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Abstract

Introduction: The aim of this study was to investigate both the effects of chronic treatment with atrial natriuretic peptide
(ANP) on systolic blood pressure (SBP), cardiac nitric oxide (NO) system, oxidative stress, hypertrophy, fibrosis and apoptosis
in spontaneously hypertensive rats (SHR), and sex-related differences in the response to the treatment.

Methods: 10 week-old male and female SHR were infused with ANP (100 ng/hr/rat) or saline (NaCl 0.9%) for 14 days
(subcutaneous osmotic pumps). SBP was recorded and nitrites and nitrates excretion (NOx) were determined. After
treatment, NO synthase (NOS) activity, eNOS expression, thiobarbituric acid-reactive substances (TBARS) and glutathione
concentration were determined in left ventricle, as well as the activity of glutathione peroxidase (GPx), catalase (CAT) and
superoxide dismutase (SOD). Morphological studies in left ventricle were performed in slices stained with hematoxylin-eosin
or Sirius red to identify collagen as a fibrosis indicator; immunohistochemistry was employed for identification of
transforming growth factor beta; and apoptosis was evaluated by Tunel assay.

Results: Female SHR showed lower SBP, higher NO-system activity and less oxidative stress, fibrosis and hypertrophy in left
ventricle, as well as higher cardiac NOS activity, eNOS protein content and NOx excretion than male SHR. Although ANP
treatment lowered blood pressure and increased NOS activity and eNOS expression in both sexes, cardiac NOS response to
ANP was more marked in females. In left ventricle, ANP reduced TBARS and increased glutathione concentration and activity
of CAT and SOD enzymes in both sexes, as well as GPx activity in males. ANP decreased fibrosis and apoptosis in hearts from
male and female SHR but females showed less end-organ damage in heart. Chronic ANP treatment would ameliorate
hypertension and end-organ damage in heart by reducing oxidative stress, increasing NO-system activity, and diminishing
fibrosis and hypertrophy.
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Introduction

It is now universally accepted that blood pressure and the risk of

cardiovascular disease is much higher in men than in age-matched

premenopausal women, but this difference diminishes after

menopause suggesting a protective role of estrogens in the

regulation of blood pressure and in cardiovascular and renal

protection.

The spontaneously hypertensive rat (SHR) is a model of

androgen and angiotensin II-dependent hypertension [1]. SHR

present endothelial dysfunction, an increase in oxidative stress and

vasoconstrictor factors, a decrease in the bioavailability and

effectiveness of nitric oxide (NO), and elevated plasma levels of

atrial natriuretic peptide (ANP) [2,3]. As in humans, SHR exhibit

sex differences in blood pressure, with males having higher blood

pressure than females [4].

On the other hand, essential hypertension often leads to

hypertrophic cardiomyopathy [5]. In this regard, SHR develops

left ventricular hypertrophy, showing an increased cardiac fibrosis,

in response to elevated ventricular volume or pressure overload

[6].

It is well known that estrogens affect cardiovascular function,

either by decreasing blood pressure directly or by modifying

production of endothelium-derived factors [7–9]. In ovariecto-

mized rats, estradiol treatment reduces blood pressure and

increases the synthesis and release of ANP [10]. Indeed, in human

studies, higher circulating levels of ANP have been observed in

premenopausal women, compared with men [11,12]. http://atvb.

ahajournals.org/cgi/content/full/26/7/1524-R11-099283#R11-

099283 http://atvb.ahajournals.org/cgi/content/full/26/7/

1524-R12-099283#R12-099283 http://atvb.ahajournals.org/
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cgi/content/full/26/7/1524-R13-099283#R13-099283 We have

previously provided evidence that acute ANP injection induces a

hypotensive effect by enhancement of cardiovascular NO-synthase

(NOS) activity in both normotensive and hypertensive rats [13–

15]. In addition, it has been shown that the anti-inflammatory,

anti-apoptotic and anti-fibrotic effects of estrogens on the

cardiovascular system could be mediated, at least in part, by

NO production [16].

