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A comprehensive study on genome-
wide coexpression network of 
KHDRBS1/Sam68 reveals its cancer 
and patient-specific association
B. Sumithra, Urmila Saxena & Asim Bikas Das  

Human KHDRBS1/Sam68 is an oncogenic splicing factor involved in signal transduction and pre-
mRNA splicing. We explored the molecular mechanism of KHDRBS1 to be a prognostic marker in 
four different cancers. Within specific cancer, including kidney renal papillary cell carcinoma (KIRP), 
lung adenocarcinoma (LUAD), acute myeloid leukemia (LAML), and ovarian cancer (OV), KHDRBS1 
expression is heterogeneous and patient specific. In KIRP and LUAD, higher expression of KHDRBS1 
affects the patient survival, but not in LAML and OV. Genome-wide coexpression analysis reveals genes 
and transcripts which are coexpressed with KHDRBS1 in KIRP and LUAD, form the functional modules 
which are majorly involved in cancer-specific events. However, in case of LAML and OV, such modules 
are absent. Irrespective of the higher expression of KHDRBS1, the significant divergence of its biological 
roles and prognostic value is due to its cancer-specific interaction partners and correlation networks. We 
conclude that rewiring of KHDRBS1 interactions in cancer is directly associated with patient prognosis.

Human KHDRBS1 (KH domain-containing, RNA-binding, signal transduction-associated protein 1) gene 
encodes Sam68 (Src substrate associated in mitosis 68 kDa), a member of STAR (signal transduction activator of 
RNA) family of RNA-binding proteins1,2. Sam68 is mainly involved for pre-mRNA splicing and signal transduc-
tion pathway in cells. It is required in mRNA export and stability as well as it participates in apoptosis, mitosis, 
and cell cycle progression3. The function of Sam68 is highly regulated by cell signaling pathway, thus provides the 
link between signaling and mRNA splicing. The dual function of Sam68 is due to the presence of highly conserved 
KH-domain and Src homology domain (SH-domain, specifically SH2 and SH3 domain), which are involved in 
RNA binding and signal transduction pathway respectively1,4. Therefore external cues could influence the splicing 
pattern of the Sam68 target gene. Matter et al.5 have shown that phosphorylation of Sam68 via ERK pathway mod-
ulates the alternative splicing of CD44 gene. Evidently in a cancer cell, RNA splicing machinery receives aberrant 
signaling response via Sam68 and results in the generation of oncogenic splicing variant5–8. Higher expression 
of Sam68/KHDRBS1 is shown to play significant role in various cancer cells, such as, colon9, prostate10, renal11, 
colorectal12, breast13, esophageal squamous cell carcinoma6 neuroblastoma14 bladder cancer15 renal cell carci-
noma11, cervical cancer7 hepatic cancer16 and non-small lung cancer cells17. It is also identified as a prognostic 
marker in a few cancer tissues11,15. However, we argue that higher expression of KHDRBS1/Sam68 may not be a 
reason for cancer phenotype in all types of tissues because cancer arises due to the perturbation of multiple genes. 
Moreover, none of the previous findings have shown the molecular basis of KHDRBS1/Sam68 to be a prognostic 
marker. Based on existing observation, we ask whether higher expression of KHDRBS1 always affect the patient 
survival and is there any evidence at the level of the molecular network, which expressly supports KHDRBS1 
as the prognostic marker. To counter our queries, we selected four human cancer of different tissues, which are 
kidney renal papillary cell carcinoma (KIRP), lung adenocarcinoma (LUAD), acute myeloid leukemia (LAML), 
and ovarian cancer (OV). We used high throughput gene and transcript level data from the cancer genome atlas 
(TCGA) for this study. Our analysis shows that expression of KHDRBS1 within a specific cancer is heterogeneous 
and higher expression of KHDRBS1 does not always affects the patient survival in all cancer. To understand the 
differential behavior, we have done the genome-wide correlation analysis to find coexpressed genes and tran-
scripts with KHDRBS1. Our results show that the coexpressed genes and transcripts form the functional clusters 
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which are majorly involved in cancer progression in LUAD and KIRP but not in LAML and OV. Our finding 
suggests that the clinical outcomes of higher expression of KHDRBS1 depend on context-specific molecular 
interaction network which could be an essential parameter to design personalized medicine.

