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Abstract

In this study, hierarchies of probabilistic models are evaluated for their ability to characterize

the untemplated addition of adenine and uracil to the 3’ ends of mitochondrial mRNAs of the

human pathogen Trypanosoma brucei, and for their generative abilities to reproduce popula-

tions of these untemplated adenine/uridine “tails”. We determined the most ideal Hidden

Markov Models (HMMs) for this biological system. While our HMMs were not able to genera-

tively reproduce the length distribution of the tails, they fared better in reproducing nucleotide

composition aspects of the tail populations. The HMMs robustly identified distinct states of

nucleotide addition that correlate to experimentally verified tail nucleotide composition differ-

ences. However they also identified a surprising subclass of tails among the ND1 gene tran-

script populations that is unexpected given the current idea of sequential enzymatic action of

untemplated tail addition in this system. Therefore, these models can not only be utilized to

reflect biological states that we already know about, they can also identify hypotheses to be

experimentally tested. Finally, our HMMs supplied a way to correct a portion of the sequenc-

ing errors present in our data. Importantly, these models constitute rare simple pedagogical

examples of applied bioinformatic HMMs, due to their binary emissions.

1 Introduction

In this paper, the framework of Hidden Markov Models (HMMs) was applied to an interesting

data set from molecular biology. Our analysis had two major purposes. We wanted to identify

strengths and weaknesses of HMMs in discovery and predictive roles for this specific dataset,

and highlight the pedagogical utility of this dataset in teaching and exploring HMMs. A HMM

is a probabilistic model consisting of a set of ‘hidden’ states which stochastically transition

between each other with fixed transition probabilities; each state also stochastically emits

observables with fixed emission probabilities. The hidden states are generated through a Mar-

kov chain process, with observables chosen randomly according to a state-specific distribution

of probabilities. Historically one of the first uses of HMMs was in the field of speech recogni-

tion, and more generally language processing. Indeed Markov himself first used the simpler
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Markov chain formalism to explore patterns of vowels and consonants in Pushkin’s grand

poem Eugene Onegin. These applications, while very interesting, are also very complex and are

essentially impossible to analyze by hand. With the advent of computers, efficient algorithms

for training a HMM on data (the Baum-Welch algorithm) and determining the most probable

sequence of hidden states through a HMM given an emission symbol sequence (the Viterbi

algorithm) were developed in the 1960s.

In the 1980s and 1990s the use of HMMs exploded in popularity in bioinformatics applica-

tions, mainly for analyzing DNA or protein sequence data. A classic example is the GENSCAN

gene-finding algorithm of Burge and Karlin [1], which is also quite complex. The introductory

examples of HMMs in bioinformatics textbooks are usually quite artificial because of the com-

plexity of emission variables in most natural examples in molecular biology. The problem we

consider here has only two emission observables, and so provides a novel and non-contrived

setting for simple HMMs with real biological content. The famous text of Durbin, Eddy,

Krogh, and Mitchison [2] uses the occurrence of CG islands to introduce HMMs, but even this

relatively simple model requires a minimum of eight hidden states and four emission types. In

contrast, the most complicated models we show here have six states and only nucleotides ade-

nine (A) and uridine (U) as emission types.

The mRNA of almost all eukaryotes is modified from its original transcribed sequence

by non-templated nucleotide addition (typically polyadenylation, or addition of successive

adenosines (As)) to the 3’ end. This occurs in both cell nuclei and in organelles that possess

independent genomes. The length of a 3’ poly-A tail varies greatly among species and tran-

scripts. In humans most non-mitochondrial transcripts have tails of 40-80 As, although the

full range is 0 (for some histones, for example, which are polyuridylated [3]) to at least 250

bases [4]. Our focus is the unusual 3’ addition of both A and U to mitochondrial transcripts

of the human parasite Trypanosoma brucei. Some addition of U to poly-A mRNA tails has

been described in other systems, for example in myxomycetes (Stemonitis flavogenita and

Physarum polycephalum) [5], yeast (Saccharomyces pombe) [6], plants, and algae and plants

organelles [7–10], and humans [3]. In S. pombe the uracil additions can affect degradation

pathways [11]. However the complexity and role of these additions seem limited compared

to those in the mitochondria of T. brucei and other Kinetoplastida. Of all natural non-tem-

plated nucleotide addition processes, those in the kinetoplasts may be the best suited to

explore dual emission type HMM.

