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ABSTRACT
Background. This study was aimed to explore the compensatory growth ability and
influence mechanism of Hippophae rhamnoides at the decaying phase in feldspathic
sandstone areas of Ordos, and clarify the stubble height when the compensatory growth
ability of H. rhamnoides was the strongest.
Methods. TheH. rhamnoides forests in the decaying phase from an exposed feldspathic
sandstone zone of Ordos were chosen. The compensatory growth ability of H.
rhamnoides at stubble height of 0 cm (S1), 10 cm (S2), 15 cm (S3), 20 cm (S4) and control
(CK) was investigated with H. rhamnoides forests at the decaying stage in the exposed
feldspathic sandstone areas of Ordos. Relationships of compensatory growth ability
of H. rhamnoides and understory soil properties with understory soil stoichiometric
features as well as the response mechanism to stubble height were explored.
Results. (1) Overcompensatory growth ofH. rhamnoides in feldspathic sandstone areas
occurred at all stubble heights. Especially, the plant height compensation index (1.45)
and biomass compensation index (1.25) at the stubble height of 15 cm were both larger
compared with other stubbling treatments. These results indicate the stubble height of
15 cm can well promote the growth of the ground part ofH. rhamnoides. (2) All stubble
heights significantly affected the contents and eco-stoichiometric ratios of soil organic
carbon (SOC), total nitrogen (TN), total phosphorus (TP) in understory soils, but the
influence rules differed. SOC, TN, and TP contents at all stubble heights were larger
than those of the control, andmaximized at the stubble height of 15 cm. The carbon(C):
phosphorus(P) ratio, and nitrogen (N):(P) ratio after stubbling treatments were all
lower compared with the control, and minimized to 19.52 and 1.84 respectively at the
stubble height of 15 cm. (3) The understoryC:N:P stoichiometric ratio ofH. rhamnoides
in feldspathic sandstone areas is jointly affected by compensatory growth, stubble
height, and soil physicochemical properties. The total explanation rate determined
from RDA is 93.1%. The understory soil eco-stoichiometric ratio of H. rhamnoides is
mainly affected by soil moisture content (contribution of 87.6%) and total porosity
(7.9%), indicating soil moisture content is the most influential factor. The findings will
offer some new clues for eco-construction and theoretically underlie soil-water loss
administration.
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INTRODUCTION
Feldspathic sandstone is widely distributed in Jungar Banner, Ordos, China. This loose
stratum mainly comprises of terrigenous clastic rocks including red-white interphase
sandstone, siltstone, and mudstone. Because of low-degree consolidation between sand
grains, feldspathic sandstone cannot be easily destroyed under normal conditions, but
becomes mud upon watering and turns into sand upon winding (Guo et al., 2021).
Feldspathic sandstone is locally named ‘‘Pi sandstone’’ (Pi or pi shuang is the folk name of
arsenic in Chinese), which implies feldspathic sandstone is as harmful as arsenic to soil and
water conservation (Wang et al., 2007). Hence, massive water and soil loss occurs easily in
feldspathic sandstone areas, which carries off numerous nutrients from soils and leads to
soil fertility decline and soil leanness, inducing land desertification and severe soil erosion.
Hence, experimental study in this region is beneficial for ecosystem restoration there.