Oxidative stress is an imbalance between the production of free

radicals and antioxidant defense mechanisms. Increased produc-

tion of reactive oxygen species (ROS) has been associated with

development of hypertension [17]. ANP exerts protective effects

against oxidative stress and in human studies it has been shown

that ANP infusion has antioxidant effects, reducing superoxide

anion production in myocytes [18]. On the other hand, the

inhibition of phospholipase D activity, as well as the decrease of

pH and intracellular calcium by ANP, is a way of protecting the

vascular wall against oxidative stress [19]. In addition, ANP

activates cardiomyocytes particulate guanylyl cyclase-coupled

natriuretic peptide receptor A (NPR-A) and increases intracellular

cGMP levels. The subsequent cGMP stimulation of protein kinase

G suppresses the induction of NADPH oxidase, and hence

decreases the amount of superoxide generated by this enzyme

[20]. Experimental studies show that genetic deletion of estrogen

receptor b results in hypertension in male and female mice [21]

and in hypertensive rats, and estrogen deficiency results in

endothelial dysfunction and oxidative stress [22].

We therefore hypothesized that chronic ANP treatment in SHR

would ameliorate hypertension and end-organ damage in heart by

reducing oxidative stress, increasing NO-system activity, and

diminishing fibrosis and hypertrophy. Moreover, as a relationship

between ANP and estrogens is thus postulated, the effects of the

treatment could be different in male and female SHR.

In order to demonstrate this hypothesis, we investigated the

effects of chronic treatment with ANP on systolic blood pressure,

cardiac NO system, oxidative stress, hypertrophy, fibrosis and

apoptosis in SHR. Moreover, this study also looked into possible

sex-related differences in the response to the treatment.

Materials and Methods

Animals
Ten-week old male and female SHR were purchased from the

Instituto de Investigaciones Médicas A. Lanari, Facultad de

Medicina (Universidad de Buenos Aires, Argentina). Rats were

housed in a humidity and temperature-controlled environment

with an automatic 12-hour light-dark cycle. They were fed

standard rat chow from Nutrimentos Purina (Buenos Aires,

Argentina) and provided tap water ad libitum up to the day of

the experiments.

Experimental design
All experimental protocols were performed in accordance with

the Guide for the Care and Use of Laboratory Animals (National

Institutes of Health, Publication No. 85-23, Revised 1996) and

Regulation No. 6344/96 of Argentina’s National Drug, Food and

Medical Technology Administration (ANMAT). Experimental

procedures were approved by the Ethics Committee of the School

of Biochemistry and Pharmacy, Universidad de Buenos Aires.

Protocol
Animals were separated by sex and then randomly assigned to

the ANP-treated group (n = 10): chronic infusion with ANP

(100 ng/h/rat), or the Control group (n = 10): chronic infusion

with NaCl 0.9%, for 14 days. Chronic infusion in both groups was

performed using an Alzet micro-osmotic pump (model 1002),

prepared according to the manufacturer’s instructions, and

implanted subcutaneously between the scapulae under light ether

anesthesia using aseptic technique.

Systolic blood pressure (SBP) was recorded and urine samples

were collected at the end of the experimental period in all groups

of animals. SBP was measured in awake animals (tail cuff method)

with a MP100 Pulse Transducer, PanLab (Quad Bridge Amp,

ADInstruments), and recorded with a polygraph (Quad Bridge

Amp, ADInstruments). Data were obtained using data acquisition

software (PowerLab 8/30 and Labchart, Australia).

The concentration of nitrites and nitrates (NOx), end products

derived from NO metabolism, was determined in urine samples

collected over 24 hours according to the procedure described by

Verdon et al. [23].

Subsequently, animals were sacrificed by decapitation and

hearts were removed and weighed in order to evaluate NOS

activity and expression, oxidative stress, fibrosis and apoptosis.

Determination of NOS activity
NOS activity in the left ventricle (LV) was measured using [14C]

L-arginine as substrate, as described previously [24,25]. 2–3 mm

thick tissue slices were incubated 30 minutes at 37uC in Krebs

solution with 0.5 mCi/ml [14C] L-arginine. The reaction was

stopped by adding 500 ml stop buffer containing 0.5 mM EGTA,

0.5 mM EDTA and 20 mM HEPES (pH 5.5). Tissue samples

were then homogenized in the stop solution and the homogenates

were centrifuged at 12,000 g for 20 minutes.