The order Kinetoplastida (NCBI taxonomic id 5653) consists of hundreds of species,

some of which are heteroxenous parasites. Some insect-transmitted trypanosomes, includ-

ing Trypanosoma brucei, which causes African sleeping sickness in humans and nagana in

cattle, threaten the health of humans and livestock. The kinetoplastids are characterized by

an unusual single mitochondrion containing an extraordinarily large amount of DNA [12]

the expression of which requires multiple novel post-transcriptional events [13]. In addition

to the previously-mentioned addition of non-templated tails consisting of A and U, most of

the mitochondrial mRNAs undergo a targeted insertion and deletion of a few to hundreds of

uracils (RNA editing) to generate a translatable sequence [14]. For transcripts undergoing

editing, their identity as pre-edited or edited will influence the nucleotide composition of

their tail populations. An initial extension (an in-tail) with particular characteristics includ-

ing a high composition of A is initially added to each gene’s transcript population. However,

transcripts that do not require editing to encode their protein, or those in which editing has

been completed, can acquire an extension to the in-tail and become an ex-tail with a higher

composition of U. Ex-tails are not present on transcripts prior to editing [13]. An example is
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shown below.

. . .GCUAGG
|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}

templated

UUUAAAAAAAAAAAAAAAAAA
zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{

in-tail

UAAUUAAUAAAAUUAAUAUAU
zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{

ex-tail

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
untemplated tail

In T. brucei the respiratory pathway that is in part encoded in the mitochondrial genome is

essential for its survival in the insect but shut off when T. brucei is in the glucose-rich blood-

stream [15–17]. Remodeling of mitochondrial gene expression occurs as part of this transition

[18]. At least some regulation of the mitochondrial transcriptome occurs at the RNA level

[13], and we have previously analyzed the variation of content (nucleotide length and compo-

sition) in the 3’ tail additions between life stages. We have found differences in tail composi-

tion between insect (P = procyclic) and bloodstream (B= (mammalian) bloodstream) life

stages [18]. Other studiess have identified relationships between tail presence and stability [19,

20], tail composition and precursor mRNA processing [20], and tails and translation [21, 22].

Uridylation of Kinetoplastida mitochondrial transcripts is primarily performed by the pro-

tein KRET1 [23], and adenylation by KPAP1 [19], that are both members of protein com-

plexes. A host of RNA binding proteins of the PPR family modulate tail addition and stability

[20, 22, 24–26], and putative enzymes such as KPAP2 [27] may also play roles. Deciphering

the mechanism of and roles for 3’ tail additions in T. brucei has required genetic manipulation

and subsequent tracking of downstream effects such as mRNA tail composition.

This approach has proven hugely informative, but mechanisms of tail addition are clearly

complex. We undertook the current study in part to determine what is additionally gained by

analyzing 3’ tail addition from the opposite orientation. We wished to know if features inher-

ent in tail populations could reveal additional information about the process of untemplated

addition that did not become apparent when we used a biologically-guided choice of model

[18]. We also wanted to assess the capacity of HMMs for predicting non-templated tail fea-

tures, including computationally parsing and potentially correcting any biases inherent in the

use or manipulation of Illumina sequencing data to characterize tail populations. The results

of our study apply to all non-encoded nucleotide synthesis that is not restricted to single-

nucleotide homopolymer addition. They also highlight a simple context for HMM that is of

potential pedagogical benefit.

2 Statistical properties of tail populations

Our current and previous [18, 28] work focuses on a dataset of tail populations from tran-

scripts of the T. brucei mitochondrial genes CO1, CO3, and ND1 collected from both the pro-

cyclic and bloodstream life stages (denoted CO1B, CO1P, CO3B, CO3P, ND1B, and ND1P

henceforth). Unlike CO1 and ND1, CO3 is an edited mRNA. The CO3 tails analyzed here are

derived from the pre-edited CO3 transcripts only, and thus are entirely in-tailed. CO1B tran-

scripts also lack ex-tails because even while these mRNAs exist in low abundances in blood-

stream-form cells, they are very likely not translated and indeed lack evidence of ex-tails [18].

Statistical properties of these tail sequences were presented in previous publications [18, 28],

including the distribution of tail lengths and adenine content. However, before aggressively

evaluating the full potential for HMMs in defining and comparing these datasets, we wished to

perform two additional statistical analyses, as this information could be useful in interpreting

any unusual or unexpected models that we might later encounter.