Stumping or cradling is a major measure for the renewal and rejuvenation of plants.
Specifically, the branches above the root collar are cut off at a certain height, which will
enhance the sprouting of seedlings and drive the seedlings to grow thick and strong branches
(Zhong, 2020). The active response of plants to stumping or cradling is called compensatory
growth (Zhao, Chen & Lin, 2008). Depending onwhether the accumulative ground biomass
of cradled plants is more than, equal to, or less than that of the non-cradled plants (Zhao,
Chen & Lin, 2008; Liu et al., 2011), plant compensatory growth is divided into 3 types:
overcompensation, equivalent compensation and undercompensation (Liu et al., 2011).
Appropriate cradling can promote the tillering and photosynthesis of cereal grass plants,
and accelerate growth recovery, leading to equivalent compensation or over-compensatory
growth (Belsky, 1986). Excessive stubble (Burns, Chamblee & Giesbrecht, 2002) and low
stubble (Zhao, Chen & Lin, 2008; Zhong & Bao, 1999) both are unfavorable for pasture
production. Hence, stubble height is a key parameter in management of vegetation
stumping.Cutforth & McConkey (1997) studied springwheat for 4 years in semiarid Canada
grassland, and found the yield of spring wheat was raised by 13% after high stubbling and
by 4% after short stubbling. Different from the finding of Cutforth & McConkey (1997)
and Zhao, Chen & Lin (2008) found high stubble promoted the revegetation of Leymus
chinensis, but short stubbles lowered revegetation. This may be caused by differences in
vegetation types, adaptability to stubble height, or soil types between the two study regions.
The existing experimental findings about the suitable stubble height are inconsistent
among different studies and between experimental research and practical application, and
many factors may influence the results, including experimental design, vegetation type, site
conditions, soil type, and stumping time. Given the special soil type—feldspathic sandstone
in Ordos—it is necessary to further study the effects of stubble height on vegetation, which
will promote the sustainable stubble height development in this region. Shao et al. (2008)
state that soil physicochemical properties contribute to vegetation recovery. As reported,
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removal of ground biomass by mowing directly affected the vegetation, topsoil litters,
and soil carbon-nitrogen sinks (Jaramillo & Detling, 1988; Ziter & MacDougall, 2013).
Multiple linear regression from Shahrudin et al. (2014) showed that the ground biomass
of vegetation can best explain the variations of soil organic matter accumulation rate.
Ziter & MacDougall (2013) found stumping can promote the soil carbon fixation stocks of
vegetation through the roots, which may be a response to the compensatory growth lost
on the leaf surface. Stumping can indirectly increase soil temperature and humidity and
thereby improve nutrient contents or nutrient absorption and alter the relative distribution
of nutrients (Jaramillo & Detling, 1988; Han et al., 2014). Yu (2016) studied the effects of
stumping on the physiological properties of Caragana microphylla and the physicochemical
properties of soils, and found soil C, N and P contents at the end of growing seasons were
higher and soil potential of hydrogen (pH) and bulk density were lower than at the
early stage. Brejda et al. (2000a) and Brejda et al. (2000b) thought organic carbon was the
most potential indicator of soil quality, and nitrogen and phosphorus were usually the
restricting nutrients of plant growth (Güsewell, 2004; Aerts & Chapin, 1999). The findings
are different among studies, owing to differences in the study areas, vegetation ad soil
types. The feldspathic sandstone in Ordos contains low soil nutrients, and there is no
discussion about how the understory carbon, nitrogen and phosphorus concentrations
and their stoichiometric ratios in H. rhamnoides forests respond to stubble heights. For
these reasons, we are restricted from predicting the feedback ability of vegetation growth
to stubble heights in this region, which calls for further research.