The supernatants were then applied to a 1 ml Dowex AG 50W-

X8 column (Na+ form, Bio-Rad), hydrated with the stop buffer,

and eluted with 2 ml distilled water. The amount of [14C] L-

citrulline was determined with a liquid scintillation counter

(Wallac 1414 WinSpectral). Specific NOS activity was assessed

in the presence of 1024 M L-Nitro arginine methyl ester (L-

NAME, Sigma). NO production in each tube was normalized to

the weight of the tissue slices incubated with the substrate for equal

periods of time and expressed as picomoles of [14C] L-citrulline

per gram wet weight per minute.

Western blot analysis
Samples of LV tissue containing equal amounts of protein

(0.10 mg protein/lane) were separated by electrophoresis in 7.5%

SDS-polyacrylamide gels, transferred to a nitrocellulose mem-

brane (Amersham G.E. Healthcare), and then incubated with

rabbit polyclonal anti-NOS antibodies (1/500 dilution) and a

horseradish peroxidase-conjugated goat anti-rabbit secondary

antibody (1/5,000 dilution: anti-eNOS, epitope at the NH2

terminus) (Santa Cruz Biotechnology, Santa Cruz, CA). A marker

of b-actin was used as a loading control and data were normalized

to b-actin expression. Samples were revealed by chemilumines-

cence using an enhanced chemiluminescence reagent (Amersham

Pharmacia Biotechnology, Uppsala, Sweden) for 2–4 minutes.

Quantification of the bands was performed by digital image

analysis using a Hewlett-Packard scanner and Totallab analyzer

software (Biodynamics, Seattle, WA). All experiments were

performed in triplicate.

Oxidative stress evaluation
LV slices were homogenized (OMNI MIXER homogenizer) in

30 mM phosphate buffer potassium, pH 7.4, 120 mM KCl (1 g

tissue/10 ml buffer), and centrifuged at 2,500 rpm for 10 minutes

at 4uC. Lipid oxidative damage was assessed by measuring the

extent of formation of 2-thiobarbituric acid reactive substances

Cardia Effects of ANP in SHR: Sex Differences
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(TBARS; nmol/mg protein) [26]. Super oxide dismutase (SOD)

activity was assessed by measuring the ability of the homogenate to

inhibit autoxidation of epinephrine, and was expressed as units of

SOD per milligram of protein [27]. Catalase (CAT) activity was

determined by the conversion of hydrogen peroxide to oxygen and

water, and was expressed as picomole per milligram of protein

[28]. The assay described by Flohé and Gunzler was used to

measure glutathione peroxidase (GPX) activity, and was expressed

as nanomoles per minute per milligram of protein [29].

In order to measure glutathione content, LV slices were

homogenized in 100 mM phosphate buffer sodium, pH 7.0,

5 mM EDTA (1.6 g tissue/10 ml buffer), and centrifuged at

13,000 rpm for 20 minutes at 4uC. Glutathione concentration was

measured according to the method described by Tietze F. and was

expressed as milligram per milligram of protein [30]. Protein

concentration was determined by the method of Bradford et al.

[31].

Histological evaluation and immunolabeling
LV was cut longitudinally, fixed in phosphate-buffered 10%

formaldehyde, pH 7.2, and embedded in paraffin wax. Tissue

sections (3 mm) were stained with hematoxylin and eosin. Ventricle

morphometric parameters were determined in 10 areas, measur-

ing major and minor diameters and then calculating mean

diameter.

Ventricle sections were stained with the collagen-specific stain

Picrosirius Red to determine the presence of fibrosis, as described

previously [32]. Collagen staining was evaluated and scored: 0 =

normal and slight staining surrounding vascular structures; 1 =

(mild) weak staining that doubles normal label surrounding

vascular structures; 2 = (moderate) moderate staining in the

interstitium surrounding cardiomyocytes; 3 = (severe) strong

staining in the interstitium surrounding cardiomyocytes and

compromising ,25% of the area; and 4 = (very severe) strong

staining in the interstitium surrounding cardiomyocytes and

compromising .25% of the area. A score was assigned to each

section, mainly reflecting the changes in extent rather than in

intensity of staining.