It was important to determine if an early stage of tail addition influences subsequent nucle-

otide addition. One pattern that would suggest such a process would be if predominant nucle-

otide identity (A or U) of positions early in the tail differed for tails of specific lengths. An
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indicator of such an influence would be differences in composition of the early tail sequence

between tails of different lengths. Therefore, we analyzed the positional composition of tail

populations of fixed lengths from 1 to 60 nucleotides. For CO3 tails, a strong correlation

between beginning with a U-rich region and tails that achieved lengths of� 50 nucleotides or

more was observed. A heat map of A versus U composition for each position specific to popu-

lations of discrete tail lengths is shown in Fig 1 for all analyzed tail sets. This result suggests

that the composition of nucleotides added early in tail addition can affect the number of subse-

quent additions.

We also analyzed a feature that is a hallmark of in-tails: a preponderance of homopolymeric

additions (either A or U), in comparison to the more frequent nucleotide switching observed

in ex-tails (see example in Introduction). To specifically examine in-tails we utilized the tail

population datasets that lack ex-tails for this investigation (those derived from CO1B, CO3B,

and CO3P) (Fig 2). We first examined differences in A and U polymer lengths between tran-

scripts. We found that the distributions of U-homopolymers were simpler than that of the A-

homopolymers, with almost entirely monotonic decreases. Almost all U-homopolymers were

less than 15 bases long for all examined tail populations. The A-homopolymer distribution was

more complicated in that the distribution contains more robust, well-defined peaks of longer

homopolymers. The CO3B and CO3P tail population distributions are more similar to each

other than those of CO3B and CO1B. This provides additional indirect evidence that in-tail

additions are regulated differentially between genes, as suggested in earlier works [18, 28, 29].

The previous result led us to focus predominantly on the distribution patterns of A-homo-

polymer rather than U-homopolymer additions within each population of tails. Initially we

selected the CO1 populations for which to perform this analysis, because CO1 shows both ex-

tail addition (in the procyclic form) and virtually no ex-tails in the bloodstream form. In enu-

merating homopolymers, we developed an index that refers to homopolymers of both A and

Fig 1. Tail composition by length. U/A composition of tails at each nucleotide position indicated on the x axis

(Position 1 is the first non-encoded nucleotide attached to the mRNA’s 3’ end) for the population of tails of exactly

each length specified on the y axis. Red and green indicate 100 percent U and 100 percent A, respectively.

https://doi.org/10.1371/journal.pone.0244858.g001
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U numbered from 5’ to 3’, as shown:

AAAA
zfflfflffl}|fflfflffl{

A1

UUUUUU
|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}

U2

AAA
zffl}|ffl{

A3

UUUUUUU
|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}

U4

AAAAAAAAAAAAAAAA
zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{

A5

. . .

and

UUU
zfflffl}|fflffl{

U1

AAAAAAAAAA
|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}

A2

UU
z}|{
U3

AAAAAA
|fflfflfflfflfflffl{zfflfflfflfflfflffl}

A4

UUUU
zfflfflffl}|fflfflffl{

U5

. . .

Originally, tail data was acquired by individually cloning and sequencing tails in limited

numbers, so that only the most predominant tails were captured. From that time, in-tails have

typically been described in the literature as A-homopolymers, sometimes possessing an initial

addition of a short U-homopolymer, as these tails predominate. Therefore, one point of con-

cern was that quantitation of in-tail homopolymers at the level of A/U3 and higher would be

very rare relative to the A-homopolymer (A1) tails of the population, and thus their length dis-

tributions supported by very few reads. However, as the total number of tails analyzed was so

high, this was not the case. For example, over 58,000 tails were used to compute the A5 value

for CO1P tail population.

We found that the length of the first A-homopolymer can vary from later homopolymers.

Specifically, the initial A-homopolymer (A1 or A2) is considerably longer in the CO1 gene in

both life stages, as shown by the peaks around 20-25 bases in Fig 3. This result might reflect

that initial A-homopolymer addition is in a different biological context than later in-tail addi-

tions. Interestingly, the distributions of the initial (A1) homopolymer in other genes (CO3P

and ND1) in either life stage do not exhibit a trend similar to the CO1 A1 homopolymer.

These transcript tail A1 datasets do not show spikes of longer homopolymers in Fig 4 (solid

lines).