Results
Heterogeneous expression of KHDRBS1 mRNA in the cancer patient. To understand expression 
status of KHDRBS1, we have compared the KHDRBS1 mRNA expression level in healthy and cancerous tissue of 
KIRP and LUAD patients. We obtained TCGA RNA sequencing data from BROAD Institute (http://gdac.broa-
dinstitute.org/). RNA-Sequencing by Expectation-Maximization (RSEM) values of KHDRBS1 expression was 
taken for comparison. We found that expression of KHDRBS1 is highly scattered in cancer tissue in both KIRP 
and LUAD (Fig. 1A,B). To reconfirm our observation, we have compared the KHDRBS1 expression in healthy and 
cancer tissue of the same patient. Similarly, we observed there is no observable difference of KHDRBS1 expres-
sion in cancer compared to normal (Fig. 1C,D). The healthy adjacent tissue sample for LAML and OV is not avail-
able in TCGA. Therefore to compare the KHDRBS1expression in healthy and cancer patients, we collected data 
from GEO (Gene expression omnibus) and explored KHDRBS1expression level in OV (GSE18520)18 and LAML 
(GSE9476)19 [Supplementary Fig. S1A,B]. Here, we observed there is no difference of KHDRBS1expression level, 
which is similar to KIRP and LUAD (Fig. 1A,B). However, theses GEO datasets are not used for further analysis in 
this article. Based on this observation we decided to group the cancer patients depending on KHDRBS1 expres-
sion level (higher and lower expression). Higher and lower expression is classified based on the Z-score value of 
KHDRBS1 expression, which is provided by TCGA for all four cancer types i.e. KIRP, LUAD, OV and LAML.

It is observed that in all four cancers the Z -score of KHDRBS1 expression is widely distributed from nega-
tive to positive values (Fig. 2A). This indicates that the expression of KHDRBS1 mRNA is not recurrently high 
or low in all cancers. Furthermore, Z-score distribution also shows that there are many patients within specific 
cancer who have significantly high or low expression of KHDRBS1. This suggests that KHDRBS1 expression is 
patient-specific and not cancer-specific. Therefore higher and lower expression of KHDRBS1 within a particular 
cancer type is grouped based on Z -score of greater than 1 (higher expression) or less than −1 (low expres-
sion) respectively (Supplementary Fig. S2A). Simultaneously we observed that Z-score of KHDRBS1 expres-
sion is not widely distributed in normal adjacent tissue compared to the cancerous tissue of KIRP and LUAD 
(Supplementary Fig. S2B). Therefore the RSEM values of KHDRBS1 mRNA Z > 1 and Z < −1 are screened for 
cancer tissue of four type of cancer, and non-parametric Mann-Whitney test was performed to check whether 
patients within Z > 1 and Z < −1 group have any significant difference in KHDRBS1 mRNA expression level. 
Figure 2B–E shows in KIRP, LUAD, LAML and OV, there is statistically significant (P < 0.0001) difference in 
expression among the patients with Z > 1 and Z < −1. However, this stratification of patients in higher and lower 
expression based on Z-score of KHDRBS1 expression is limited to specific cancer patients within a particular 
cancer type.

Higher expression of KHDRBS1 correlates with patient survival in KIRP and LUAD. To under-
stand the clinical outcomes of KHDRBS1 higher expression in cancer patients, we performed survival analysis 

