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Abstract: The novel coronavirus SARS-CoV-2 is responsible for the ongoing COVID-19 pandemic
and has caused a major health and economic burden worldwide. Understanding how SARS-CoV-2
viral proteins behave in host cells can reveal underlying mechanisms of pathogenesis and assist in
development of antiviral therapies. Here, the cellular impact of expressing SARS-CoV-2 viral proteins
was studied by global proteomic analysis, and proximity biotinylation (BioID) was used to map the
SARS-CoV-2 virus–host interactome in human lung cancer-derived cells. Functional enrichment
analyses revealed previously reported and unreported cellular pathways that are associated with
SARS-CoV-2 proteins. We have established a website to host the proteomic data to allow for public
access and continued analysis of host–viral protein associations and whole-cell proteomes of cells
expressing the viral–BioID fusion proteins. Furthermore, we identified 66 high-confidence interactions
by comparing this study with previous reports, providing a strong foundation for future follow-up
studies. Finally, we cross-referenced candidate interactors with the CLUE drug library to identify
potential therapeutics for drug-repurposing efforts. Collectively, these studies provide a valuable
resource to uncover novel SARS-CoV-2 biology and inform development of antivirals.

Keywords: SARS-CoV-2; proximity labeling; BioID; TurboID; COVID-19; interactome

1. Introduction

The 2019 novel coronavirus, SARS-CoV-2, is the causative agent of Coronavirus Dis-
ease 2019 (COVID-19) and responsible for a global pandemic. COVID-19 most often
presents as a respiratory illness, yet can cause gastrointestinal and/or neurological symp-
toms and acute cardiac injury as well [1–3]. Presently, hundreds of millions of people
have been infected with SARS-CoV-2 worldwide, and several million people have died
as a result. Long-term effects of COVID-19 infection are reported by 10–30% of patients,
and as millions of people recover from COVID-19, questions remain about vertical trans-
mission of COVID-19 infection during pregnancy and post-COVID syndrome symptoms,
including pulmonary fibrosis, neurological defects, and vascular dysfunction [4–10]. While
wide-spread vaccination is likely to slow the spread of COVID-19, developing treatment
strategies for new infections and long-term post-COVID symptoms will require a thorough
understanding of the SARS-CoV-2 virus and how it affects patient cell biology.

A crucial component of the effort to study COVID-19 is the application of technologies
that reveal how viral proteins behave in host cells. Current efforts to map the SARS-CoV-2
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virus-host interactome have offered great insight into possible pathways directly affected
by various viral proteins, yet differences in experimental approaches and data analysis
methods inevitably lead to discrepancies when comparing reported interactomes [11–22].
As with any large-scale approach to identifying gene or protein networks, false positives
due to background contamination can hinder accurate data interpretation; therefore, the use
of several approaches with multiple replicates by multiple independent studies will be
required to ultimately map the full SARS-CoV-2 interactome.

Proximity-dependent labeling of host proteins via BioID or similar promiscuous biotin
ligases fused to viral proteins has been used to study host–viral protein associations for a
number of viruses, including herpes simplex virus type 1, Epstein–Barr virus, Zika virus,
Ebola virus, and coronaviruses [23–27]. Here, we generated A549 human lung cancer cells
stably expressing BioID-tagged SARS-CoV-2 viral proteins to identify whole-cell proteomic
changes due to viral protein expression and to identify specific protein–protein interactions
(PPIs) between individual SARS-CoV-2 viral proteins and host-cell proteins. We compared
our BioID datasets with similar available proximity-based proteome datasets to develop
a list of high-confidence candidate protein interactors. Finally, we cross-referenced our
BioID dataset with the CLUE drug library of clinical and FDA-approved drugs to identify
potentially beneficial drugs for COVID-related treatments. Collectively, these datasets
comprise an invaluable resource for COVID biologists, as we present several focused
avenues of future exploration and provide a Shiny application for further independent
analysis by investigators. All of our data are available at (https://alexproteomics.shinyapps.
io/covid19proteomics/, accessed on 4 March 2022) for further in-depth analysis by the
scientific community, and will serve to further our collective understanding of infection
mechanisms, contribute to current drug repurposing efforts, and guide higher-confidence
follow-up studies investigating specific PPIs and pathway alterations.

2. Materials and Methods
2.1. Plasmids

SARS-CoV-2 viral genes from the Wuhan-Hu-1 (MN975262) and 2019-nCoV/USA-
WA1/2020 (MN985325) isolates were amplified via PCR from Addgene (Watertown,
MA, USA) constructs with a 1x (GGGS) linker incorporated into each primer set (see
Table S1). Amplified PCR products were fused to biotin ligases via In-Fusion Recombi-
nation (Takara Bio Inc., Kusatsu, Shiga, Japan) into myc-BioID2 pBabe (Addgene #80900;
XhoI/PmeI), BioID2-HA pBabe (Addgene #120308; BamHI/EcoRI), or TurboID-3xHA
pBabe (BamHI/EcoRI) [28]. mycBioID2 (Addgene #80900) was used as a control for BioID2
cell lines. Human albumin signal sequence-3xHA-TurboID-KDEL pBabe control con-
struct was made by two-step In-Fusion Recombination. Human albumin signal sequence
and 3xHA-TurboID [28] were PCR-amplified with KDEL built into the reverse primer.
Fragments were inserted into myc-BioID2 pBabe, replacing mycBioID2 (Addgene #80900;
EcoRI/PmeI). Placing of N- or C-terminus tags was based on a previous report with two
exceptions [11]. NSP3 (not studied in [11]) was tagged on the N-terminus due to multi-
ple transmembrane regions and protease activity. NSP12 was tagged on the N-terminus,
because when expressed with a C-terminus tag the overall expression and biotinylation
activity was insufficient. All fusion-protein plasmids will be made available on Addgene.

2.2. Cell Culture

A549 cells were obtained from the American Type Culture Collection (ATCC, Manas-
sas, VA, USA; CCL-185™). Stable cell lines for all constructs were generated using retroviral
transduction. HEK293 Phoenix cells (National Gene Vector Biorepository, Indianapolis,
IN, USA) were transfected with each construct using Lipofectamine 3000 (Thermo Fisher
Scientific, Waltham, MA, USA) per manufacturer′s recommendation. The transfected cells
were incubated at 37 ◦C for 6 h. After 6 h incubation, the transfected cells were replenished
with fresh medium and further incubated at 32 ◦C for 72 h. The culture media were filtered
through a 0.45-µm filter and added to A549 cells along with Polybrene (4 µg/mL; Santa
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Cruz Biotechnology, Dallas, TX, USA). At 72 h after transduction, puromycin (0.5 µg/mL;
Thermo Fisher Scientific) was added to the target cells for 72 h and viable cells were pooled.
The expression of fusion proteins and functional biotinylation following addition of 50 µM
biotin was further verified using IF and WB. The stable cell lines were maintained in 5.0%
CO2 at 37 ◦C in DMEM (HyClone, Logan, UT, USA) supplemented with 10% fetal bovine
serum (FBS). All cells were tested monthly for mycoplasma contamination.