Hippophae rhamnoides is a deciduous shrub or small arbor belonging to Hippophae,
Elaeagnaceae Juss (Chen, 2017). The well-developed lateral roots with strong sprouting
ability ofH. rhamnoides, which can strongly occupy the underground space and consolidate
soils and prevent soil-water loss. Thus, H. rhamnoides is extensively planted in the
feldspathic sandstone areas of Ordos, Inner Mongolia. However, owing to the special
soil properties, specific geological conditions and drought in feldspathic sandstone areas,
the H. rhamnoides forests planted there will decay in both growth rate and productivity at
the age of 10 years (Yang et al., 2005;Hao et al., 2005). Under such a background, we tried to
probe into the effects of stubble heights on the compensatory growth ability and understory
soil physicochemical properties ofH. rhamnoides in feldspathic sandstone areas, and aimed
to find out whether compensatory growth of H. rhamnoides will occur after stumping and
whether the understory soil physicochemical properties can be improved after stumping.
We aim to uncover the regulatory mechanism between the compensatory growth ability
and understory soil physicochemical properties of H. rhamnoides at different stubble
heights in feldspathic sandstone areas. This study will enrich the research contents on the
adaption ofH. rhamnoides to feldspathic sandstone areas and can accelerate administration
of soil-water loss. Our findings are valuable for resource utilization in feldspathic sandstone
areas.
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MATERIALS & METHODS
The study area
The study area is located in the Geqiu groove watershed (39◦42′–39◦50′N, 110◦25′–
110◦48′E) of Nuanshui Village, Jungar Banner, Ordos, Inner Mongolia (Fig. 1). This
watershed has fluctuating terrains and numerous gullies, with fluctuating girders, but
suffers intense soil erosion and severe soil-water loss. With an average altitude of 1044 m,
this area enjoys a typical moderate-temperature semiarid continental monsoon climate,
with average sunshine duration of 3000 h and frost-free period of 148 days. The annual
average precipitation is about 400 mm, which is concentrated in July and August. The
annual evaporation is 2093 mm, annual average temperature is 6.2–8.7 ◦C, accumulative
temperature ≥10 ◦C is 2,900−3,500 ◦C, and yearly total radiation is 5.8 GJ/m2 y. The soil
type is dominated by loessial soil and accompanied by feldspathic sandstone landscapes,
which are mainly chestnut soil and sand soil. This watershed is mainly planted with
artificial species for soil-water conservation, wind prevention, and sand fixation. The
major afforestation species includeHippophae rhamnoides, Pinus tableulaeformis,Caragana
korshinskii, Medicago sativa, and Prunus sibirica. The major species under artificial H.
rhamnoides forests include Leymus chinensis, Stipa krylovii, and Cleistogenes squarrosa.

Experimental design
Methods
The decaying stumpedH. rhamnoides artificial forest lands in the study area were selected in
2019 as the experimental field. ArtificialH. rhamnoides forest lands with basically consistent
site conditions, management measures, and growing conditions were selected as the sample
plots. The basic information of the sample plots was listed in Table 1. The plots were all at
the slope lower than 5◦. In each plot the tree distance was 2 m × 4 m. The shrubs in the
plots were stubbled differently in middle March 2019, including the stubble height of 0 cm
(distance of 0 cm from ground, S1), 10 cm (S2), 15 cm (S3), and 20 cm (S4) as well as a
control (no stubbling). Each stubble height was tested in triplicate. All sample plots were
sized 30 m × 30 m. The standard plants in the sample plots were surveyed and marked by
red paints. During stubbling, the plant samples sliced off were taken to the laboratory and
oven-dried in an oven until reaching constant weights, which were measured. The heights
of standard plants as-selected were measured in middle August of both 2019 and 2020.
Thereby, the plant height compensatory growth ofH. rhamnoides was calculated to analyze
the two-year average values. At the same time, the ground biomass of each standard plant
in each plot was monitored. Then, the average compensatory rate of ground biomass from
August 2019 or August 2020 to March 2019 was calculated.

Detection of soil physiochemical properties
In August of each tested year, at horizontal distance of 10 cm from the standard plant in
each forest land, a soil column at the 10 cm layers was collected using a soil auger, and used
for analysis of soil physiochemical properties. The data were averaged between two years.
Formeasurement of soil N, P the soil samples were wind-dried indoor, cleaned by removing
fine roots and impurities, and passed a 0.25 mm soil screen. SOC was measured using the
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Figure 1 The location of the study area. The study area is located in Geqiu groove watershed (39◦42′–
39◦50′N, 110◦25′–110◦48′E) of Nuanshui Village, Jungar Banner, Ordos, Inner Mongolia. Figure source
credit: 10.27229/d.cnki.gnmnu.2020.000695.