Figure 1. Expression of KHDRBS1 mRNA in KIRP and LUAD: (A,B) mRNA expression in the healthy and 
cancerous tissue of KIRP & LUAD patients. (C,D) mRNA expression in adjacent healthy and cancer tissue from 
a same patient in KIRP & LUAD respectively (Error bar in each diagram represent the maximum and minimum 
value of RSEM normalized count. KIRP: kidney renal papillary cell carcinoma, LUAD: lung adenocarcinoma).
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Figure 2. Patient specific expression of KHDRBS1, survival and correlation analysis: (A) Volcano plot 
summarizing the Z-score distribution of KHDRBS1expression in different cancer. (B–E) shows the difference 
in KHDRBS1 mRNA expression level in Z > 1 and Z < −1 sample in KIRP, LUAD, OV and LAML respectively 
(****P < 0.0001). (F–I) Kaplan-Meier curve shows the comparison of fraction survival in higher expression 
(Z > 1) and lower expression (Z < −1) group in all four cancer. In KIRP and LUAD, the higher expression 
of KHDRBS1 affects the patient survival (P < 0.05), whereas in OV and LAML there is no difference in 
patient survival (P > 0.05) in higher and lower expression group. (J) Boxplot summarizing the distribution of 
correlation coefficient of KHDRBS1 to all other genes (rs > 0.3, P < 0.05). In boxplot, the median is indicated by 
the horizontal line dividing the interquartile range (Q25, Q75). Upper and lower ticks represent the maximum 
and minimum value (KIRP: kidney renal papillary cell carcinoma, LUAD: lung adenocarcinoma, LAML: acute 
myeloid leukemia, and OV: ovarian cancer).
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using Kaplan-Meier survival curve and log-rank test20. Patient-specific clinical data was collected from TCGA 
clinical data set, and survival was compared between two group i,e Z > 1 and Z < −1 of KHDRBS1. Survival 
analysis shows higher expression of KHDRBS1 (Z > 1) significantly reduces (P < 0.05) the patient survival in 
KIRP, and LUAD (Fig. 2F,G). However, in LAML and OV, higher expression of KHDRBS1 does not show any 
difference (P > 0.05) in patient survival rate (Fig. 2H,I). This result shows that higher expression of KHDRBS1 
has the prognostic value in KIRP and LUAD for a specific group of cancer patients, but not in LAML and OV. 
Further, in LAML and OV, the expression of KHDRBS1 is significantly (P < 0.0001) high in the patients with 
Z > 1 as compared to Z < −1, although the higher expression does not affect the patient survival. This gives us 
fascinating evidence that the over-expression of KHDRBS1 may not always be accountable for cancer progression 
and patient survival. The cellular function of a gene or protein depends on its interacting partners. In this sce-
nario, the interacting partners of KHDRBS1 in LUAD and KIRP are possibly different from LAML and OV, which 
results in a different outcome. Moreover, each cancer has a unique phenotypic property which is evolved due to 
distinct molecular interaction inside a cell. Therefore, investigation on the interacting partners of KHDRBS1 and 
correlation among them could light-up exact mechanism of KHDRBS1 function in cancer.

Genome-wide coexpression analysis and functional clustering of KHDRBS1 coexpressed 
genes. To address the patient and cancer-specific role of KHDRBS1, we performed genome-wide correlation 
analysis. We calculated the correlation of KHDRBS1 to all other genes (20531 genes) expressed in specific cancer. 
For each type of cancer, patients with higher KHDRBS1 expression (Z > 1) were selected for correlation analysis. 
Genes with correlation coefficient (rs) > 0.3 and P < 0.05 were selected for further analysis. Distribution of cor-
relation coefficient (rs > 0.3 and P < 0.05) (Fig. 2J) shows the median values for KIRP, LUAD and OV are almost 
equal, but it is high in case of LAML. However, the higher number of correlated genes in LAML does not play 
any significant role in the overall function, because in the subsequent experiment (Fig. 4) we have observed that 
the functional similarity between these genes is less. Next, we constructed protein interaction map of KHDRBS1/
Sam68, and we selected direct physical interactions between other human protein and KHDRBS1/Sam68 from 
databases21–26. We considered experimentally determined binary interactions, which are generated using yeast 
two-hybrid or high-throughput experiments (Supplementary Table S1). Genes with the correlation coefficient 
(rs) > 0.3, P < 0.05 and which have physical interaction with KHDRBS1 were screened for each cancer. Both 
criteria were chosen to increase the stringency of selection of KHDRBS1 interacting partners in a specific cancer 
cell. Venn diagrams (Fig. 3) show that each cancer type has overlapping genes which are coexpressed and also 
physically interact with KHDRBS1. Network in Fig. 3 shows, most of these coexpressed and interacting genes of 
KHDRBS1 are different across the four cancers. Moreover, we observed that numbers of these overlapping genes 
are less in OV and LAML compared to KIRP and LUAD. However, to understand the cancer-specific biological 
function of these genes, the process and pathway enrichment analysis were performed. We observed that in 
case of KIRP and LUAD the cancer-specific processes such as regulation of signaling by cbl27 SUMOylation of 
RNA binding protein28–30, ras protein signal transduction pathway31, microRNAs in cancer32 are predominant 