Immunohistochemistry for transforming growth factor beta

(TGF-b) was performed on formalin-fixed, paraffin-embedded

samples sectioned at 5 mm. Serial sections were deparaffinized in

xylene and rehydrated through a graded series of ethyl alcohol and

PBS. Endogenous peroxide was blocked by incubation in

peroxidase blocking reagent DAB (Dako EnVision H + system-

HRP) for 5 minutes. After washing with PBS, sections were

incubated for 40 minutes with primary polyclonal antibody against

Smad protein (H465 sc 7153, dilution 1:100) (Santa Cruz

Biotechnology, Santa Cruz, CA). After washing, sections were

incubated with the secondary antibody. Sections were developed

with 3,39-diaminobenzidine solution as chromogen for 15 minutes,

counterstains with hematoxylin, dehydrated, cleared and mount-

ed. Negative controls were performed by omitting the primary

antibodies. Results are expressed as the percentage of the total

area that presents staining (% stained area/total area).

Tunel
The DeadEnd Colorimetric TUNEL System, a non-radioactive

kit designed to end-label the fragmented DNA of apoptotic cells,

was used as previously described [30]. The number of TUNEL-

positive cells per cardiac area was counted in 20 visual fields

(magnification X400) for each rat.

Histological, immunohistological and TUNEL assays were

analyzed using an Olympus BX51 light microscope equipped

with a digital camera (Qcolor 3, Olympus America, Inc.,

Richmond Hill, Ontario, Canada) and connected to the Image-

Pro Plus 4.5.1.29 software (Media Cybernetics, LP, Silver Spring,

MD, USA). The measurements were performed blindly and under

similar light, gain, offset, and magnification conditions.

Statistical Analysis
All values are expressed as means 6SEM. The Prism program

(Graph Pad Software, Inc., San Diego, CA, USA) was used for

statistical analysis. The mean and standard error of median values

of each variable were calculated for each group. The results of

each variable for each experimental group were analyzed with a

two-way analysis of variance (ANOVA), where one factor was the

different treatments and the other was sex (male or female). The

effects of one factor were tested independently of the effects of the

other, as well as the interaction between both factors. No

interaction between treatments and genotype was found. Multiple

comparisons were performed using a Bonferroni post hoc test. p

value ,0.01 was considered a significant difference.

Results

Effects of chronic treatment with ANP on SBP and the
NO-system

Figure 1A shows SBP in control and ANP-treated male and

female SHR. Male SHR showed higher levels of SBP than

females. Chronic treatment with ANP lowered SBP in both sexes

(Figure 1A).

NO systemic production was evaluated by measurement of

NOx excretion, and basal NOx excretion was found to be higher

in female than in male SHR. ANP chronic infusion increased

NOx excretion in both sexes (Figure 1B).

To verify whether this increase in NOx was associated with an

increase in cardiac NOS activity and/or expression, and whether

any sex differences existed, NOS activity and eNOS expression

were measured in cardiac ventricle. The activity of the enzyme

was higher in female than in male SHR, NOS activity increased

significantly in both sexes after ANP treatment but the response of

cardiac NOS to ANP treatment was more marked in female SHR

(Figure 1C). eNOS protein content was higher in female than in

male ventricles, and ANP increased eNOS expression in both

sexes (Figure 1D).

Study of heart oxidative stress in response to chronic
ANP treatment

In the control group female rats displayed higher levels of

glutathione and lower levels of TBARS when compared to males.

Chronic treatment with ANP increased the levels of glutathione

and reduced TBARS in both sexes. The anti-oxidant enzymes that

participate in the regulation of ROS were then studied and female

rats showed higher basal activity of CAT and SOD, but reduced

GPx activity, compared to males. In addition, chronic treatment

with ANP increased CAT and SOD activity only in male SHR,

while ANP treatment decreased GPx activity in both sexes

(Table 1).