Full-size DOI: 10.7717/peerj.13363/fig-1

Table 1 Information of plots before stubbling.

Index 0 cm stubble
(S1)

10 cm stubble
(S2)

15 cm stubble
(S3)

20 cm stubble
(S4)

Control
(CK)

Total coverage/% 65.0± 1.15b 58.9± 1.2c 68.4± 0.51a 64.6± 0.85b 67.2± 0.67ab

Average height/cm 98.63± 2.69a 99.93± 3.07a 99.13± 2.75a 102.63± 3.25a 100.87± 5.53a

Species richness 5.2± 0.43a 5.5± 0.41a 5± 0.82a 5.1± 0.7a 5.2± 0.59a

Ground biomass/g m−2 2536± 1.5b 2673± 4.78a 2635± 0.65a 2673± 2.78a 2622± 0.85a

Notes.
Data are all expressed as mean± standard deviation; different lowercase letters indicate significant differences among treatments (P < 0.05).

potassium dichromate external heating method. TP was detected using acid-dissolved Mo
Sb colorimetric method. Soil pH was measured using the potential method. Soil moisture
content was detected using the drying method. On a sunny day in August, soils were
collected under each standard tree from the three repeated plots of each treatment and
measured. Finally, the data were averaged. Total soil porosity was calculated as capillary
porosity and non-capillary porosity according to the method by Li et al. (2020). The soil
capillary porosity and non-capillary porosity were detected using the ring cutter suction
method (Zhang et al., 2020). On a sunny day in August, soils were collected under each
standard tree from the three repeated plots of each treatment and measured.
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Compensatory growth indices
The compensatory growth mode was comprehensively judged according to the results
of compensation indices and analysis of variance (ANOVA). Let GH be the plant height
compensation, which is the sum of plant height harvested in August and plant height cut off
inMarch; let GB be the ground biomass compensation, which is the sum of ground biomass
harvested in August and ground biomass cut off in March. The plant height compensation
index (GH/C) and the biomass compensation index (GB/C) can be calculated as follows:

GH/C = plant height at a specific stubble height/plant height of the control;
GB/C = ground biomass at a specific stubble height/ground biomass of the control;

Compensation index G/C>1 and significant difference between a stubble height treatment
and the control; G/C = 1 and no significant difference; G/C <1 and significant difference
indicate over-compensation, equal compensation, and under-compensation respectively
(Belsky et al., 1993).

Data processing and analysis
The differences in average height, ground biomass, soil physiochemical properties, and
compensatory growth ability among different stubble heights were examined by one-factor
ANOVA on IBM SPSS Statistics 24.0. Multiple comparisons were conducted using the least
significant difference method (LSD). Relationship between compensatory growth ability
of H. rhamnoides at different stubble heights and soil physiochemical properties was tested
using redundancy analysis (RDA) on Canoco5. Plotting was finished on Origin 2019.

RESULTS
Compensatory growth ability of H. rhamnoides at different
stubble heights
The values of GH/C under treatments S1, S2, S3 and S4 are 1.32, 1.35, 1.45 and 1.22
respectively, which are all larger than 1 (Fig. 2A). The values significantly increase by
31.50%, 34.75%, 45.25% and 21.75% respectively from that of the control (1.05 m).
The GH/C is not significantly different among treatments S1, S2 and S3 (P > 0.05), and
the plant height compensation ability is the best after treatment S3. The stubble height
also affects the ground biomass of H. rhamnoides (Fig. 2B). The values of GB/C under
different treatments are 1.13, 1.18, 1.24, and 1.15, respectively, which are all larger than
1. Compared with control (2.92 kg), the ground compensatory biomass at different
stubble heights significantly rise by 12.75%, 18.25%, 23.75%, and 15.25% respectively.
The GB/C is not significantly different among treatments S1, S2 and S4 (P > 0.05). The
biomass compensatory ability after treatment S3 is the best (1.24) and is significantly higher
compared with treatments S1 (1.13), S2 (1.18), and S4 (1.15) (P < 0.05).