2.3. Immunofluorescence

Cells grown on glass coverslips were fixed in 3% (wt/vol) paraformaldehyde/phosphate-
buffered saline (PBS) for 10 min and permeabilized by 0.4% (wt/vol) Triton X-100/PBS for
15 min. For labeling fusion proteins, chicken anti-BioID2 (1:5000; BID2-CP-100; BioFront
Technologies, Tallahassee, FL, USA) or mouse anti-hemagglutinin primary antibody was used
(HA; 1:1000; 12CA5; Covance, Princeton, NJ, USA). The primary antibody was detected using
Alexa Fluor 568–conjugated goat anti-chicken (1:1000; ab175477, Lot#GR144853-2, Abcam,
Cambridge, United Kingdom) or Alexa Fluor 568–conjugated goat anti-mouse (1:1000; A11004;
Lot#1698376, Thermo Fisher Scientific). Alexa Fluor 488–conjugated streptavidin (1:1000;
S32354; Lot#2201616, Thermo Fisher Scientific) was used to detect biotinylated proteins.
DNA was detected with Hoechst dye 33342. Coverslips were mounted using 10% (wt/vol)
Mowiol 4-88 (Polysciences, Warrington, PA, USA). Epifluorescence images were captured
using a Nikon Eclipse NiE (40 ×/0.75 Plan Apo Nikon objective, Minato City, Tokyo,
Japan) microscope.

2.4. Western Blot Analysis

To analyze total cell lysates by immunoblot, 1.2 × 106 cells were lysed in SDS-PAGE
sample buffer, boiled for 5 min, and sonicated to shear DNA. Proteins were separated
on 4–20% gradient gels (Mini-PROTEAN TGX; Bio-Rad, Hercules, CA, USA) and trans-
ferred to nitrocellulose membrane (Bio-Rad). After blocking with 10% (vol/vol) adult
bovine serum and 0.2% Triton X-100 in PBS for 30 min, the membrane was incubated with
appropriate primary antibodies: chicken anti-BioID2 (1:5000; BID2-CP-100; BioFront Tech-
nologies, Tallahassee, FL, USA) or rabbit polyclonal anti-hemagglutinin (1:2000; Ab9110;
Lot#GR218331-6, Abcam). The primary antibodies were detected using horseradish per-
oxidase (HRP)–conjugated anti-chicken (1:40,000; A9046; Lot#015M4856V, Sigma-Aldrich,
St. Louis, MO, USA) or anti-rabbit (1:40,000; G21234; Lot#2156243, Thermo Fisher Scien-
tific). The signals from antibodies were detected using enhanced chemiluminescence via a
Bio-Rad ChemiDoc MP System (Bio-Rad, Hercules, CA, USA). Following detection of each
antibody, the membrane was quenched with 30% H2O2 for 30 min. To detect biotinylated
proteins, the membrane was incubated with HRP-conjugated streptavidin (1:40,000; ab7403;
Lot#GR305788-2, Abcam) in 0.2% Triton X-100 in PBS for 45 min.

2.5. Sample Preparation

BioID pulldown for each cell line was performed in triplicate, with distinct samples
for each replicate. For each large-scale BioID2 pulldown sample, two 10 cm dishes at 80%
confluency were incubated with 50 µm biotin for 18 h, washed twice with PBS, and cell pel-
lets collected for automated BioID pulldown at the Proteomics Facility at Sanford Burnham
Prebys Medical Institute (La Jolla, CA, USA). TurboID samples were prepared similarly,
except they were treated with 50 µm biotin for only 4 h. Briefly, cells were lysed in 8 M
urea, 50 mM ammonium bicarbonate (ABC) and benzonase and the lysate was centrifuged
at 14,000× g for 15 min to remove cellular debris. Supernatant protein concentration was
determined using a bicinchoninic acid (BCA) protein assay (Thermo Scientific). Disulfide
bridges were reduced with 5 mM tris(2-carboxyethyl)phosphine (TCEP) at 30 ◦C for 60 min,
and cysteines were subsequently alkylated with 15 mM iodoacetamide (IAA) in the dark
at room temperature for 30 min. Each sample was separated into two aliquots, one for
whole cell proteome profiling and the other for proximity-dependent labeling analysis.
Whole cell protein lysate was digested overnight with mass spec-grade Trypsin/Lys-C mix
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(1:25 enzyme/substrate ratio). Following digestion, samples were acidified with formic
acid (FA) and subsequently desalted using Agilent (Santa Clara, CA, USA) AssayMap C18
cartridges mounted on an Agilent AssayMap BRAVO liquid handling system. Cartridges
were sequentially conditioned with 100% acetonitrile (ACN) and 0.1% FA, samples were
then loaded, washed with 0.1% FA, and peptides eluted with 60% ACN, 0.1% FA. Finally,
the organic solvent was removed in a SpeedVac (Thermo Fisher Scientific) concentrator
prior to LC-MS/MS analysis.

2.6. Affinity Purification of Biotinylated Proteins

Affinity purification and digestion of biotinylated proteins were carried out in an
automated fashion in a Bravo AssayMap platform (Agilent) using AssayMap streptavidin
cartridges (Agilent). Briefly, cartridges were first primed with 50 mM ammonium bicar-
bonate and then proteins were slowly loaded onto the streptavidin cartridge. Background
contamination was removed with 8 M urea, 50 mM ammonium bicarbonate. Finally, car-
tridges were washed with Rapid digestion buffer (Promega, Madison, WI, USA, Rapid
digestion buffer kit) and proteins were subjected to on-cartridge digestion with mass spec
grade Trypsin/Lys-C Rapid digestion enzyme (Promega) at 70 ◦C for 1 h. Digested peptides
were then desalted in the Bravo platform using AssayMap C18 cartridges and dried down
in a SpeedVac concentrator.