Changes in body and heart dimensions after treatment
with ANP

Body, heart and LV weight were higher in male than in female

rats. In this regard, a significant decrease in these parameters was

noted in male rats after chronic treatment with ANP, but only

heart weight was reduced in treated female rats. The LV/BW

Cardia Effects of ANP in SHR: Sex Differences
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ratio, as a parameter of LV hypertrophy, was higher in male rats,

and it was reduced after ANP treatment (Table 2).

Mean myocyte diameter was measured in LV slices and female

rats showed reduced myocyte size compared with males. ANP

treatment reduced mean cardiomyocyte diameter in both sexes

(Table 2).

Sirius Red staining, TGF-b immunohistochemistry and
apoptosis in cardiac ventricle

LV sections stained with collagen-specific Picrosirius Red

showed that female rats had less fibrosis than male rats and

ANP treatment reduced the staining for collagen type 1 and 3 in

both sexes (Table 3, Figure 2). Immunohistochemistry for TGF-b
as a factor responsible for LV fibrosis in hypertension was also

evaluated, and the same behavior was found: female rats showed a

Figure 1. ANP treatment effects on SBP, NOx, cardiac NOS activity and eNOS expression. (A) SBP: systolic blood pressure; (B) NOx: Nitrites
and nitrates excretion; (C) NOS (nitric oxide synthase) activity; (D) Representative blot of eNOS and b-actin and quantification of the bands of eNOS.
Data are mean 6 SEM (n = 10). *p,0.01 vs. Control male, # p,0.01 vs Control female.
doi:10.1371/journal.pone.0071992.g001

Table 1. Effects of chronic treatment with ANP on oxidative stress in left ventricle of male and female SHR.

Male Female

Control ANP Control ANP

GSH (mg/mg tissue) 0.18360.032 0.26860.047* 0.36560.061* 0.42460.054#

TBARS (nmol/mg prot) 0.31860.036 0.21860.023* 0.15060.019* 0.11460.017#

CAT (pmol/mg prot) 0.18460.042 0.45260.079* 0.55960.084* 0.51360.071

SOD (USOD/mg prot) 11.8961.01 15.2261.09* 15.4561.27* 16.1061.51

GPx (mmol/min.mg prot) 332.1626.4 243.2619.2* 239.4618.1* 198.3611.7#

GSH: glutathione; TBARS: thiobarbituric acid reactive substances; CAT: Catalase; SOD: superoxide dismutase; GPx: gluthatione peroxidase.
Data are mean 6SEM (n = 10).
*p,0.01 vs. Control male;
#p,0.01 vs. Control female.
doi:10.1371/journal.pone.0071992.t001
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lower percentage of staining for this factor than male rats. ANP

treatment reduced staining for TGF-b in both sexes (Table 3,

Figure 3).

Examination of TUNEL-stained LV sections of control rats

revealed no differences between males and females in the number

of apoptotic cells, but treatment with ANP decreased the number

of apoptotic cells in both male and female SHR (Table 3).

Discussion

This is the first experimental in vivo study that shows that

chronic treatment with ANP reduces cardiac oxidative stress,

fibrosis, apoptosis and hypertrophy in a model of hypertension,

increasing NO-system activity. A sex-related difference in the

cardiac response to ANP in SHR is also described.

In previous studies we demonstrated that male SHR showed

increased urinary excretion of NO metabolites and augmented

activity of cardiovascular and renal NOS compared to normo-

tensive animals, indicating that the NO pathway is up-regulated in

this model of hypertension [15,33]. In the present study, we

showed that female SHR exhibit lower SBP than male SHR.

Female SHR also presented an increase in NOx, higher activity

and expression of cardiac eNOS and a reduction in LV oxidative

stress compared to male rats, indicating a sex difference in these

parameters. Our results are consistent with different clinical and

experimental studies that demonstrate sex differences in the

prevalence of hypertension before the onset of menopause. This

Table 2. Body weight and heart dimensions in control and
ANP-treated male and female SHR.