Soil eco-stoichiometric variation characteristics of H. rhamnoides at
different stubble heights
The physiochemical properties of understory soils in H. rhamnoides at different stubble
heights changed in different trends (Fig. 3). In particular, the changes of TP and TN
are synchronous, and rank both as S3>S2>S1>S4>Control. The changes of SOC rank as
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Figure 2 Shoot height and biomass compensatory ability ofH. rhamnoides at different stubble
heights. Different lowercase letters indicate significant difference between treatments.

Full-size DOI: 10.7717/peerj.13363/fig-2

S3>S4>S1>S2>Control, and rise significantly by 40.62%, 58.97%, 44%, 36.96% from that
of control (P < 0.05). The C:N ratios vary within 8.77 and 12.15 among stubble heights,
and rise by 2.45%, 8.01%, 4.49%, and 0.42% respectively from that of control, but are not
significantly different among the stubbling treatments. The C:P and N:P ratios both rank
as Control>S1>S4>S2>S3, and the C:P and N:P ratios of S3 decline significantly by 42%
and 32.72% respectively compared with control (P < 0.05).

Eco-stoichiometric correlations of understory soils in H. rhamnoides
forests
The TP, TN, and SOC contents of understory soils are very significantly correlated
(p< 0.01). The TP, TN, and SOC contents are all very significantly and negatively correlated
with C:P (Table 2) (p< 0.01). The TP and SOC contents are both very significantly and
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Figure 3 Eco-stoichiometric characteristics in soil C, N, P contents ofH. rhamnoides at different stub-
ble heights. Different lowercase letters indicate significant difference between treatments.

Full-size DOI: 10.7717/peerj.13363/fig-3
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Table 2 Variation coefficients of soil eco-stoichiometric ratios ofH. rhamnoides at different stubble
heights. Eco-stoichiometric characteristics of soil C, N, P contents in H. rhamnoides at different stubble
heights.

TP TN SOC C:N C:P N:P

TP 1.0000
TN 0.87** 1.0000
SOC 0.96** 0.89** 1.0000
C:N 0.1500 −0.2700 0.2000 1.0000
C:P −0.91** −0.73** −0.78** −0.0600 1.0000
N:P −0.86** −0.52* −0.77** −0.51* 0.89** 1.0000

Notes.
Pearson correlation analysis, two-tailed test; * significant correlation; P < 0.05, ** extreme significant correlations, P < 0.01.
*Correlation is significant at the 0.05 level.
**Correlation is significant at the 0.01 level.

negatively correlated with N:P (p< 0.05). N:P is correlated negatively with both TN, and
C:N, and positively with C:P, all very significantly (p< 0.01).

Effects of compensatory growth and soil properties on soil
eco-stoichiometric characteristics of H. rhamnoides at different
stubble heights
The eco-stoichiometric ratios of understory soils, compensatory growth under different
stubble heights, and understory soil properties were sent to RDA. The explanation rates
of axis 1 is 92.72% (Fig. 4), indicating the explained eco-stoichiometric ratio is correlated
to different factors. SOC, TP, and TN are all positively correlated with total porosity,
GH/C, soil moisture content, GB/C, water holding capacity, and stubble height, but are
negatively correlated with soil bulk density and pH. N:P is correlated positively with soil
bulk density and pH, and negatively with total porosity, GH/C, soil moisture content,
GB/C, water-holding capacity, and stubble height. C:N, and C:P are correlated negatively
with soil bulk density and pH, and positively with total porosity, GH/C, soil moisture
content, and GB/C.

