−2 2.5 · 10−3 5.7 · 10−4 5.9 · 10−2 1.87

R2 1024 10−4 10−4 1.76 1.0 10−4 5.0 3.1 · 10−2 2.6 · 10−3 8.1 · 10−4 5.9 · 10−2 1.87

R3 2048 10−4 2 · 10−4 1.76 5.0 10−3 5.0 4.8 · 10−2 2.7 · 10−3 4.3 · 10−4 1.2 · 10−2 2.97

R4 2048 10−4 1 · 10−3 1.76 1.0 10−3 5.0 3.0 · 10−2 2.5 · 10−3 5.6 · 10−4 5.9 · 10−2 1.82

R5 2048 10−4 2 · 10−3 1.76 5.0 · 10−1 10−3 5.0 2.3 · 10−2 2.4 · 10−3 7.1 · 10−4 1.2 · 10−1 1.35

R6 1024 10−4 4 · 10−3 1.76 2.5 · 10−1 10−3 5.0 1.5 · 10−2 2.2 · 10−3 8.7 · 10−4 2.4 · 10−1 0.9

R7 1024 10−4 8 · 10−3 1.76 1.25 · 10−1 10−3 5.0 9.5 · 10−3 1.9 · 10−3 1.1 · 10−3 4.7 · 10−1 0.57

R8 2048 10−4 10−2 1.76 1.0 · 10−1 10−3 5.0 8.1 · 10−3 1.8 · 10−3 1.2 · 10−3 5.9 · 10−1 0.48

R9 2048 10−4 2 · 10−4 0.50 5.0 10−3 5.0 3.7 · 10−2 2.8 · 10−3 3.4 · 10−4 4.1 · 10−2 1.55

R10 2048 10−4 10−3 0.50 1.0 10−3 5.0 1.7 · 10−2 2.6 · 10−3 5.3 · 10−4 2.1 · 10−1 0.63

R11 1024 10−2 2 · 10−4 1.76 5 · 102 10−1 4 · 105 2.0 · 101 2.4 · 102 1.2 · 101 0.22 2.3

R12 1024 10−2 10−3 1.76 102 10−1 4 · 105 8.8 2.0 · 102 4.7 · 101 1.1 0.55

Table 1.   Parameters N, ν, M,ξ, Λ, D, 〈fωω〉 for our DNS runs R1-R12. The forcing wave number is fixed at 
π≡ =k 2 / 40inj inj , N2 is the number of collocation points, ν is the kinematic viscosity, M is the mobility 

parameter, ξ sets the scale of the interface width, the surface tension σ ξ= Λ2 2 /3( / ), 〈​fωω〉​ is the enstrophy-
injection rate, which is related to the energy-injection rate [ε ω= ωf k/inj inj

2 ], D ≡​ MΛ​/ξ2 is the diffusivity of 
our binary-fluid mixture, E =​ 0.5∑​k|uk|2 is the fluid kinetic energy, εν =​ ν∑​kk2|uk|2 is the fluid energy dissipation 
rate, ε µ= ∑µ M kk k

2 2  is the energy dissipation rate because of the phase-field φ, ρε σ≡ We /inj inj
2/3 5/3 , 

ν≡ Re u /inj inj  is the Reynolds number, Lc is the coarsening-arrest length scale [Eq. (3)]. R1 −​ R2: Re =​ 124 and 
Sc =​ 1; R3 −​ R10: Re =​ 124 and Sc =​ 0.1; R11 −​ R12: Re =​ 53 and Sc =​ 0.1. In some of our runs we also include a 
friction term −​αω on the right-hand-side of Eq. (1); α =​ 0.001 for runs R4 −​ R8 and zero otherwise. In all our 
studies we use kinj =​ 40 so that there is a clear separation between 

inj and ξ.
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physics of coarsening arrest, we conduct direct numerical simulations (DNSs) of Eqs (1) and (2) (see Methods 
Section for details).