2.7. Mass Spectrometry

Prior to LC-MS/MS analysis, dried peptides were reconstituted with 2% ACN, 0.1% FA
and concentration was determined using a NanoDropTM spectrophometer (Thermo Fisher
Scientific). Samples were then analyzed by LC-MS/MS using a Proxeon EASY-nanoLC
system (Thermo Fisher Scientific) coupled to an Orbitrap Fusion Lumos mass spectrometer
(Thermo Fisher Scientific). Peptides were separated using an analytical C18 Aurora column
(75 µm × 250 mm, 1.6 µm particles; IonOpticks, Fitzroy, Victoria, Australia) at a flow rate
of 300 nL/min (60 ◦C) using a 75-min gradient: 1% to 5% B in 1 min, 6% to 23% B in 44 min,
23% to 34% B in 28 min, and 34% to 48% B in 2 min (A = FA 0.1%; B = 80% ACN: 0.1%
FA). The mass spectrometer was operated in positive data-dependent acquisition mode.
MS1 spectra were measured in the Orbitrap in a mass-to-charge (m/z) of 375–1500 with a
resolution of 60,000 at m/z 200. Automatic gain control target was set to 4 × 105 with a
maximum injection time of 50 ms. The instrument was set to run in top speed mode with
2 s cycles for the survey and the MS/MS scans. After a survey scan, the most abundant
precursors (with charge state between +2 and +7) were isolated in the quadrupole with an
isolation window of 0.7 m/z and fragmented with HCD at 30% normalized collision energy.
Fragmented precursors were detected in the ion trap as rapid scan mode with automatic
gain control target set to 1 × 104 and a maximum injection time set at 35 ms. The dynamic
exclusion was set to 20 s with a 10 ppm mass tolerance around the precursor. The mass
spectrometry raw data and search results files generated in this study are available in the
ProteomeXchange (proteomexchange.org, accessed on 4 March 2022) and were uploaded
via MASSIVE with the dataset identifier PXD029207 and MSV000088245, respectively.

2.8. Data Analysis

All raw files were processed with MaxQuant (version 1.5.5.1) using the integrated
Andromeda Search engine against a target/decoy version of the curated human Uniprot
proteome without isoforms (downloaded in 2 January 2020) and the GPM cRAP sequences
(commonly known protein contaminants). First search peptide tolerance was set to 20 ppm,
main search peptide tolerance was set to 4.5 ppm, and fragment mass tolerance was set
to 20 ppm. Trypsin was set as enzyme in specific mode and up to two missed cleavages
were allowed. Carbamidomethylation of cysteine was specified as fixed modification
and protein N-terminal acetylation and oxidation of methionine were considered variable
modifications. The target decoy-based false discovery rate (FDR) filter for spectrum and
protein identification was set to 1%.

proteomexchange.org
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Statistical analysis of interactome data was carried out using in-house R script
(version 3.5.1, 64-bit), including R Bioconductor (Boston, MA, USA) packages such as
limma and MSstats. First, peptide intensities were log2-transformed and loess-normalized
using the normalizeCyclicLoess function from the limma package (version 3.46.0) with all
default parameters across replicates of each bait or control batch to account for systematic
errors. Note that normalization was not carried out across all samples due to significant
differences in pulldowns of different baits and/or their controls. Testing for differential
abundance was performed using MSstats bioconductor package (version 3.22.1) using all
default parameters of the groupComparison and dataProcess functions, except the normal-
ization which was set to FALSE, as data were previously normalized as described above.
Importantly, the Log2FC and p-value of proteins missing in all replicates of the negative
controls and detected in at least one of the bait samples (i.e., NSP or ORF) was imputed.
The imputation was performed post-statistical test, again only for the proteins that failed to
be tested by MSstats because they were completely missing one condition. The imputed
Log2FC was calculated as the average of the protein intensity (i.e., sum of peptide intensities
of a given protein within a given sample) across the triplicate of the same bait, divided by
3.3. On the other hand, the imputed p-value was computed by dividing 0.05 by the number
of replicates of a given bait in which the protein was confidently identified. Therefore,
the imputed log2FC provides a notion of the average protein intensity in a pulldown, while
the imputed p-value reports the confidence of identification in the sense of reproducibility
of detection. These values avoid large numbers and allow for cleaner visualization via
volcano plots and other charts/graphs. For example, a potential prey candidate detected
in all three replicates of a given bait with log2 intensities of 18.7, 19.5, and 20.3 will have
an imputed Log2FC of 5.9 and a p-value of 0.0167. In contrast, another potential prey
candidate detected in two replicates (15.5 and 16.5) will have an imputed Log2FC of 4.8 and
a p-value of 0.025. In addition, we generated a CrapomeScore for each identified protein in
the experiment. The CrapomeScore is the fraction of all streptavidin-based experiments in
the Crapome database (reprint-apms.org, accessed on 2 January 2020) that the prey protein
is identified. The CrapomeScore ranges from 0 to 1, and a protein with a score of 1 means
that it was identified in all streptavidin-based experiments in the Crapome database.

2.9. Global Proteome Data Analysis

All global proteome datasets were compared to BioID2-only or TurboID-KDEL (used
only to compare ORF8-TurboID) control cell lines. Filter cut-offs were set at log2FC ≥ 2
(upregulated) or log2FC ≤ −2 (downregulated), p value ≤ 0.01, at least two quantitative
peptide features, and detected in less than 75% of the proximity-labeling CRAPome con-
taminant database experiments. These parameters were chosen in an attempt to minimize
false positives while maximizing true positives.

2.10. Network Analysis of SARS-CoV-2 Interactors

A hierarchical model of cellular processes and structures predicted to interact with
SARS-CoV-2 was derived via multi-scale community detection performed on a large pro-
tein interaction network. We selected a network derived from the STRING database
as our starting network: the subset of the STRING interactions with a combined confi-
dence score greater than 0.7 (available in the Network Data Exchange (NDEx) at https:
//www.ndexbio.org/viewer/networks/275bd84e-3d18-11e8-a935-0ac135e8bacf, accessed
on 25 February 2022) [29,30]. Then, human proteins interacting with SARS-CoV-2 proteins
were filtered by log2FC ≥ 2.32, p value ≤ 0.01, and n ≥ 2 in an attempt to minimize false
positives while maximizing true positives. The specific high-confidence interactions were
filtered based on the CRAPome contaminant database with a score≤0.5 [31]. A subnetwork
“proximal” to those proteins then was identified by network propagation using the Cy-
toscape Diffusion tool [32].

Multi-scale community detection analysis was performed on this subnetwork using
the community detection algorithm HiDeF via the Community Detection APplication and

reprint-apms.org
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Service (CDAPS; app available at http://apps.cytoscape.org/apps/cycommunitydetection,
accessed on 21 November 2021) [33,34]. The resulting hierarchical model describes “commu-
nities” in the network at multiple scales, where communities are subnetworks of proteins
interacting more with each other than with other proteins in the network. The analysis
infers a structure to the network, one in which communities are hypotheses for processes
or structures that interact with SARS-CoV-2 proteins. The communities are organized into
a hierarchy in which larger communities subsume smaller communities [35,36]. Finally,
the hierarchy network (https://doi.org/10.18119/N9531R, accessed on 4 March 2022) was
styled, communities were subjected to enrichment analysis in GO biological processes using
the g:Profiler package in CDAPS, p values were calculated based on the hypergeometric
distribution, and a layout was applied.

2.11. Virus-Centric Analysis of SARS-CoV-2 Interactors

To provide a visual model that displays high-confidence cellular factors that interact
with individual SARS-CoV-2 proteins, we utilized the same network derived from the
STRING database (confidence score > 0.7), with protein groups that had degree of connec-
tion = 1, log2FC ≥ 2.32, and p value ≤ 0.01. In addition, we filtered for promiscuity using
the CRAPome repository (CRAPome ≤ 0.5) and included only proteins that were found
in two or more biological replicates [31]. The resulting high-confidence interactors were
visualized using Cytoscape (v3.8.0) and tested for enrichment in GO biological process
terms using the hypergeometric distribution [37].