Soil moisture content can most largely explain the eco-stoichiometric feature of
understory soils (81.6%), followed by total porosity (7.4%) (Table 3). The effects of
soil moisture content and total porosity both are very significant (p= 0.002). The effects of
soil bulk density, maximum water-holding capacity, stubble height, pH, GB/C, and GH/C
on the eco-stoichiometric feature of understory soils are all less than 3.0% and insignificant
(P > 0.05).

DISCUSSION
The plant height and biomass compensation indices were both larger than 1 and over-
compensatory growth occurred under any stubble height. The compensation growth
indices differed among stubble heights, but were all significantly larger compared with the
control (Fig. 2). First, the plant height compensatory growth was significant under stubble
heights of 0 cm (1.32), 10 cm (1.35), and 15 cm (1.45), but was not significantly different
among treatments. This may be because the ground heights of plant communities are stable
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Figure 4 RDA of eco-stoichiometric ratio and soil properties. SM, soil moisture content; SH, stubble
height; SB, soil bulk density; TPo, total porosity; WH, water-holding capability; GH/C, plant height com-
pensation index; GB/C, biomass compensation index.

Full-size DOI: 10.7717/peerj.13363/fig-4

Table 3 Eco-stoichiometric characteristics of soil C, N, P contents inH. rhamnoides at different stub-
ble heights. Importance sorting and significance test of explanation by environmental variables.

Influence
factor

Interpretive
degree/%

Contribution/% F P Sorting by
importance

SM 81.6 87.6 79.6 0.002 1
TPo 7.4 7.9 11.4 0.008 2
WH (%) 1.2 1.3 1.9 0.186 3
SB 1.5 1.6 2.6 0.146 4
SH 1.2 1.3 2.3 0.17 5
PH <0.1 <0.1 0.2 0.704 6
GB/C 0.2 0.3 0.4 0.522 7
GH/C <0.1 <0.1 <0.1 0.966 8

Notes.
SM, soil moisture content; SH, stubble height; SB, soil bulk density; TPo, total porosity; WH, water-holding capability;
GH/C, plant height compensation index; GB/C, biomass compensation index.

within a certain range of stubble height (0–15 cm), and the plant height compensation
index under stubble height of 20 cm is lower than other three stubbling treatments. Second,
during the revegetation of H. rhamnoides in feldspathic sandstone areas of Ordos, priority
shall be given to the stubble height of 15 cm, which will create the best condition for
vegetation recovery. The biomass compensation index under stubble height of 15 cm
(1.24) is also significantly higher than the other three treatments. The possible reason for
this result is that at the stubble heights of 20, 15, 10, and 0 cm, the upper, middle, and
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middle lower parts of plants were cut off respectively. During the recovery ofH. rhamnoides
after stubbling treatments, the middle part of plants was under a relatively appropriate
environment in the populations and was the fast-growing part. Hence, appropriate stubble
height (15 or 10 cm) increased nitrogen distribution in the ground part (Ilmarinen, Mikola
& Vestberg, 2008; Sun et al., 2019). This change offered resources for the reproduction
of the ground part, and eliminated the apical dominance in the middle lower part and
irritated to produce more new issues, thereby improving the tillering and photosynthesis
of H. rhamnoides (Du & Yang, 1989) and accelerating growth and recovery (Newingham,
Callaway & Bassirirad, 2007; Zheng et al., 2017). Thus, this may be one of the reasons why
the biomass compensation ofH. rhamnoides is the most obvious at the stubble height of 15
cm. All these variations led to over-compensatory growth after stumping. At the stubbling
treatment of 0 cm, however, the whole ground part was cut off, and all ground branches and
leaves were cleared away. Consequently, the reproduction ofH. rhamnoides only depended
on the nutrients stored in the basal part of stems, root collar, and roots. These nutrients
played important roles in the initiation of reproduction and the early-stage growth of H.
rhamnoides (Meuriot et al., 2004; Dhont et al., 2003). Compared with other stubble heights,
the stubble height of 0 cm offered more space, mobile air and strong solar radiation for the
growth of H. rhamnoides, which were favorable environmental conditions for the growth
of new branches. Moreover, after whole-plant cutting, the upward nutrient transportation
from the underground roots was shortened and quickened. Also, because the respiration
and consumption by the old basal leaves disappeared, all nutrients in the roots can be
utilized by new branches and leaves, which created a material condition for the growing
leaves and branches. Because of the fast growth of new branches and leaves, the plant height
compensatory growth was significantly higher than those of S4 and control. The biomass
of treatments S1, S2, and S4 was significantly lower than that of S3, but was significantly
higher than that of control, indicating the stubble heights of 0, 10 and 20 cm affected the
biomass similarly during the tested years, and the biomass under stubble height of 15 cm
(S3) was significantly higher than those of other treatments. This was probably because the
removal of root meristems and aging tissues and the formation of lateral branches and new
tissues (Guo & Qi, 2018) improved the illumination conditions in the middle lower parts
and thereby increased net primary production. Under the stubble height of 0 cm (S1), the
whole ground part was removed, which decreased the photosynthesis ability and destroyed
the growing points of plants, leading to an increase of death rate (Hunt, 2001). Besides,
total removal of ground biomass in arid and semiarid areas caused the ground exposure,
increased soil evaporation and hindered plant growth. Thus, the biomass compensation
index under stubble height of 0 cm (1.13) was significantly lower than other stubbling
treatments. Generally, appropriate stubble height (S3 or S2) can improve the biomass yield
of communities, but low stubble height (S1) may decrease the biomass yield. In all, the
stubble height of 15 cm can well accelerate the growth of the ground part ofH. rhamnoides.