Male Female

Control ANP Control ANP

BW (g) 309.666.31 273.568.72* 206.864.21* 208.763.15

HW/BW (mg/g) 0.48260.020 0.43660.018* 0.46360.021* 0.42160.017#

LV (g) 1.18660.015 0.89460.099* 0.70160.023* 0.66560.013

LV/BW (mg/g) 0.3860.01 0.3360.01* 0.3460.01* 0.3160.01

mCD (mm) 27.8160.34 25.0160.46* 24.0960.69* 20.7160.89#

BW: body weight; HW: heart weight; LV: left ventricle; mCD: mean
cardiomyocyte diameter.
Data are mean 6SEM (n = 10).
*p,0.01 vs. Control male;
#p,0.01 vs. Control female.
doi:10.1371/journal.pone.0071992.t002

Figure 2. Sirius Red staining in left ventricle after treatment with ANP. The red colour of Sirius red staining under the common microscope
indicates total collagen deposits, representative images are from hearts of each group. (A): Control male; (B): ANP male; (C): Control female; (D): ANP
female. All images are in the same magnification 400X. Scale bar = 30 mm.
doi:10.1371/journal.pone.0071992.g002
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fact could be attributed to the beneficial effects of estradiol on the

cardiovascular system, which include vasodilatation by a direct

mechanism and, indirectly, by increasing eNOS activity in blood

vessels [6,34–37]. Furthermore, it has been shown in humans and

animals that NO level is higher in females than in males because

estrogens not only stimulate NO production but also decrease

inactivation of NO by oxygen radicals [8,9,38]. Moreover,

epidemiological and experimental evidence suggests that oxidative

stress is enhanced in males compared with females [39–41]. Our

results show that hearts of female SHR exhibit higher levels of

glutathione and lower content of TBARS than male ones,

indicating a sex difference in cardiac oxidative stress. In addition,

cardiac activity of CAT and SOD was higher in female than in

male SHR, suggesting a more effective antioxidant system in heart

Figure 3. Immunohistochemistry staining for TGF-b in left ventricle after treatment with ANP. Representative micrographs of
immunostained TGF-b in the hearts from each group. (A): Control male; (B): ANP male; (C): Control female; (D): ANP female. All images are in the
same magnification 400X. Scale bar = 30 mm.
doi:10.1371/journal.pone.0071992.g003

Table 3. Effects of chronic treatment with ANP on cardiac fibrosis and apoptosis in male and female SHR.

Male Female

Control ANP Control ANP

SR (Score) 2.3060.09 2.0360.10* 2.0260.12* 1.7560.10#

TGF-b (%) 18.1161.26 11.5161.16* 14.9161.47* 11.4160.96#

Apoptotic/total cells (%) 11.6160.94 5.9760.38* 9.0761.32 5.1660.47#

SR: Sirius red; TGF-b: transforming growth factor beta.
Data are mean 6SEM (n = 10).
*p,0.01 vs. Control male;
#p,0.01 vs. Control female.
doi:10.1371/journal.pone.0071992.t003
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of female SHR. Moreover, higher GPx expression in the heart of

male rats compared with females [42] has been reported. In this

regard, we found increased GPx activity in male SHR compared

with female SHR, probably due to a compensatory response to the

lower levels of glutathione observed in male SHR.

Several studies have shown increased oxidative stress associated

with higher levels of hypertrophy in hearts from male SHR in

comparison to Wistar rats [43]. This study showed that female

SHR presented less LV fibrosis and a lower index of LV

hypertrophy than male SHR. Moreover, mean diameter of

cardiac myocytes was smaller in female than in male rats. We

found that, in this model of hypertension, female rats showed not

only less cardiac fibrosis but also less profibrotic factor TGF-b than

male rats. These results are supported by in vitro findings which

demonstrate that estrogen inhibits the hypertrophic response and

exhibits an antifibrotic effect on the heart by inhibiting transition

from fibroblast to myofibroblast, diminishing the synthesis of

collagen type 1 and 3 and suppressing the profibrotic agent TGF-b
[44].