Figure 3. Overlap of protein-protein interactions (PPI) dataset and coexpressed gene of Sam68/KHDRBS1 and 
processes and pathway enrichment analysis in different cancer: (A–D) Venn diagram and network figure shows 
the overlapping genes which coexpress and interact with Sam68/KHDRBS1in KIRP, LUAD, OV and LAML 
respectively. The bar diagram indicates the process and pathway enrichment analysis of overlapping gene in 
respective cancer. Logarithmic corrected p-values for significant overrepresentation are shown.
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(Fig. 3). However, in case of OV we only observed that pathway of RNA splicing is an only predominant event 
and no process or pathway enrichment is found in case of LAML. It is interesting to notice that overexpression 
of KHDRBS1 leads to enrichment of cancer-specific events in KIRP, LUAD but not in OV and LAML. The result 
indicates a positive correlation between KHDRBS1 expression status and cancer phenotype in KIRP and LUAD. 
The results also show a similar expression pattern of a gene differentially affects the disease state, probably due to 
cancer and patient-specific genetic profile. Therefore genes which are coexpressed and interact with KHDRBS1 
are mostly different in KIRP and LUAD, although they are involved in cancer-specific biological processes which 
are accountable for patient mortality.

A common observation in gene expression is that many genes which show similar expression patterns fre-
quently clustered according to their biological functions33,34. Therefore analysis of functional clustering of all 
genes which are co-expressed with KHDRBS1 can provide a clear view of predominant functions associated with 
the group of genes expressed in a specific cellular context. Next, we have done protein-protein interaction enrich-
ment analysis for all coexpressed genes (rs > 0.3, P < 0.05) in each cancer using Metascape tools, which fetch the 
interaction data from BioGrid23, InWeb_IM35, and OmniPath36. The resulting network was again used to identify 
densely connected network components using molecular complex detection (MCODE) algorithm37. Pathway and 
process enrichment analysis find the function of each densely connected component (Supplementary Fig. S3). 
The result shows that coexpressed genes in KIRP and LUAD are mostly involved in cell cycle, and cell division 
related processes such as chromatin assembly and organization, cell cycle checkpoint control. As many of these 
densely connected genes are co-expressed with KHDRBS1, it can be presumed that probably KHDRBS1 is also 
involved in a similar function in KIRP and LUAD. However, in OV and LAML, the network components are less 
densely connected and several gene clusters which are present in KIRP and LUAD and involved in cell prolif-
eration are absent in OV and LAML (Supplementary Fig. S3). It is now comprehensible that KHDRBS1 driven 
molecular processes are similar in case of KIRP and LUAD but different in OV and LAML for a specific group 
of patients. We then examined whether the genes which are coexpressed with KHDRBS1 are involved in similar 
biological functions or not. Gene Ontology (GO) semantic similarity was used to quantify the functional associ-
ation of coexpressed genes. We found that coexpressed genes in KIRP and LUAD tend to have significantly high 
(P < 0.001) functional relationships compared to OV, LAML and random set (Fig. 4). It explains coexpressed 
genes in KIRP and LUAD are involved in the functionally similar biological processes and pathways, which sup-
port our previous observation of functional clustering of coexpressed genes (Supplementary Fig. S3) as most of 
the enriched processes in KIRP and LUAD are linked to cell proliferation.