2.12. Integrated Analysis of Global Proteome and PPI Data for NSP7/8/12

Interaction candidates were filtered as described above, and global abundance changes
filtered by log2FC ≥ 2 (upregulated) or log2FC ≤ −2 (downregulated), p value ≤ 0.01,
at least two quantitative peptide features, detected in less than 75% of the proximity-
labeling CRAPome contaminant database experiments, and significant to only one vi-
ral bait (NSP7, NSP8, or NSP12). A hierarchical model of cellular processes and struc-
tures was derived via multi-scale community detection performed on the protein in-
teraction network derived from the STRING database. Multi-scale community detec-
tion analysis was performed on this network using the community detection algorithm
HiDeF via the Community Detection APplication and Service (CDAPS; app available
at http://apps.cytoscape.org/apps/cycommunitydetection, accessed on 21 November
2021) [33,34]. The resulting hierarchical model describes “communities” in the network
at multiple scales, where communities are subnetworks of proteins interacting more with
each other than with other proteins in the network. The analysis infers a structure to the
network, one in which communities are hypotheses for processes or structures that interact
with viral bait proteins. The communities are organized into a hierarchy in which larger
communities subsume smaller communities [35,36]. Finally, the hierarchy network was
styled, communities were subjected to enrichment analysis in GO biological processes using
the g:Profiler package in CDAPS, and a layout was applied. GO biological processes enrich-
ment on interaction candidates was performed using the Functional Enrichment tool on the
COVID19 Proteomics Resource (https://alexproteomics.shinyapps.io/covid19proteomics,
accessed on 21 November 2021) utilizing the filter parameters described above.

2.13. Integrated Analysis of SARS-CoV-2 Interactome Datasets

Datasets were obtained from three separate studies [14,15,22]. Interactions deemed
significant by respective authors were compiled in one excel spreadsheet without filtering
out preys identified across multiple baits. “High confidence interactions” were those
that were identified in at least three studies and four datasets with degree of connection
being ≤3 for at least four datasets.

http://apps.cytoscape.org/apps/cycommunitydetection
https://doi.org/10.18119/N9531R
http://apps.cytoscape.org/apps/cycommunitydetection
https://alexproteomics.shinyapps.io/covid19proteomics
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2.14. Web-Based Shiny App

An accompanying web-based Shiny application (https://alexproteomics.shinyapps.
io/covid19proteomics, accessed on 4 March 2022) was created to allow visualization
and further functional analysis of the BioID and whole cell proteome statistical analy-
sis data. The application uses several applications, including clusterProfiler (v3.18.1),
for functional analysis with the enricher function, using the Broad Institute molecular sig-
nature databases (v7.4) including canonical pathways (Reactome, KEGG, WikiPathways
http://www.gsea-msigdb.org/gsea/msigdb/, accessed on 4 March 2022), immune collec-
tion, chemical and genetic perturbation signatures, regulatory transcription factor targets
(TFT), oncogenic signatures, and Gene Ontology (Human Phenotype, Cellular Component,
Biological Process and Molecular Function). Using the CLUE’s Drug Repurposing Hub
database from the Broad Institute (version 3/24/2020), we annotated all the compounds
known, according to our data, to target host proteins that potentially bind to viral proteins.

3. Results
3.1. Development of Stable BioID Cell Lines Expressing Individual SARS-CoV-2 Viral Proteins

The SARS-CoV-2 virus generates two long polypeptides that are cleaved into six-
teen non-structural proteins (NSPs) as well as several downstream ORFs encoding four
structural proteins (Spike, Envelope, Membrane, and Nucleocapsid, or S, E, M, and N)
and nine accessory proteins. In order to identify global cellular changes associated with
viral protein expression as well as to identify specific viral-host PPIs, the promiscuous
biotin ligase BioID2 was fused to either the N- or C- terminus of individual SARS-CoV-2
proteins and stably expressed by retroviral transduction in human lung cancer A549 cells
(Table S1, Figure 1A). For each construct, we included a GGGS linker to alleviate steric
hindrance between the BioID ligase and viral protein. Each cell line was validated by
immunofluorescence (IF) and western blot (WB) for fusion-protein expression and biotiny-
lation, revealing a wide-range of permissible expression levels and overall biotinylation
(Figure 1B, Figures S1 and S2). Three proteins (Spike, Nsp1, and ORF3d) were excluded
from this study due to an inability to generate cells stably expressing BioID2-fusion pro-
teins, leaving 26 viral-BioID2 fusion proteins. ORF8, a predicted lumenal protein, was
tagged with the TurboID ligase that was previously shown to be substantially more active
in the ER lumen compared to BioID [28]. BioID2-alone was used as a control for these
viral protein fusions, with the exception of ORF8, for which we utilized a signal sequence-
TurboID-KDEL (TurboID-KDEL) to target and retained the ligase in the ER-lumen. Each
cell line was processed in triplicate and subjected to whole-cell lysis for global proteome
analysis and affinity purification of biotinylated proteins for identification of PPIs via
mass spectrometry.

3.2. SARS-CoV-2 Proteomics Website

All datasets were collected to build a COVID-19 Proteomics Resource for the sci-
entific community. We created an interactive ShinyApp website to disseminate and ex-
plore the functional landscapes of SARS-CoV-2 viral protein interactomes and proteomes.
At https://alexproteomics.shinyapps.io/covid19proteomics, accessed on 4 March 2022, we
have made all global abundance and proximity-labeling MS data publicly available along
with several tools to enable statistical and bioinformatics analysis. The website allows
users to interactively explore the data, easily set confidence thresholds, and run functional
enrichment analysis using, for example, a hypergeometric test against the Broad Institute
molecular signature databases (v7.4) including canonical pathways (Reactome, KEGG,
WikiPathways), immune collection, chemical and genetic perturbation signatures, regula-
tory transcription factor targets (TFT), oncogenic signatures, and Gene Ontology (Human
Phenotype, Cellular Component, Biological Process and Molecular Function). In addition,
users can compare functional enrichment of defined groups of viral proteins using the
compareCluster function of the clusterProfiler R Bioconductor package. Our website allows
for the comparison of our BioID dataset with three other interactome datasets, and uses

https://alexproteomics.shinyapps.io/covid19proteomics
https://alexproteomics.shinyapps.io/covid19proteomics
http://www.gsea-msigdb.org/gsea/msigdb/
https://alexproteomics.shinyapps.io/covid19proteomics
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the CLUE drug library to annotate potential therapeutic targets specifically identified in
our BioID data. Finally, all data are available to download in spreadsheet form if the
user wishes to further supplement their analysis with other available tools (e.g., STRING,
Metascape). Examples of website functionality are shown in Figure 2.
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Figure 2. Examples of COVID-19 Proteomics website functionality. (A) Volcano plot analysis of
changes in global protein abundance. (B) Half volcano plots showing enriched PPI candidates
following BioID method. (C) Functional enrichment analysis of PPI candidates. (D) Protein–drug
tree for viral proteins, PPI candidates, and known drug interactors.