We hypothesized that the cluster of CO1 A1 homopolymers in the range of 15-30 nt in

length may be largely comprised of tails containing no U (exclusively poly(A)) that are tradi-

tionally considered the initially added tail in trypanosome mitochondria. To determine this,

we analyzed only sequences with no Us in them (i.e. there is no U1 state; a poly(A) tail) and

Fig 2. Homopolymer distribution in tails. Distribution of lengths of A-homopolymer (left) and U-homopolymer

(right) found within tail populations of the three transcripts that are only expected to possess the primarily

homopolymer-containing in-tails. Y axis scales differ in the left and right graphs.

https://doi.org/10.1371/journal.pone.0244858.g002
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compared the distribution of A-homopolymer lengths to those of all A1 homopolymers. We

did this for all transcript sample sets to determine whether this is true only of CO1 tail popula-

tions or is a larger trend most visible among the CO1 tails. The length distributions are strik-

ingly different, as the poly(A)-only tails appear much more precisely length-controlled than is

A addition in the context of co-occurring oligouridylation (Fig 4). While this is most obvious

for CO1 populations, it is also evident to a lesser extent for the ND1P tail population. Because

of the difference in homopolymer lengths between the A1 and later A-additions, and the

higher length control exercised on a poly(A) tail, in our final models (described in Section 5,

below) we added a separate progressive state (‘A-only state’) that only adds the initial A1,

which we will describe at that time. Also uncovered by this methodology are a longer

Fig 3. CO1B and CO1P A-homopolymer distributions. The frequency distribution of lengths of A-homopolymers in

CO1B and CO1P transcript tail populations. A1 indicates the first homopolymer encountered starting from the first

nucleotide of non-templated addition, A2 indicates the second, on to the eighth encountered homopolymer (A8), in the

populations of tails in which they occur.

https://doi.org/10.1371/journal.pone.0244858.g003

Fig 4. Initial A-homopolymer distributions. Distribution of initial A-homopolymer lengths for tail populations of all

analyzed transcripts (solid lines) and poly(A) tail-only sub-populations (dotted lines) for each transcript tail dataset.

https://doi.org/10.1371/journal.pone.0244858.g004
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subpopulation of poly(A) tails in the 25-45 nt range on other gene transcript populations

including those of the pre-edited CO3 tails.

To provide a sense of the differences between the tail sequences that we seek to capture in

our models, we show below three randomly selected sequences from each tail population,

drawn from the population of sequences that only appear on mRNAs of that specific gene and

life-stage.

CO3B:
UUUAAAAAAAAUUUAAAAAAAAAAAAAAAAAAUAAAAAAAAAAAAAAAAAAAAAAAAAA
UUUUUUUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAUAAAAAAAAAAAAAAAAAAAA
UUUUUUUAAAAAAAAAUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAUAAAAA-

AUAA
CO3P:
UUUUUUUUUUUUUUUUUAAAAAAUAAAAUAAAAAAAAAAA
AUUUUUUUUUUUUUUAAAAAAAAAAAAUAAAAAAAAAAAAAAAAAAUAAAA
AUUUUUUUUUUAAAAUAAAAAAUAAAAAAAAAAAAAAAAAAAAAAAA
CO1B:
AAAAAAAAUAAAAUAAAAAAAAAAAAAAAAAAAAAU
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAUAAAAAAAAAAUUUUUAUU
AAAAAAUAAAAAAAAAAUAAAAAAAAAAAAAUA
CO1P:
AAAAAAAAAAAAAAUUAAUAAAAAAUUAAAAAUUAAAAUAUAAUAAUAAAAUAU
AAAAAAAAAAAAUAAAAAAAAUAAUAAAUAAUAUAUAAUAAUUAAUUUAAUUUUUUAUA-

UAU
AAAAAAAAAAAAAAAAAAAAAAAUAAUUAAUAAAAUUAAUAUAUAUAAUAAUA
ND1B:
AAAUAUUUUUUAAAAAAAAAAAAAAAAAAAAAAAAUUAAA
UUUUUUUUUAAAAUAAAAAAAAAUUUUUUUAAAAAAAAUAAAAAUUAAAAAAAAAAAAA-