Coarsening Arrest.  In Fig. 1 we show pseudo-gray-scale plots of φ, at late times when coarsening arrest has 
occurred, for four different values of We at Re =​ 124; we find that the larger the value of We the smaller is the lin-
ear size that can be associated with domains; this size is determined by the competition between turbulence-shear 
and interfacial-tension forces. This qualitative effect has also been observed in earlier studies of 2D and 3D turbu-
lence of symmetric binary-fluid mixtures19–21,39–44.

We calculate the coarsening-arrest length scale

∑ ∑π=
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we now show that Lc is determined by the Hinze scale LH, which we obtain, as in Hinze’s pioneering study of drop-
let break-up9, by balancing the surface tension with the inertia as follows:

ε σ∼ .−L (4)H inj
2/5 3/5

We obtain for 2D, binary-fluid turbulence the intuitively appealing result Lc ~ LH (for a similar, recent 
Lattice-Boltzmann study in 3D see ref. 8). In particular, if we determine Lc from Eq. (3), with S(k) from our DNS, 
we obtain the red points in Fig. 2, which is a log-log plot of σLc versus εinj/σ4; the black line is the Hinze result (4) 
for LH, with a constant of proportionality that we find is .1 6 from a fit to our data. We see from Fig. 2 that the 
Hinze length scale LH gives an excellent approximation to the arrest scale Lc over several orders of magnitude on 
both vertical and horizontal axes. Note that the Hinze estimate also predicts that, for fixed values of εinj and σ, the 
coarsening-arrest scale is independent of D; the plot of Lc versus D, in the inset of Fig. 2, shows that our data for 
Lc are consistent (within error bars) with this prediction.

Figure 1.  Pseudo-gray-scale plots of the order parameter field φ, at late times when coarsening arrest has 
occured, in 2D symmetric-binary-fluid turbulence with Re = 124. Note that the domain size decreases as we 
increase the Weber number We from the leftmost to the rightmost panel: We =​ 1.2 · 10−2 (R3); We =​ 5.9 · 10−2 
(R4); We =​ 1.2 · 10−1 (R5); and We =​ 5.9 · 10−1 (R8).

Figure 2.  (a) Log-log (base 10) plot of σLc versus ε/σ4 showing data points (Lc from Equation (3), with S(k) 
from our DNS) in red. The black line is the Hinze result (4) for LH; a fit to our data yields a constant of 
proportionality .1 6 and an excellent approximation to the arrest scale Lc over several orders of magnitude on 
both vertical and horizontal axes; the plot of Lc versus D, in the inset, shows that, for fixed values of εν and σ 
(runs R1, R2 and R4), Lc is independent of D (within error bars), as is implied by the Hinze condition (see text). 
(b) Log-log (base 10) plots of the spectrum S(k), of the phase-field φ, versus k; as We increases (i.e., σ decreases) 
the low-k part of S(k) decreases and S(k) develops a broad and gentle maximum whose peak moves out to large 
values of k. (c) Plots versus φ, in the vicinity of the maximum at φ+, of the normalized PDFs P(φ)/Pm(φ), where 
Pm(φ) is the maximum of P(φ); the peak position φ+ →​ 1 as We increases (see the inset which suggests that 
φ− ∼+ We1 2 1/2 (black line)).
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In Fig. 2(b) we show clearly how the arrest of coarsening manifests itself as a suppression of S(k), at small k 
(large length scales). This suppression increases as We increases (i.e., σ decreases); and S(k) develops a broad and 
gentle maximum whose peak moves out to large values of k as We grows. These changes in S(k) are associated with 
We-dependent modifications in the probability distribution function (PDF) P(φ) of the order parameter φ, which 
is symmetrical about φ =​ 0 and has two peaks at φ =​ φ±, where φ+ =​ −​φ− >​ 0; we display P(φ)/Pm(φ) in Fig. 2(c) 
in the vicinity of the peak at φ+; as We increases, φ+ decreases; here Pm(φ) is the maximum value of P(φ). In par-
ticular, our DNS suggests that φ− ∼+ We1 2 1/2, for small We.