It has been reported that SHR show higher levels of apoptosis

than WKY [45]. Pelzer T. et al. demonstrated that estradiol

inhibits apoptosis induced by oxidative stress in cardiac myocytes

[46]. In this regard, our results showed that while females exhibit

lower oxidative stress in LV than males, we found no sex

differences in cardiac apoptosis in SHR. On the other hand, it is

well known that ANP is a diuretic, natriuretic and hypotensive

factor. In previous studies, we found that acute treatment with

ANP in normotensive and hypertensive male animals reduces

blood pressure, increasing cardiovascular NOS activity by

interacting with natriuretic peptide receptors NPR-A and NPR-

C [33]. Therefore, we tested the hypothesis that long-term

treatment with ANP induces cardiovascular benefits in SHR and

sex differences are present in this model of hypertension.

Consistent with our hypothesis, we found that this treatment

lowered SBP in both sexes, and it was accompanied by an increase

in NO-system activity and a decrease in oxidative stress in the

heart. The response of cardiac NOS to ANP in female rats was

higher than in males, showing a probable role of estrogen in

enhancement of ANP effects on the NO-system.

Natriuretic peptides were found to attenuate ROS production

by interacting with all three receptor classes. Thus, in hepatocytes

and Kupffer cells, ANP reduces oxidative stress by activation of

NPR-A/B [47]. In turn, enhanced oxidative stress in vascular

smooth muscle cells of SHR was reduced by activation of NPR-C

with its specific agonist, cANP (4–23) [48]. It has been recently

shown that the infusion of human synthetic ANP (carperitide) in

patients with heart failure not only afforded beneficial effects on

hemodynamic performance but also acted as an antioxidant

[49,50]. In addition, in neonatal rat cardiomyocytes cultured with

angiotensin II, several hypertrophic responses such as increase in

cardiomyocyte size and superoxide generation were reduced in the

presence of ANP [20]. Our study supports these findings and

shows that chronic treatment with ANP reduces cardiac oxidative

stress in both male and female SHR, probably due to a decrease in

superoxide production and an increase in NO synthesis. In

addition, the treatment with ANP also increased CAT and SOD

activity in male hearts, contributing to reduce oxidative stress,

which was more marked in male than in female rats.

With respect to the antihypertrophic properties of ANP, Oliver

et al. reported that NPR-A deficiency in mice leads to cardiac

hypertrophy, much higher fibrosis and elevated blood pressure

[51]. In the present study, when SHR were treated with a chronic

infusion of ANP, the index of LV hypertrophy was reduced only in

male rats, which also exhibited a reduction in mean diameter of

myocytes. ANP presents an antifibrotic effect in sexes, reducing

the percentage of collagen type 1 and 3 and diminishing TGF-b in

LV.

In vitro data about the role of ANP in regulation of apoptotic

mechanisms appears controversial. Studies performed by Wu C. et

al. in neonatal rat cardiac myocytes showed that ANP induces

apoptosis, inhibiting de expression of Mcl-1, which is an anti-

apoptotic homolog of Bcls [52]. In contrast, Kato et al. observed

that ANP promotes cardiomyocyte survival by nuclear accumu-

lation of Akt and zyxin (in a cGMP-dependent mechanism) [53].

The present protocol represents the first in vivo study that analyzes

the effects of ANP treatment on apoptosis in the heart, showing

that chronic treatment with the peptide reduces apoptosis in the

cardiac ventricle of both male and female SHR.

It is well known that NO exerts antioxidant, antifibrotic and

antihypertrophic effects in the heart [54,55]. Additionally, in the

present study we demonstrated that ANP increases cardiac eNOS

activity and expression. Based on these findings, we can postulate

that indirect effects of ANP in LV would be mediated, at least in

part, by the increase in NO, which also contributes to reduce

oxidative stress.

Whether sex plays an essential role in the onset of hypertension

complications and organ damage continues to be an issue of

intense debate, but we found that, in this model of hypertension,

female SHR showed less cardiac fibrosis, apoptosis and oxidative

stress in the heart than male SHR. While we must take into

account that males have higher blood pressure values than

females, it is important to consider that blood pressure values in

females are also consistent with target organ damage. On the other

hand, chronic treatment with ANP not only lowered SBP but also

induced antifibrotic, antihypertrophic and antiapoptotic effects on

the heart of male and female SHR, showing more benefits in males

which present major organ damage. In accordance with our

results, the beneficial effects of ANP in hypertension probably

involve activation of the NO-system and reduction in ROS levels.
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