AAAAAAA
UUUUUUUUUUUUUUUUUUUUAAAAAAAAAUUUUUAUUAAAAAAAAAAUAAAAAAUAAAA-

AAAU
ND1P:
AAAUUUAAAAAAAAAAAUAAAAAAAAAAUAAAA
AUAAUUAAAAAAAUAAAAAAAAAUAAAAUAAUAUAAAAUAAAAAUAUAAAAAAUAUAAA-

UUUAAAUAA
AUAAAAAAAAAAUAUUAAUAUUAAUUAUUUAUUAUAUAUAAUAUAAUAUAUAUUAAAAU-

UAU

3 Performance of biological system-informed HMMs of increasing

complexity

In previous work [18] we categorized in-tails and ex-tails by using a HMM of one discrete

complexity level. Our previous HMM [18] (in this text referred to as model B5, shown in Fig

5) contains five nucleotide-adding hidden states; a single one of those hidden states corre-

sponds to the ex-tail addition. For a given sequence the Viterbi method was used to determine

the most likely path through the model, and if the state path contained the ex-tail state the cor-

responding nucleotides were considered to be part of the ex-tail. Our 5-state HMM worked

well for that categorization purpose, but in order to explore the generative ability of HMMs as

applied to these datasets and potentially identify unexpected states, we considered HMMs of a

range of complexities.
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The simplest possible model with which to analyze our datasets is shown in Fig 6. A single

state emits either an A or a U, with the emission probabilities determined by the training data

(the silent Begin/End states are ignored in our state counts). We will refer to this as Model B1

(Beginning model 1). Model B1 has 2 independent parameters: one determines the transition

probabilities (p and 1-p in our figure) out of the emittive state, and the other determines the

proportion of A versus U in the emissions. The hidden states that emit both A and U can be

interpreted biologically as a distributive or a progressive process. As shown in Fig 7, a silent S

state can represent a disassociated enzymatic complex rather than a continuous process of

addition shown on the left. Computationally it is simpler, and equivalent, to model the proces-

sive addition of mixed emissive states. Regardless of this flexibility, Model B1’s output would

be insufficient to capture the strong correlation between consecutively added nucleotides in

the in-tails—i.e. the tendency to have longer homopolymers. Since the limited output of

Model B1 is only theoretically sufficient to capture final ratios of A and U in the tails, we did

not utilize it and examined the the next-simplest possibility instead.

A two-state model, B2, allows separate states for adding an A or U. Model B2 as shown has

5 independent parameters (Fig 8). This model would do a much better job than B1 at capturing

the overall correlation between consecutively added nucleotides within the tail dataset.

Fig 5. Model B5. 5-state model (B5) used to determine tail addition in previous studies.

https://doi.org/10.1371/journal.pone.0244858.g005

Fig 6. Model B1. The 1-state model (B1) of nontemplated nucleotide addition on Trypanosoma brucei mitochondrial

mRNAs.

https://doi.org/10.1371/journal.pone.0244858.g006
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However, if subsets of tails within the complete dataset possess different or changing correla-

tions, Model B2 would be inadequate to capture this. Specific to our datasets, Model B2 cannot

distinguish which states correspond to the in-tail and which states correspond to the ex-tail

addition.

In contrast, Model B3 includes an additional state that would allow for modeling differ-

ences between in-tail and ex-tail characteristics if more than just the in-tail state exists for the

tail population. It is the simplest possible model that can reflect dual states and has 9 indepen-

dent parameters. Any tail passing through the state depicted as “A/U” in Fig 9 is considered an

ex-tail. We generated a combined dataset of tail populations of the three transcripts whose tail

populations should reflect ex-tailing on which to train this model. Fig 9 includes the emission

probabilities after training on a combined ex-tail-containing dataset (samples CO1P, ND1B,

and ND1P). In Model B3 and Model B5 described next, the ex-tail state adding both As and

Us should train to have close to a 7:3 ratio, as observed experimentally [19] when such a state

is biologically present. Indeed, in all samples which contain ex-tails, we found that the A/U

state converges after training to a value approximating a 7:3 ratio (in some cases, the number

was closer to a 2:1 ratio). In contrast, the A/U state from samples which do not contain ex-tails

do not train to a similar A:U ratio. Instead, this potential A/U state usually converges an A-

adding state. Tails which are modeled as passing through the ex-tail A/U state are

Fig 7. Model equivalence. Equivalence of mixed hidden states with a distributive process of nontemplated nucleotide

addition.

https://doi.org/10.1371/journal.pone.0244858.g007

Fig 8. Model B2. 2-state model of nontemplated tail addition (B2), with five independent transition parameters a,b,c,

d, and e. This model cannot be used to distinguish between in-tail and ex-tail addition.

https://doi.org/10.1371/journal.pone.0244858.g008
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approximately twice as long as those modeled as consisting entirely of in-tail sequence under

both our B3 and B5 models. The assignment of a nucleotide to the ex-tail state is very robust

for these models; in comparing the Viterbi algorithm assignments of states for models B3 and

B5, over 99% of the tails passing through the B5 A/U state passed through the B3 A/U state.