The modification in P(φ) can be understood qualitatively by making the approximation that the effect of the 
fluid on the equation for φ can be encapsulated into an eddy diffusivity De

42,45,46. The eddy-diffusivity-modified 
Cahn-Hilliard equation is ∂​tφ =​ (De −​ D)∇​2φ +​ D∇​2φ3 +​ MΛ​∇​4φ, which gives the maximum and minimum val-
ues of φ as φ = −± D D D( )/e . Furthermore, if we neglect the nonlinear term27,29, we find easily that the modi-
fied growth rate is Dk2[(1 −​ De/D) −​ MΛ​k2]; i.e., all wave numbers larger than = − Λk D D M(1 / )/( )d e  are 
stable to perturbations. In particular, droplets with linear size <​(2π/kd) decay in the presence of coupling with the 
velocity field; we expect, therefore, that, in the presence of fluid turbulence, the peak of P(φ) broadens and shifts 
as it does in our DNS. For a quantitative description of this broadening and the shift of the peak, we must, of 
course, carry out a full DNS of the Cahn-Hilliard-Navier-Stokes equation as we have done here.

Energy spectrum.  We have investigated, so far, the effect of fluid turbulence on the phase-field φ and its 
statistical properties such as those embodied in S(k) and P(φ). We show next how the turbulence of the fluid is 
modified by φ, which is an active scalar insofar as it affects the velocity field. In the statistically steady state of our 
driven, dissipative system, the energy injection must be balanced by both viscous dissipation and dissipation that 
arises because of the interface, i.e., we must have εinj =​ εν +​ εμ.

In Fig. 3(a), we show that εν decreases and εμ increases as we increase We, while keeping εinj constant, because 
Lc diminishes (Fig. 1) and, therefore, the interfacial length and εμ increase. This decrease of Lc is mirrored strik-
ingly in plots of the fluid-kinetic-energy spectrum E(k) (Fig. 3(b)), which demonstrate that the inverse cascade of 
energy is effectively blocked at a wavenumber kc, which we determine below, from the energy flux, and which we 
find is π L2 / c, where Lc follows from S(k) (see Fig. 2). The value of kc increases with We; and the inverse cascade 
is completely blocked for the largest We we use, for which 

k kc inj, the forcing scale.
To provide clear evidence that the blocking of the energy flux is closely related to the arrest scale, we show in 

Fig .   3(c)  plots  of  the  energ y f lux ∫Π = ′ ′
∞k T k dk( ) ( )E k

 for  di f ferent  va lues  of  We .  Here 
ω= ∑ − ⋅ ⋅ ×− ≤ ′≤ +

û uT k t tk P k k( ) ( , ) ( ) ( ) ( , )k k k t
1
2

1
2

 is the energy transfer and P(k) is the transverse pro-
jector with components Pij(k) ≡​ δij −​ kikj/k2. We define kc as the wave-number at which Π​E(k) comes within 4% of 
εinj. We find that the wave-numer corresponding to the arrest scale 2π/Lc (marked by vertical lines for each run) 
is comparable to kc.

In the presence of the standard viscous term ν∇​2u and the Ekman drag αu, it is not possible to see a large 
range of constant energy flux47,48. However, it is possible to attain a large constant energy flux range by carrying 
out DNSs using hyperviscosity and hypoviscosity47 (see the Methods Section for details). The plot in Fig. 4(left) 
shows the energy spectrum and the corresponding energy flux obtained [Fig. 4(right)] from our runs HR1 and 
HR2. Consistent with the earlier discussion, we find that the coarsening length Lc decreases on increasing We. 
Furthermore, the formation of arrest-scale domains leads to a blockage of the energy cascade; because we use 
hypoviscosity, we now see clear evidence of a constant energy flux over a decade for the single-phase Navier-Stokes 
run. For the binary-fluid case, the energy flux remains constant for a shorter range and then decreases to zero 
around a wave-number π L2 / c.