3.3. Whole-Proteome Analysis of Cells Overexpressing Individual BioID-Viral Bait Fusion Proteins

Unlike previous SARS-CoV-2 proximity-labeling studies, we both identified PPIs
for each viral protein and performed global proteome analysis to identify changes asso-
ciated with expression of individual SARS-CoV-2 viral proteins (Table S2). To exclude
false positives due to ligase expression, we compared global proteome changes in cells
expressing individual viral fusion-proteins to their respective control cell lines (those ex-
pressing ligase only) and filtered proteins by log2FC ≥ 2 (upregulated) or log2FC ≤ −2
(downregulated), p-value ≤ 0.01, at least two quantitative peptide features, and detected in
less than 75% of the proximity-labeling CRAPome contaminant database experiments. Not
surprisingly, we saw a marked increase in proteins involved in cytokine signaling in the
immune system (HSA-1280215) in response to viral protein expression, including CD70,
IRF9, and TNFSF9. The most significantly upregulated protein we identified was ITGB3
(logFC = +3.32 to +4.78), which has recently been shown to be upregulated in COVID-19
patient lung samples and has been hypothesized to be an alternative receptor for the SARS-
CoV-2 virus [38,39]. We found this ITGB3 upregulation in cells expressing ORF9c, ORF3a,
ORF7b, E-protein, and NSP2. Interestingly, the most significantly downregulated proteins
(logFC = −2.60 to −9.94) were MUC5AC and MUC5B, with a dramatic reduction in cells
expressing viral NSP12, NSP15, ORF7b, NSP3, NSP2, E, ORF9c, and ORF3a. Levels of these
proteins were significantly reduced in cells expressing NSP5, NSP6, NSP14, and N-protein
as well, although to a lesser extent. MUC5AC/B are proteins involved in mucus secretion
in the respiratory tract, and these data suggest that several of the SARS-CoV-2 proteins
are capable of globally reducing cellular MUC5AC/B proteins, even when expressed indi-
vidually. Proteins involved in DNA replication processes were significantly suppressed,
especially by NSP2 expression, including BRCA1 (NSP2, logFC = −2.58), PRIM2 (NSP2,
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logFC = −2.56), and CDCA2 (NSP2, logFC = −2.40), suggesting that NSP2 may play a key
role in directly and/or indirectly disrupting cell cycle progression and apoptosis pathways.

The Membrane (M-), Nucleocapsid (N-), and Envelope (E-) proteins are three of the
four structural proteins of SARS-CoV-2, and are known to interact with each other [40].
Both M- and E-protein are membrane proteins important for viral entry, and N-protein
is the primary RNA-binding protein involved in properly packaging viral RNA into new
vesicles [41]. In order to take a closer look at how SARS-CoV-2 structural proteins influence
host-cell protein expression, global changes were visualized via volcano plot (Figure 3A)
and the 24 upregulated and 57 downregulated proteins from Table S2 were analyzed via
Metascape express analysis (Figure 3B,C). The top two significantly enriched terms iden-
tified for upregulated proteins were regulation of actin cytoskeleton (hsa04810; p > 10−4)
and RHO GTPase effectors (R-HAS-195258; p > 10−3) (Figure 3B), suggesting mechanisms
by which SARS-CoV-2 remodels cytoskeletal networks for viral entry and budding. Addi-
tionally, three subsets of protein–protein interaction networks were identified, including
several proteins involved in differentiation [42–46]. We identified significantly enriched
terms in the group of downregulated proteins, including cellular hormone metabolic pro-
cess (GO:0034754; p > 10−5) and maintenance of gastrointestinal epithelium (Figure 3C).
Further investigation of these proteins could elucidate how viral infection hijacks cellular
metabolism and/or causes symptoms of gastrointestinal distress. Taken together, these
whole-cell proteome datasets will act as an important foundation to direct potential future
investigational studies.

3.4. Network Analysis of SARS-CoV-2 Host Interactors Reveals Novel Biology

In addition to whole-cell proteomic analysis, each stable cell line was subjected to
BioID proximity-labeling to identify specific viral-host PPIs. Following statistical test, we
identified 3011 significant viral-host PPIs, with a log2FC ≥ 2.3, p value ≤ 0.01, at least
two quantitative peptide features, and detected in less than 75% of the proximity-labeling
CRAPome contaminant database experiments. This list of significant PPIs is an available
resource on our COVID-19 Proteomics Resource website, allowing users to interactively
explore networks and functions of the detected PPIs. To understand the functional and bio-
chemical relationships between the identified SARS-CoV-2 interactors, we conducted hier-
archy and pathway enrichment analyses (see Methods) on a subset of 876 proteins uniquely
associated with one of the 26 SARS-CoV-2 proteins (Table S3) with CrapomeScore ≤0.5 (i.e.,
detected in 50% or less of the CRAPome proximity-labeling experiments; see Methods).
These analyses revealed that most identified SARS-CoV-2 interactors were associated with
seven clusters that included host translation machinery, endocytosis and vesicle transport,
metabolism, glycosylation, cell junctions and ion transport, maintenance of homeostasis,
and mitochondrial function (Figure 4A). Subclusters within host translation included pro-
cessing of mRNAs and non-sense mediated decay (NMD) (p = 1.13−36), which is involved
in degradation of aberrant self and non-self mRNAs, including those of coronaviruses [47].
Consistent with previous systems-level studies of SARS-CoV-2, a significant number of the
interactors were associated with endocytosis and vesicle trafficking pathways, including
members of the SNARE complex, which are important for membrane fusion of vesicles and
exocytosis [48], as well as GTPases that regulate vesicle docking and likely support SARS-
CoV-2 trafficking and egress. Notably, we found a highly enriched cluster of SARS-CoV-2
interactors involved in cholesterol biosynthesis (p = 1.13−24) (Figure 4B), providing further
evidence of the importance of this pathway for SARS-CoV-2 replication and highlight-
ing potential targets for therapeutic efforts [49]. SARS-CoV-2 interactors were associated
with mitochondrial function, including proteins of the TIM/TOM complex that mediate
mitochondrial import (p = 1.44−11) and proteins involved in the electron transport chain
(p = 2.93−14) and oxidative phosphorylation (p = 3.32−7), which could reflect the energetic
requirements of SARS-CoV-2 for replication [50]. Notably, our analysis revealed several
pathways involved in cell junctions and ion transport. These included members of the
SWELL complex (Figure 4C), which are involved in transport of cGAMP generated upon
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activation of the immune sensor cGAS by DNA viruses or mtDNA release [51], as well as
proteins involved in cell adherens junctions (p = 2.01−5), previously shown to be targeted
by viruses to alter the environment of bystander cells and suggested as therapeutic targets
to prevent viral spread [52]. In addition, amongst novel SARS-CoV-2 interactors were
several members of the ABC-transporter family (p = 7.58−12) (Figure 4D), involved in
translocation of substrates across membranes and previously linked to development of mul-
tidrug resistance (MDR) and oxidative stress response to viral and bacterial infection [53].
Proteins interacting with SARS-CoV-2 were associated with the peroxisome (p = 1.88−6).
SARS-CoV-2 infection has been shown to recruit peroxisomes to viral replication organelles,
and the association of SARS-CoV-2 with members of the peroxisome could reflect a re-
quirement to reduce oxidative stress resulting from the extensive remodeling of cellular
endomembranes or as a lipid source for viral replication [54,55].
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Figure 3. Analysis of proteins influenced by expression of viral structural E, M, and N proteins.
(A) Volcano plot visualization of global changes in host-protein expression in cells expressing viral
proteins Envelope (E), Membrane (M), or Nucleocapsid (N). Protein identifications are available on
the COVID-19 Proteomics Resource website. (B) Metascape analysis of significantly upregulated
proteins including enriched terms, cluster visualization, and interactions. (C) Metascape analysis of
significantly downregulated proteins including enriched terms, cluster visualization, and interactions.
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Figure 4. Network analysis of SARS-CoV-2 interactors. (A) The network containing the 876 identified
SARS-CoV-2 interactors was subjected to supervised community detection, and the resulting hierarchy
is shown. Each node represents a cluster of interconnected proteins and each edge (marked by an
arrow) represents containment of one community (target) by another (source). Indicated are enriched
biological processes as determined by gProfiler. (B–E) Asterisks (*) denote selected zoom-in insets
from the hierarchy. Nodes represent human proteins, and edges are interactions from STRING.