Genome-wide transcript correlation analysis reconfirms that KHDRBS1/Sam68 is a prognostic 
marker in KIRP and LUAD. In the previous section, we analyzed the gene level expression data, which illus-
trate the coexpressed genes and their prevailing cellular function in different cancer. However, Sam68 is known as 
RNA binding protein and involved in RNA splicing. Indeed, Sam68 driven oncogenic isoform is reported in many 
cancer5,8. Therefore investigating the co-regulated target transcript of Sam68 could provide the clues of differen-
tial behavior in different cancer cells. Hence we have analyzed the transcript level expression data to identify the 
co-expressed isoform with KHDRBS1/Sam68. Prior to correlation analysis, we have checked how many different 
isoform variants present for KHDRBS1. UCSC data shows (Fig. 5A) that KHDRBS1 can be spliced in three differ-
ent splice isoforms uc001bua, uc001bub, and uc001buc. Next, we examined the relative expression of these iso-
forms in different cancer datasets. Our result shows, out of three isoforms, uc001bub has higher mean expression 
level than other isoforms in all cancer. Additionally, uc001bub expression is significantly high in Z > 1 compared 

Figure 4. Distribution of functional similarities between the coexpressed genes in different cancer. The 
functional similarities between coexpressed genes (rs > 0.3, p < 0.05) with KHDRBS1 is calculated based on GO 
semantic similarity. The random set of genes (Random) is used as negative control. The functional similarity is 
high in case of KIRP and LUAD compared to the OV, LAML and random set (n = 500) of genes (box boundaries 
represent the first and third quartile (Q.25, Q.75). The median is indicated by the horizontal line dividing the 
interquartile range. Upper and lower ticks represent the maximum and minimum value). Mann-Whitney 
test was performed separately in between KIRP vs. OV, LAML, Random and LUAD vs. OV, LAML, Random 
(***P < 0.001).
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to Z < −1 samples in all cancer (Fig. 5B–E). This suggests that higher expression of KHDRBS1 is mainly contrib-
uted by uc001bub isoform. Based on this result we calculated the Spearman correlation coefficient (rs) between 
uc001bub and all transcripts (73,599 transcripts). We examined the pattern of association of uc001bub transcript 
to all other transcripts in all four cancers, but there was no observable trend (Fig. 5F). Next, top 2000 transcripts 
with correlation coefficient (rs) > 0.3 and P < 0.05 were screened for each cancer type. However, many of these 
UCSC transcripts do not code for protein. Therefore to identify the protein-coding transcript, we have matched 
the UCSC transcript to RefSeq accession number of NCBI, and subsequently, coding transcripts were chosen for 
analysis.

To find the target transcripts which are co-expressed with uc001bub, the genome-wide binding region of 
Sam68 was obtained from RNA complete experiment by Ray et al.38. The study shows that Sam68 can bind to 
total 268 sites in the human genome (human genome version hg19). From the co-ordinate of the binding region 
and using hg19 as the reference genome, we predicted that total 1036 different transcripts could be produced by 
Sam68 (Supplementary Fig. S4). We also found that out of 1036 transcripts, 562 are coding transcripts. Target 
transcripts (coding), which are present in top 2000 correlated transcript data were screened and subjected to pro-
cess and pathway enrichment analysis (Fig. 5G–J). We notice similar result like gene-level data, coexpressed target 
transcript of Sam68 are involved in cancer-specific processes such as cell cycle, protein N-terminal acetylation, 
cell cycle phase transition, E2F6 transcription regulation in KIRP and LUAD39–41. However, in OV and LAML, the 
cancer linked biological processes are absent (Fig. 5I,J, bar diagram).