Passive advection.  It has been suggested22,45,46 that coarsening arrest can be studied by using a model in 
which the field φ is advected passively by the fluid velocity. Such a passive-advection model is clearly inadequate 
because it cannot lead to the phase-field-induced modifications in the statistical properties of the turbulent fluid 
(see Fig. 3). The passive-advection case is easily studied by turning off the coupling term φ∇​μ in Eq. (2). We 
then contrast the results for this case with the ones we have presented above. The parameters we use for the 

Figure 3.  (a) Plots of the statistically-steady-state values of εν, εμ, and their sum ε ε ε+ν µ  inj versus We. (b) 
Log-log (base 10) plots of the energy spectrum E(k) versus k, for different values of We, illustrating the 
truncation of the inverse energy cascade as We increases. The black line indicates the k−5/3 result for the inverse-
cascade regime in 2D fluid turbulence. (c) Log-log (base 10) plots of the energy flux Π​E(k) versus k for different 
values of We. The intersection of the line 0.06εinj (black line) with Π​E(k) gives kc, the wave-number at which the 
inverse energy cascade gets truncated; our estimate of the arrest scale 2π/Lc (vertical lines) is comparable to kc.



www.nature.com/scientificreports/

5Scientific Reports | 7:44589 | DOI: 10.1038/srep44589

passive-advection DNS are N =​ 1024, Λ​ =​ ξ2,ξ =​ 0.0176; and we carry out runs for D =​ 5 · 10−3, 1 · 10−2, 5 · 10−2 
and 5 · 10−1. The evolution of the pseudo-grayscale plots of φ with D, in the left panel of Fig. 5, is qualitatively 
similar to the evolution shown in Fig. 1. There is also a qualitative similarity in the dependence on D of the scaled 
PDFs P(φ)/Pm(φ); we can see this by comparing the passive-advection result, shown in the middle panel of Fig. 5 
for positive values of φ in the vicinity of the peak, with its counterpart in Fig. 2(c). However, there is a qualitative 
difference in the dependence of Lc on D: in the passive-advection case we find Lc ~ D0.27 [Fig. 5 (inset)], which is in 
stark contrast to the essentially D-independent behavior of Lc shown in the inset of Fig. 2(c).

Discussion
In conclusion, our extensive study of two-dimensional (2D) binary-fluid turbulence shows how the 
Cahn-Hilliard-Navier-Stokes coupling leads to an arrest of phase separation at a length scale Lc, which follows 
from S(k). We demonstrate that Lc ~ LH, the Hinze scale that we find by balancing inertial and interfacial-tension 
forces, and that Lc is independent, within error bars, of the diffusivity D. We also elucidate how the coupling 
between the Cahn-Hilliard and Navier-Stokes equations modifies the properties of fluid turbulence in 2D. In 
particular, we show that there is a blocking of the inverse energy cascade at a wavenumber kc, which we show is 
π L2 / c.
Earlier DNSs of turbulence-induced coarsening arrest in binary-fluid phase separation have concentrated on 

regimes in which there is a forward cascade of energy in 3D (see ref. 8) and a forward cascade of enstrophy in 2D 
(see ref. 19). Although studies that use a passive-advection model for φ obtain results that are qualitatively similar 
to those we obtain for S(k) and the spatiotemporal evolution of φ, they cannot capture the phase-field-induced 
modification of the statistical properties of fluid turbulence and the correct dependence of Lc on D. We find our 
results to be in qualitative agreement with the earlier studies on the advection of binary-fluid mixtures with syn-
thetic chaotic flows45,46; of course, such studies cannot address the effect of the phase field on the turbulence in 
the binary fluid.

Some groups have also studied the statistical properties of turbulent, symmetric, binary-fluid mixtures above 
the consolute point, where the two fluids mix even in the absence of turbulence40,49,50. In these studies, there is, of 
course, neither coarsening nor coarsening arrest.