Our results also show that the TP, TN, and SOCcontents of understory soils in feldspathic
sandstone areas of Ordos are 0.27, 0.57 and 5.95 g/kg respectively. Our results are close to
the data in Jungar desert areas, but the TN concentration is higher compared with relevant
data in Loess Plateau of China (0.40, 0.76, 7.77 g/kg) (Zeng, Li & Dong, 2015), the dry
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farming areas of Northeast China (0.77, 1.43, 16.79 g/kg) (Zhuo et al., 2019), and Jungar
desert areas of China (0.35, 0.21, 5.73 g/kg) (Tao et al., 2016). Our results indicate the
nitrogen fixation ability in the roots of H. rhamnoides is significantly improved. According
to Soil Nutrient Concentration Classification of China, TP is at very low level, and TN
and SOC are at low levels. Basically, the soil nutrient concentrations in this feldspathic
sandstone region are low and far lower than the average levels of China (0.65, 1.06, 11.12
g/kg) (Tian et al., 2010). Our results are consistent with the research by Yang et al. (2005),
suggesting the understory soil nutrients of feldspathic sandstone areas in Ordos are lean.
The TP, TN, and SOC contents of understory soils under different stubble heights are
all significantly different from those of the control (P < 0.05). Snyder & Williams (2003)
stated that the soil organic matter contents (C and N) dropped after the removal of ground
biomass following stubbling treatment, and such drop was less severe as the stubble height
was shortened (Hao et al., 2018). Furthermore, stubbling treatment can trigger root growth,
leading to an increase of SOC (Ziter & MacDougall, 2013). Our results show the TP, TN
and SOC contents of understory soils after stubbling are all higher those of the control,
which is consistent with the findings of Ziter & MacDougall (2013). The soil nutrient
concentrations under stubble height of 15 cm are significantly higher compared with other
treatments (Fig. 3). One reason is ascribed to the roots grown in the H. rhamnoides under
stubble height of 15 cm (Liu et al., 2021). The fixation by the huge root system can improve
the erosion resistance of soils and restrict soil erosion, which increases soil silt and clay
contents and optimizes soil properties. Another reason is that under the stubble height
of 15 cm compared with the stubble heights of 0 and 10 cm, the biomass reserved in the
middle and lower parts of each plant ensures the renewing and rejuvenation abilities,
and the canopies can effectively block rain to decrease erosion from raindrop splash and
decelerate understory potential evaporation, leading to an increase of soil temperature and
humidity. This result is consistent with the study by Han et al. (2014) that stumping can
improve nutrient contents and alter the relative distribution of nutrients, improving the
nutrient-absorbing capacity of plants.