3.5. Focused Analysis of Individual Viral–Host Protein Interactions

To identify the relationships between discrete SARS-CoV-2 proteins and cellular func-
tions, we conducted pathway analyses on the cellular PPI candidates for each viral protein
(see Methods). Here, we report on the relationships identified for four SARS-CoV-2 viral
proteins; however, all BioID data and several tools for pathway analysis have been made
available on the COVID-19 Proteomics Resource website, as described above.

3.5.1. ORF3a

We identified 68 unique interactors for protein ORF3a, a viroporin involved in viral
replication and release, 37 of which were transmembrane proteins, including endosomal,
lysosomal, and other vesicular proteins [56]. SARS-CoV-2 utilizes deacidified lysosomes for
egress and, consistent with this process, ORF3a interactors revealed enrichment in lysoso-
mal transport proteins, regulators of endosome and lysosome fusion, and regulators of pH
and ion homeostasis (Figure 5A) [57]. As previously reported, we identified HOPS endoso-
mal tethering complex proteins VPS11 and VPS39, as well as WWP1, a HECT ubiquitin
ligase that has been previously associated with viral budding via the VPS pathway [11,58];
we also identified previously unreported ORF3a interactors to be involved in cell adhesion
and adherens junctions, which could be exploited by SARS-CoV-2 to control cell-to-cell
communication and promote cell spread. These results suggest that ORF3a plays a mul-
tifaceted role during viral infection including a major role in membrane reorganization
and trafficking, perhaps specifically utilizing the HECT/VPS viral budding pathway to
enhance viral release.
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Figure 5. Enriched pathway analysis of PPIs for selected SARS-CoV-2 viral baits. (A–D). High-
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(circles/nodes). Node color is proportional to the p value (the darkest, the lowest the p value).
Human–human interactions as determined by STRING are represented by dashed edges. Human–
viral interactions are indicated with solid edges, and their thickness are proportional to the log2FC
(the thickest, the highest log2FC).

3.5.2. ORF6

We identified 50 candidate interactors for ORF6, a membrane-associated protein
reported to localize to the ER [59]. In line with previous studies, we identified SEC24A/B,
proteins associated with COPII-coated vesicle transport, and other SEC complex proteins
involved in ER homeostasis as associated with ORF6 (Figure 5B) [14,15]. Other ORF6-
associated proteins included cell cycle regulators of G1 to S phase transition GSPT1 and
GSPT2, as well as PYCR1, PYCR2, and RRM2B, previously linked to cell cycle arrest at G1
phase [60]. Several RNA viruses manipulate critical cell cycle regulators or induce cell cycle
arrest to favor viral replication, including inhibition of early apoptosis in infected cells,
evasion of immune defenses, or to promote assembly of viral particles [61]. Additionally,
several novel ORF6 interactors involved in deubiquitylation were identified, potentially
suggesting a mechanism for deubiquitylation of viral proteins to evade degradation at
the proteosome or by autophagy. Alternatively, ORF6 could influence deubiquitylation
pathways to stabilize cellular factors that are supportive of viral replication, including
USP5, which acts as a negative regulator of type I IFN signaling and has been found to
increase in abundance during SARS-CoV-2 replication [62].

3.5.3. ORF8

The ORF8 protein has been implicated in modulating innate and adaptive immune
response, specifically via downregulation of MHC-I [63,64]. Furthermore, deletion of
SARS-CoV-2 ORF8 leads to a decrease in proinflammatory cytokine release and increases
efficacy of immune response in COVID-19 patients [65]. In line with this, we identified
64 unique PPIs, including six proteins involved in type I IFN signaling and six proteins
involved in O-linked glycosylation (Figure 5C). These data support previous work linking
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the O-linked glycosylation process with ORF8, which could serve to evade the immune
system using molecular mimicry and glycan shielding [11,16,66,67]. Previously unreported
ORF8 associations include several factors of the innate immune response, including OAS1,
OASL, MX1, and PLSCR1, all of which are implicated in negative regulation of viral genome
replication (GO:0045071), potentially supporting ORF8 as a key regulator of host immune
response during SARS-CoV-2 infection. Additionally, we observed novel ORF8 associations
with proteins implicated in MAPK signaling (KRAS, LGALS3, LGALS8, and ARRB2) and
dephosphorylation process (MTMR1, MTMR2, and MTMR10); p = 4.31−4. These proteins
play a role in intracellular membrane trafficking, and vesicle transport [68], and may thus
serve to establish a mechanism for viral spread by controlling cell signaling, replication,
and survival.

3.5.4. NSP4

Coronavirus NSP4 is part of the viral replication complex and rearranges host cell
membranes to induce double-membrane vesicles for viral replication [69]. Our BioID
analysis identified 112 protein candidates uniquely associated with NSP4, including pro-
teins involved in membrane lipid biosynthesis pathways, glycerphospholipid metabolism,
and members of the N-glycan precursor biosynthesis machinery (Figure 5D). NSP4 was
associated with proteins involved in ubiquitination and proteosome degradation (CUL1,
HERC2, and ANAPC2; p = 4.27−4), as well as previously unreported associations with
members of the ER-associated protein degradation (ERAD) pathway (SEC61B, SEC62,
ANAPCP2 and MARCH6; p = 8.10−8), suggesting a potential mechanism by which viral
proteins can evade host-degradation machinery. Association of NSP4 with ERAD proteins
could suggest antagonism of ERAD-mediated degradation of viral proteins by, for instance,
autophagy, or an attempt to manipulate ERAD pathway to degrade immune regulators
with antiviral properties in order to facilitate viral trafficking and release [70].