Figure 5. Relative expression of different KHDRBS1 transcript and process and pathway enrichment analysis 
of coexpressed target transcript of KHDRBS1/Sam68: (A) Transcript (uc001bua, uc001bub and uc001buc) 
structure of KHDRBS1 from UCSC database. (B–D,F) show the relative expression of uc001bua, uc001bub, and 
uc001buc transcript in KIRP, LUAD, OV, and LAML respectively (error bar represent the standard deviation). 
(F) Boxplot is summarizing the distribution of correlation coefficient of uc001bub with all other transcripts 
(rs > 0.3, P < 0.05) in all four cancers. (G–J) Venn diagram representing overlapping coexpressed and target 
transcript of KHDRBS1/Sam68. The bar diagram indicates the process and pathway enrichment analysis of 
overlapping genes in specific cancer (Logarithmic corrected P-values for significant overrepresentation are 
shown).
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Next, we examined all highly correlated transcripts (rs > 0.6, P < 0.05) for process and pathway enrichment 
analysis using Metascape tools. We observed that coexpressed transcripts in KIRP and LUAD are mostly involved 
in cell division, and proliferation, which are highly interconnected (Supplementary Fig. S5A,B). However, in 
LAML (Supplementary Fig. S5C), prevailing pathway and processes are not directly linked to the cancer-specific 
events, and in OV we did not find any process enrichment. The results of both gene and transcript level correla-
tion analysis show that even though the KHDRBS1 expression pattern is same in KIRP, LUAD, OV, and LAML 
for specific group of patients, its higher expression has different clinical outcomes due to the change in interac-
tion partners and correlation network. Our study shows molecular network of KHDRBS1 is patient-specific and 
varies across the cancer tissue. The essentiality of a gene in disease progression is determined by its interaction 
partners42. Similarly, our study shows that higher expression & clinical outcomes is not always a proportionally 
linked event, rather it depends on network architecture in a cell.

Discussion
In this study, we present genome-scale evidence for KHDRBS1/Sam68 to be a prognostic or non-prognostic 
marker in four different human cancers. Our result represents that higher expression of a gene is not always a 
cause of pathogenesis of cancer. A gene can be labelled as prognostic maker if it is involved in crucial molecular 
processes, which are specific to the disease progression. In the present work, we evaluated the expression level of 
KHDRBS1 in KIRP, LUAD, LAML and OV cancer. For the first time, we have shown that expression of KHDRBS1 
in all four cancers is heterogeneous and patient specific. However, our results show that higher expression of 
KHDRBS1 causes reduced survival of the patient in KIRP and LUAD but not in LAML and OV. This indicates; 
in KIRP and LUAD, higher expression of KHDRBS1 possibly plays a critical role in the cancer-specific event. 
To understand the cancer-specific behavior of KHDRBS1, we performed the genome-wide correlation analy-
sis in all four cancers for the patients with higher expression of KHDRBS1 and screened the genes which have 
significant correlation and direct interaction with KHDRBS1. It is noticed that the common genes, which are 
coexpressed and interact with KHDRBS1 are involved in the cancer-specific processes in KIRP and LUAD, but 
not in LAML and OV. This provides us the lead to do the further experiment to find the cancer-specific module 
in all coexpressed genes of KHDRBS1. We identified that several recurrent network modules are involved in 
cell cycle and division linked processes in KIRP and LUAD. These network modules contain a core set of genes, 
which, when highly expressed are sufficient for cell proliferation and metastasis. Additionally, the functional 
similarity shows that more significant numbers of coexpressed genes are involved in similar molecular functions 
in KIRP and LUAD compared to OV and LAML. For an additional layer of understanding, we have calculated 
the genome-wide correlation of isoform level data as KHDRBS1/Sam68 is involved in RNA splicing. These results 
also confirm that cancer driven biological processes are enriched in KIRP and LUAD not in LAML and OV, 
although KHDRBS1 predominant isoform uc001bub is highly expressed in all four cancers. The change of cel-
lular environment drives the rewiring of molecular network of a particular gene which can result in alteration of 
gene function43. We observed a similar result in case of KHDRBS1 in the different cancer cell. It should be noted 
that the observation is restricted to specific group of patients, either in LUAD or KIRP. This is not generalized 
observation for specific cancer type rather it is patient-specific. Therefore the present work supports the need of 
personalized medicine and diagnosis in cancer treatment. In general, a gene is identified as prognostic cancer 
biomarker when its mRNA expression level is significantly correlated with overall patient survival44. Moreover, 
our observations suggest that besides higher expression; a prognostic biomarker should directly or indirectly be 
associated with the cancer-specific network and event. Therefore to understand the prognostic value of a target 
molecule a detailed landscape of possible molecular events should be studied, which will lead to improved cancer 
diagnosis and therapy.