The average values of C:N, C:P, and N:P in understory soils are 10.48, 23.16 and 2.22
g/kg respectively, which are lower than the average levels of China (12.30, 52.63 and 4.20)
(Zeng, Li & Dong, 2015). By comparing the C:N, C:P, N:P ratios of understory soils among
different stubble heights, we think the above stable ratiosmay be explained by the long-term
stable supply–demand relationship that exists between soils and plants during the growth
of H. rhamnoides (Gong et al., 2017). The soil C:N ratio is not significantly different and
is stable in soils (which means no severe variation within short time or at the space scale)
(Black et al., 2010). Hence, the correlation analysis shows SOC is very significantly and
positively correlated with TN. The C:P ratio is a characterization index of P availability,
and a lower C:P ratio indicates higher soil P availability (Yusup, Mansur & Nasima, 2015).
The C:P ratio in the study area is far lower than the average level of China, indicating the
P availability of understory soils in H. rhamnoides forests is higher. Yang, Chen & Zhang
(2019) also proved that at C:P < 200, the P release rate surpassed the P holding rate, thus
increasing the P availability.
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Redundancy analysis can uncover the coordinating relationships of soil physical factors
with soil SOC, TN, TP contents and the eco-stoichiometric ratio, and help to more
reasonably explain soil nutrients (Li et al., 2021). Soil moisture content is a key carrier
of soil element migration and circulation and can directly affect soil nutrients and plant
growth. Our results show soil moisture content is significantly correlated with the soil SOC,
TN, TP contents and the eco-stoichiometric ratios of understory soils in H. rhamnoides
forests (P = 0.002) (Table 3). Feng et al. (2020) found understory pores with excellent
structures were well developed in H. rhamnoides forests, suggesting the increase of organic
content is favorable for the formation of soil pores. Hence, soil moisture content and soil
porosity are both closely related to soil SOC, TN, TP contents and their eco-stoichiometric
ratios.

CONCLUSIONS
This study was targeted at the decaying H. rhamnoides artificial forests in a feldspathic
sandstone region. The plant height compensation ability and biomass compensation
ability of H. rhamnoides at different stubble heights were studied. The relationships of
plant height compensation ability, biomass compensation ability, stubble height and soil
physicochemical properties with the eco-stoichiometric features of understory soils were
further discussed. (1) Overcompensatory growth ofH. rhamnoides in feldspathic sandstone
areas occurred at all stubble heights. In particular, the plant height compensation index
(1.45) and biomass compensation index (1.25) at the stubble height of 15 cm were both
larger compared with other processing modes. Results show the stubble height of 15 cm
can well promote the rapid growth of the ground part of H. rhamnoides in feldspathic
sandstone areas of Ordos. (2) All stubble heights significantly affected the SOC, TN, TP
contents and their eco-stoichiometric ratios in understory soils, but the changing rules
differed. SOC, TN, and TP at all stubble heights were larger than those of the control, and
maximized at the stubble height of 15 cm (6.97, 0.66,0.36 g/kg respectively). To maintain
the ecosystem stability of feldspathic sandstone areas, the H. rhamnoides at the decaying
phase shall be stubbled to the height of 15 cm, which will improve the soil physicochemical
properties in these areas. (3) The understory C, N, P stoichiometric ratios ofH. rhamnoides
in feldspathic sandstone areas are jointly affected by compensatory growth, stubble height,
and soil physicochemical properties. The understory soil eco-stoichiometric ratios of H.
rhamnoides are mainly affected by soil moisture content (contribution of 87.6%) and total
porosity (7.9%).
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