One thing that could not be captured by Model B3 is whether there is information imparted

in the in-tail that influences whether or not it will become ex-tailed. The correlation of an

initial U sequence with longer tails in CO3 tail populations seen in Fig 1 is not relevant here

because those populations contain only in-tails. To capture the possibility of ex-tail additions

being specific to some characteristic of in-tail addition, a model would need a separate path for

exclusively in-tail additions. Model B5, which we previously used to quantify tail features [18],

possesses this feature. We performed an analysis for each tail population to see if the sequences

going though the in-tail only top set of states were any different than those passing through

the in-tail to ex-tail bottom set of states. We found no statistical differences between these, in

terms of overall length or overall composition, for any of the six transcript datasets. In light of

this, Model B3 is nearly as sufficient as Model B5 for capturing the characteristics of these tails,

at least in the populations analyzed.

The B3 and B5 models can classify in-tails and ex-tails, but we wanted to know their capac-

ity as generative models. For each of our six tail datasets, we generated a tail length frequency

profile using Models B1 through B5 trained on each respective dataset. The mean tail lengths

generated from every model were very close to the observed mean length (in every case the dif-

ference in mean length was less than 5% of the standard deviation). However, these models

failed in their ability to recapitulate the tail length distribution, as shown in Fig 10. In every

case the standard deviation of tail lengths generated by the models is much larger than that of

the observations.

As neither of the relatively simple HMMs B1 or B2 performed better than Model B3 or

Model B5 at matching the details of the tail length distribution, we concluded that the termina-

tion of tail elongation is not a process that is well modeled by the memoryless Markov state

structure. The empirical length distribution can be forced by ad hoc mechanisms but this fails

to illuminate any additional features of biological relevance.

We also examined the A and U homopolymer length distribution output by our models.

For example, Fig 11 left and center panels compares the distribution of lengths of the initial

(A1) A-homopolymers in our data and from model B3. The B3 model reproduced the differ-

ences in the CO1 lengths quite well—i.e. the local maxima at tails lengths of approximately 16

nucleotides, which are unique to that gene among the three studied. It also captured to some

extent the presence of longer tails in the CO3 gene samples.

Fig 9. Model B3. 3-state model of nontemplated tail addition (B3), with state transition percentages from the model

trained on combined CO1P, ND1B, and ND1P experimentally-derived Illumina sequenced tail data.

https://doi.org/10.1371/journal.pone.0244858.g009
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4 HMM sequence error correction

The success of the Model B3 in classifying the in-tail versus ex-tail states suggested that this

model could also be used to correct for some sequencing and library-creation errors in our tail

sequences. Prior to being used in training models, we had previously restricted the tail popula-

tion datasets to tails only containing nucleotides A and U. Although this removed approxi-

mately 14 percent of the tails across all datasets, the datasets were so large (averaging over

Fig 10. Actual and model tail length distributions. Observed and model output tail length distributions using B-

series HMMs of all tested complexity levels.

https://doi.org/10.1371/journal.pone.0244858.g010

Fig 11. Model B3 A1-homopolymers. Distribution of initial (A1) homopolymer lengths generated by model B3.

https://doi.org/10.1371/journal.pone.0244858.g011
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700,000 tail sequences per sample type) that the tails they contained after clean-up still far

exceeded the minimum number to adequately train our models and use the models to detect

differences between tail populations. However, we wanted to see how our outputs would

change if those eliminated tails were corrected and restored to the tail population.