We hope our study will lead to new experimental studies of turbulence in binary-fluid mixtures, especially in 
2D51–54, to test the specific predictions we make for Lc and the blocking of the inverse cascade of energy.

Figure 4.  Log-log (base 10) plots of the kinetic energy spectrum E(k) (left) and the corresponding energy 
flux ΠE(k) for our runs HR1:We = 1.7 · 10−2 and HR2:We = 4.3 · 10−2. We also plot the single-phase Navier-
Stokes energy spectrum and the energy flux for reference. On increasing We, small domains are formed and 
these lead to a truncation of energy flux at a wave-number around π L2 / c (marked by vertical lines).

Figure 5.  Passive-advection model: (Left panel) Pseudo-gray-scale plots of the order parameter φ for 
different values of the diffusivity D (cf. Fig. 1). (Right panel) Plots of P(φ)/Pm(φ), in the vicinity of the 
maximum at φ+ [cf. Fig. 2(c)];the inset shows that Lc ~ D0.27 (black line), which is in stark contrast to the Cahn-
Hilliard-Navier-Stokes result in the inset of Fig. 2(a).
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Methods
Cahn-Hilliard-Navier-Stokes equations: Direct Numerical Simulations.  We conduct direct numer-
ical simulations (DNSs) of Eqs (1) and (2) by using a Fourier pseudospectral method55; because of the cubic 
nonlinearity in the chemical potential μ, we use N/2-dealiasing. For time integration we use the exponential 
Adams-Bashforth method ETD256. To obtain a substantial inverse-cascade regime, we stir the fluid at an interme-
diate length scale by forcing in Fourier space in a spherical shell with wave-number π= k 2 /inj inj. Our choice of 
forcing ω ω= ∑ω =

ˆ ˆ ˆf t t tk k k( , ) ( , )/ ( , )k kinj
, where the caret indicates a spatial Fourier transform, ensures that 

there is a constant enstrophy-injection rate. The parameters for our DNSs are given in Table 1.
Given u(x, t) and φ(x, t) from our DNS, we calculate the energy and order-parameter (or phase-field) spectra, 

which are, respectively, ′≡ ∑ − ≤ ′≤ + ûE k tk( ) ( , )k k k t
2

1
2

1
2

 and ′φ≡ ∑ − ≤ ′≤ +
ˆ kS k t( ) ( , )k k k

t

2
1
2

1
2

, where 〈​〉​t 

denotes the average over time in the statistically steady state of our system. The total kinetic energy is 
= xE t tu( ) ( , ) x

1
2

2  and the total enstrophy ε ω= xt t( ) ( , ) x
1
2

2 , where 〈​〉​x denotes the average over space,  
〈​fωω〉​ is the enstrophy-injection rate, which is related to the energy-injection rate via ε ω= ωf k/inj inj

2 , E =​ 0.5 
∑ ​kE(k) is the f luid kinetic energy, εν = ​ ν∑ ​kk2E(k) is the f luid-energy dissipation rate, and 
ε µ= ∑µ ˆM k tk( , )k t

2 2  is the energy-dissipation rate because of the phase field φ.

Hyperviscous Cahn-Hilliard-Navier-Stokes equations.  The Cahn-Hilliard-Navier-Stokes equations 
with modified viscosity terms are47:

ω ν ω ν ω φ µ∂ + ⋅ ∇ = − ∇ − ∇ − ∇ × ∇ + ω
−u f( ) ( ) , (5)t i u

4 16

φ µ∂ + ⋅ ∇ = ∇ ∇ ⋅ = .u uM( ) , and 0 (6)t
2

Here we use a hypo-viscosity term −​νi∇​−4ω to dissipate energy at large scales and a hyperviscosity term −​
νu∇​16ω to dissipate enstrophy at small scales. As discussed in the main text, we use a constant-energy-injection 
forcing with kinj =​ 130. The other parameters for our simulations are given in Table 2.
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