3.6. Integrated Analysis of PPI Networks and Global Abundance Changes among the Viral Proteins
That Make up the RdRp Replication Complex

The SARS-CoV-2 RNA-dependent RNA polymerase (RdRp) complex required for
viral genome transcription and replication is composed of the non-structural proteins NSP7,
NSP8, and NSP12. To perform an integrated analysis of the overall changes associated
specifically with the subunits of the RdRp complex, we performed community detection
analysis on the proteins uniquely enriched in BioID pulldowns, as well as uniquely up-
or downregulated proteins detected in each cell line (Figure 6A). We identified several
communities of interest, including polyadenylation-dependent snoRNA 3′-end process-
ing. This group contained EXOSC2/4 (interaction candidates, NSP12), HBS1L (interaction
candidate, NSP8) and DDX60 (upregulated, NSP12), proteins involved in RNA exosome
response to RNA-virus infection [71,72]. Additionally, we found IGFBP3 was specifically
downregulated in cells expressing NSP12, a protein with levels that correlate with adult
respiratory distress syndrome severity [73,74]. GO-BP enrichment of NSP7/8/12 PPI
candidates identified protein groups involved in RNA surveillance and processing, mito-
chondrial transport, and myofibril assembly (Figure 6B). Collectively, these data present
several interesting avenues of exploration for COVID biologists specifically studying the
SARS-CoV-2 RdRp complex.
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3.7. Integrated Analysis with Previously Published Datasets
3.7.1. SARS-CoV-2 Interaction with the Cellular Restrictome

To further explore the interplay of the identified SARS-CoV-2 interactors and the
innate immune response, we leveraged a recent gain-of-function screen that identified
65 interferon stimulated genes (ISG) that act to inhibit SARS-CoV-2 replication [75]. Cross-
comparison between these two datasets revealed that seven of these ISGs were found in
association with one or more SARS-CoV-2 proteins, including ISG15, IFIT1, IFIT5, IFITM2,
IFITM3, MLKL, and SPATS2L (Table S4). Our study revealed an association between
viral N and SPAT2SL, an ISG that was found to inhibit SARS-CoV-2 RNA replication and
is involved in formation of stress granules [75,76]. SARS-CoV-2 has been suggested to
antagonize stress granules to evade immune responses, and these data suggest that N and
SPAT2SL interaction could be important for this mechanism [77,78]. SARS-CoV-2 ORF9c
has been recently associated with evasion of immune responses, though the molecular
regulators are yet to be defined [79]. Our study elucidated Or9c in association with IFIT5,
an ISG that targets non-self RNA for degradation and was found to inhibit SARS-CoV-2
replication [75], thus suggesting that this factor could be targeted by ORF9c for immune
evasion. Finally, ORF8b and ORF9b have been shown to trigger mechanisms of cell
death [80]. Consistent with those findings, ORF9c was found to associate with the activator
of necroptosis MLKL [81]. More work will be required to characterize these factors and
investigate their role in SARS-CoV-2 pathogenesis.

3.7.2. Utilizing Previous SARS-CoV-2 BioID Interactome Datasets to Develop a List of
High-Confidence Interactions

In order to develop a high-confidence list of viral-host PPIs, we compared our BioID
dataset to three previously published proximity-labeling datasets [14,15,22]. “High confi-
dence interactions” were those that were identified in at least three studies and four datasets,
with degree of connection ≤ 3 for at least four datasets. We were able to curate a list of
66 viral-host PPIs across seventeen SARS-CoV-2 viral proteins identified by at least three
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of these reports, with seventeen total interactions identified by all four studies (Table S5).
Seventeen ORF9b PPIs were identified by at least three reports, including the antiviral
signaling protein MAVS and mitochondrial fusion/fission proteins MFF, MTFR1L, and
USP30. We further substantiated ORF6 involvement in ER to Golgi vesicle transport via ma-
nipulation of COPII complex (SEC31A), with a possible role in mediating COPI-mediated
transport via interaction with the coatomer protein ARCN1. Recently a fourth epidemic
wave of COVID-19 in Hong Kong was attributed to a mutation in ORF3a, and another
ORF3a mutation was previously associated with higher mortality rate [82,83]. We identi-
fied four high-confidence ORF3a interactions, including late endosome membrane protein
VPS39, as well as endosomal adaptor protein NUMB/L, which could serve as potential
therapeutic targets. Altogether, this comparison of similarly produced datasets sets a firm
foundation for higher-confidence follow-up studies based on interaction evidence put forth
by four separate interactome studies.

3.7.3. Cross-Referencing PPI Interactions with the CLUE Drug Library for Drug
Repurposing Efforts

Finally, we used the CLUE drug library to cross-reference potential therapeutic targets
revealed by our BioID drug screens with clinical and FDA-approved drugs to aid future
drug-repurposing efforts [84]. Based on the unique candidates identified for all viral
baits found in all three triplicates per bait, we identified 48 total host-protein targets with
211 known FDA-approved drug interactions with the potential for COVID-19 therapeutic
use (Table S6). Our dataset supports previous COVID-19 drug repurposing studies and can
increase the confidence in certain drugs consistently proposed for repurposing, including
the JAK1 inhibitor Baricitinib [85], retinoic acid receptor agonist Acitretin [86], and ATPase
inhibitors digoxin and ouabain [87]. However, significant follow-up investigation will
be necessary to confirm the impact these potential drugs may have on full SARS-CoV-2
infection. A drug repurposing visualization tool has been made available on our COVID-19
Proteomics website for specific and multiplexed analysis of viral baits, host-proteins,
and corresponding drug interactors.