Methods
Datasets and data classifications. The Cancer Genome Atlas (TCGA) RNA sequencing data of KIRP, 
LUAD, LAML, and OV, with clinical annotations, were retrieved from Broad GDAC Firehose Stddata (http://
gdac.broadinstitute.org/). We used level 3 whole transcriptome expression data from ‘illuminahiseq_rnase-
qv2-RSEM_isoform_normalized’. For transcript expression, we used normalized “scaled_estimates” RSEM 
counts of isoforms. The raw data were mapped to the hg19 reference genome assembly45. Sample sequencing 
methods and detailed description of processing can be found from the previous publication46,47. We classifies 
patient samples into two groups based on expression of KHDRBS1 as Z = +1 and above (higher expression of 
KHDRBS1) and Z = −1 and below (lower expression of KHDRBS1). For example, a sample is said to have high 
expression of a gene if its expression is at least one standard deviation above its mean expression in the subtype.

Measurement of coexpression. We computed the Spearman’s rank correlation coefficient to measure the 
coexpression levels between two genes. It is a nonparametric measure of association. It assesses the nonlinear 
monotonic relationship between the two variables by the linear relationship between the ranks of the values of the 
two variables. The following formula is used to find the correlation

= ∑
−

=r
d

n n
6
( 1)s

i
n

i1
2

2

where; di = the difference between the ranks of the ith observations of the two variables. n = the number of pairs 
of values. Under the null hypothesis of statistical independence of the variables, for a sufficiently large sample, 
the quantity
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follows a student’s t-distribution with n-2 degree of freedom48. We used Hmisc Package in R to calculate the rs and 
significance level (P-value).

Survival analysis. To perform the survival analysis, we collected the clinical data from Broad GDAC 
Firehose Stddata (http://gdac.broadinstitute.org/) and classified the patients into two groups based on mRNA 
expression level of KHDRBS1 as Z =  + 1 and above (high) and Z = −1 and below (low). We compared the high 
and low expression of KHDRBS1 on patient survival using Kaplan and Meier method49 and tested for significance 
using Log-Rank tests. Survival curves were generated using GraphPad Prism 7 software.

Pathway and process enrichment analysis and transcript annotation. Pathway and process enrich-
ment analysis was carried out using the Metascape tool50 with the following ontology sources: GO Biological 
Processes, KEGG Pathway and Reactome Gene Sets. The transcript annotation was done using hg19 as reference 
genome, which is available in UCSC genome browser database (http://genome.ucsc.edu).

Functional semantic similarity between genes. The functional similarity between genes was measured 
by the semantic similarity between sets of GO terms with which they were annotated. We applied the method pro-
posed by Wang et al.51 to quantify the functional similarity. Considering two genes G1 and G2 annotated by GO 
term sets GO1 = [go11, go12, …, go1m] and GO2 = [go21, go22, …, go2n] respectively their semantic similarity 
score of Wang’s method is defined as:

=
∑ + ∑

+
≤ ≤ ≤ ≤ ( )go GO go GO

m n
Sim(G1, G2)

Sim( ) Simi j1 i m 1 , 2 1 j n 2 , 1

Semantic similarity score of Wang’s method was calculated using GOSemSim package in R52.

Prediction of target transcript. The genomic coordinates of genome-wide binding sites of sam68 were 
obtained from previously published RNAcompete pull down assay38. We have considered only experimentally 
determined binding sites. All the binding coordinates were then mapped to corresponding transcripts of hg19 
using UCSC Genome browser (http://genome.ucsc.edu/cgi-bin/hgGateway). If the binding coordinates of Sam68 
present within a transcript coordinate then we selected that transcript as target transcript. Likewise, we have 
screened all possible UCSC transcripts which have sam68 binding site.

Statistical method. The difference in expression level was analyzed using non-parametric Mann-Whitney 
test. GraphPad Prism 7 software was used for statistical analysis.

Ethics approval. This article does not contain any studies with human participants or animals performed by 
any of the authors. Therefore, informed consent is not required.

Data Availability
Cancer patient data sets are retrieved from http://gdac.broadinstitute.org. The datasets generated after analysis 
during the current study are available from the corresponding author on reasonable request.
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