4. Discussion

Previous attempts to map the SARS-CoV-2 viral interactome have varied in experimen-
tal approach, data analysis parameters, cell lines used, and specific viral baits [11–16,18–21].
Unlike previous BioID reports, we report here both global proteome analysis and BioID-
based proximity interactome analysis in human A549 lung cells for all but three SARS-CoV-2
viral proteins. Utilizing these complementary datasets, we analyzed several individual viral
proteins and viral protein groups using various methods as examples for future avenues
of exploration and compare these data to previously reported COVID-BioID datasets to
identify consistently reported candidates. The specific parameters and thresholds used
in this report are presented as examples, and certainly do not exhaust all cogent avenues
of statistical analysis. Therefore, we present these data as a resource, and developed a
website to host the data to allow for more in-depth analysis of global proteomic changes in
response to individual viral proteins, analyze enriched interaction candidates, pathway
enrichment bioinformatics analysis, and comparative analysis to other reported datasets
including the ISG SARS-CoV-2 inhibitors, previous COVID-BioID datasets, and the CLUE
drug library for drug repurposing. While this report primarily discusses unique identifica-
tions to highlight the highest-confidence interactors, the COVID-19 Proteomics Resource
website (https://alexproteomics.shinyapps.io/covid19proteomics, accessed on 4 March
2022) will allow for multiplexed and variable in-depth analysis of the MS data presented
here. This study complements previous proximity interactome studies and drug repur-
posing identification efforts by strengthening confidence in reported interactors and pro-
posed drug treatments, as well as identifying new interactors and previously unidentified
drug candidates.

https://alexproteomics.shinyapps.io/covid19proteomics
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In this study, we profiled 26 of the 29 known SARS-CoV-2 viral proteins. Consis-
tent with previous studies, we noted substantial suppression of NSP1 translation in our
NSP1-BioID2 stable cell line (data not shown) and therefore chose to exclude NSP1 from
this study [15,88]. Surprisingly, we were unable to successfully clone the Spike protein,
which is one of the most widely-studied SARS-CoV-2 proteins, and chose not to pursue
troubleshooting Spike-BioID so as not to delay dissemination of this data and due to
the extensive characterization of Spike already underway (see [89] for review). Finally,
the hypothetical ORF3d protein (previously referred to as ORF3b [11,90]) was excluded
due to our inability to generate cell lines stably expressing this protein. The use of human
A549 lung-cancer derived cells for these studies is both a strength and a limitation. These
cells do retain certain fundamental traits of alveolar type-II pulmonary epithelial cells;
however, A549 cells are not clearly representative of normal human pulmonary epithelial
cells. An additional limitation of these studies is that while the BioID analysis of viral
proteins in isolation allows for identification of specific PPIs, it precludes potential viral
protein–complex interactions that would occur with full SARS-CoV-2 infection.

Our global profiles of human lung cells overexpressing individual SARS-CoV-2 viral
proteins produced a large dataset of significantly upregulated or downregulated cellular
proteins, enabling the ability to identify specific viral proteins influencing specific changes
in cell biology. While the expression of individual viral proteins likely does not impact
the cell similar to SARS-CoV-2 infection, this approach does allow for focused analysis
and exploration of individual viral protein function. These data support previous reports
of ITGB3 overexpression in SARS-CoV-2 infected cells and tissues, and further identifies
the specific viral proteins that could be influencing the overexpression. If ITGB3 is indeed
working as an alternate receptor for SARS-CoV-2 viral uptake, it may be that targeting
ITGB3 or the specific viral proteins that upregulate ITGB3 levels could have therapeutic
benefit to slow cell-to-cell spread of the virus. Additionally, our findings that several of
the SARS-CoV-2 proteins can reduce cellular levels of MUC5AC/B, possibly via increased
secretion [91,92], provides insight into one of the mechanisms by which the virus causes
devastation of the respiratory system in the most severe COVID-19 cases. Most importantly,
this global proteome data can be analyzed with each respective proximity labeling dataset
to investigate how protein–protein interactions are affecting specific pathways within the
cell on a larger scale. While we briefly analyzed global proteome data on two sets of
interacting viral proteins (structural and RdRp viral proteins), further in-depth analysis
by dedicated virologists will be necessary to validate these findings, especially in the
context of active SARS-CoV-2 infection. This resource will act as a platform for COVID
biologists to perform integrated analyses and identify interesting and significant objectives
for further investigation.

While previous interactome studies have reported PPI candidates even when identified
in up to six viral protein interactomes [14,15], we highlighted here only unique protein
candidates for each viral bait in order to reduce the possibility of capturing promiscuous
interactors and keeping in mind that due to its limited coding capacity, RNA viruses have
likely very little functional redundancy within their genomes [93,94]. For this reason,
and for brevity, we chose to pursue a strict analysis for this report, predominantly focusing
on PPIs uniquely identified for each bait. Unfortunately, the strict thresholds used for this
report returned no significant interactors for NSP5 or NSP10; however, further analysis
of the data utilizing the website could yield true interactors. While this approach should
allow for the identification of high-confidence interactors, it is important to note that many
of the viral proteins reside in the same subcellular compartments and would thus likely be
proximate to many of the same proteins, leading to their detection. However, it may be
that proteins identified by more than one viral bait do have unique biological relevance
to at least one viral bait; thus, we have enabled iBAQ intensity analysis on the website
to allow for more in-depth comparative analysis of the MS data to reveal these more
substantial associations.
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Our data further support previously published studies including the role of ORF3a
in extensive membrane remodeling and viral budding via interaction with VPS39 and
VPS11, and suggest potential novel interactions between Orf3a and cell adhesion factors,
which are important for cell-to-cell communication. In line with previous studies, our
ORF6 data support interaction with SEC-complex proteins and suggests novel roles in cell
cycle regulation and viral immune evasion via deubiquitination mechanisms [14,15]. ORF8
is known to play a role in immune evasion, and our data support a possible role in viral
immune evasion via O-linked glycosylation and suggest immune signaling disruption via
interaction with effectors and regulators of the type I IFN response. Our data demonstrate
clear support of previously published reports, and our novel findings implicating new roles
for SARS-CoV-2 viral proteins allow for an even more comprehensive understanding of
how SARS-CoV-2 interacts with host cells.

As variants arise and COVID-19 infections continue to threaten lives and cause lin-
gering effects through post-COVID syndrome, the need for a clear SARS-CoV-2 viral–host
interactome has never been more evident. The ability to identify crucial viral–host in-
teractions and potentially disrupt those interactions with drug repurposing would allow
for fast-tracked treatments to be made available to those suffering from COVID-19 and
long-term symptoms. The data within this resource alone do not confer biological relevance
to each proteomic change or protein interaction identified, and as such more studies are
needed to verify the viral–host interactions presented here. Similarly, considerable studies
will be necessary to assess whether and how any of the pharmacological agents identified
by the CLUE library analysis affect biological processes involving SARS-CoV-2. However,
the specific bioinformatics performed here provide several confident avenues of future
exploration, and the COVID-19 Proteomics Resource website will serve to help guide
researchers and provide high-confidence directions for future studies.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/v14030611/s1, Figure S1: Epifluorescent images of all BioID
fusion-protein localizations in A549 cells; Figure S2: Western blot analysis of A549 cell stably ex-
pressing SARS-CoV-2 BioID fusion proteins; Table S1: SARS-CoV-2 BioID source plasmids and
cloning information; Table S2: Global proteomic analysis of significantly up- and down-regulated
proteins in response to viral protein expression; Table S3: SARS-CoV-2 viral-host interaction candi-
dates; Table S4: Overlap with the host restrictome; Table S5: High-confidence viral-host interactions;
Table S6: Potential therapeutic targets with drug-repurposing candidates.
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