CircTAIL-seq combines circular reverse transcription—polymerase chain reaction

(cRT-PCR) and deep sequencing techniques, and the errors associated with each of these tech-

niques need to be considered in the overall error rate. In our tail sequences, we have assumed

that every C/G is an error. The reason for this is two-fold: (1) There have been no enzymes

identified that can efficiently add C/G. While KPAP1 can inefficiently add C/Gs at high con-

centrations (100uM), KPAP1’s affinity for As exceeds this even at much lower concentrations

(1uM) [19]. (2) While the As and Us have a non-random pattern in transcripts and life-stages,

and between in- and ex- tails, the C/Gs have no discernible pattern. We acknowledge that we

cannot determine if any of the A/Us are cRT-PCR or sequencing errors with this method. We

also recognize that every C/G may not be a cRT-PCR or sequencing error, but we cannot dif-

ferentiate between technique-derived errors and cell or enzyme-derived errors. KRET1 (the

U-adding enzyme) has been shown to have a slight affinity for Cs rather than Gs [30], which

led us to compare error rates of overall transcripts to transcripts with high numbers of Us.

While there are slightly more C errors than G errors across all transcripts (C error

rate = 0.00352, G error rate = 0.00262), when we examine only transcripts that have a high U

content, the C and G error rates (C errors = 0.00358—0.00332, G errors = 0.00272—0.00247)

do not change. This suggests that we cannot link the addition of C to KRET1 activity. If some

instances of C/Gs are in fact the actual state of the sequences inside the cell, then the error rate

for our process will be lower than what we here have calculated.

To decrease errors during library creation, the PCR step is optimized in circTAIL-seq by

determining the fewest number of cycles possible while still generating a product [28]. Addi-

tionally, unlike other 3’ non-encoded tails, trypanosome tails are made up of heterogenous A/

U sequences, which reduces, though does not negate, the concern for error associated with

long homopolymeric regions in Illumina sequencing [4, 31]. The C/G error rate was 0.004 per

base for tails with two or less C/Gs. We did not include the tails that had more than two C/Gs

because they could represent tails that were not processed correctly and still include pieces of

the transcripts from which they were derived. This C/G error rate includes 2/3 of the possible

errors as each base has three incorrect options. We then multiplied the C/G error rate by 1.5 to

determine an overall error rate of 0.006. Using the estimated error rates for the KAPA2G

robust polymerase (5.88 � 10−6, KAPA Biosystems) and for MMLV polymerase (3.3 � 10−5

[32]), and the equation supplied in [33], we found the RT-PCR step had an estimated error

rate of 0.000143. Next, we investigated the error rate associated with Illumina sequencing by

analyzing the error rate for the PhiX DNA that was spiked in before sequencing. This error

rate was 0.0048, so we determined that the majority of the errors were Illumina sequencing

related. This source of error is unavoidable, so we considered methods to overcome these

errors.

12% of our sequences from analysis across all datasets contained a single C or G, corre-

sponding to an error rate of 0.0035 per letter. We extended the emissions of Models B2 as well

as Model B3 to include Cs and Gs, and then corrected the Cs and Gs based on the Viterbi algo-

rithm’s state assignment for each tail sequence. For Model B3, the corrections for the ex-tail

state with approximately 70% A and 30% U emissions were randomly re-labeled with the same

probabilities as the emissions. Because errors were more common in longer sequences, the

main result of our corrections was an upward shift in the observed tail length distribution as

shown for the three genes with transcript tails populations containing ex-tails in Fig 12.

Finally, we considered attempting to correct for errors in the A and U as well as the G and C
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Fig 12. Error corrected tail lengths. Histograms of tail lengths for ex-tail containing datasets CO1P, ND1P, and

ND1B inclusive and exclusive of sequences containing corrected G and C erroneous nucleotides.

https://doi.org/10.1371/journal.pone.0244858.g012
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bases. However, any such correction would be much more dependent on knowledge of the

true biological tail addition process, and so we deferred this until more experimental data is

available.

5 Unstructured and ultimate HMMs

Although there is a logical, biological basis for the structure of the models we have been using

thus far, by structuring them as we have we have potentially introduced some bias and missed

discovering state possibilities. We therefore examined unstructured (designated with a G))

models which had no restrictions on their emissions and transitions, apart from having a sin-

gle well-defined start/stop state. These models (G1—G5), with an expanded complexity range

relative to Models B1—B5, are shown in Fig 13. Initial transition probabilities were chosen for

each gene and life stage to match the observed A1 distribution. When training other model

parameters the A-only state parameters are held fixed. Models G1 and G2 are equivalent to

Models B1 and B2, although random initial values were chosen prior to training. After training

on the sequencing error-corrected data (as described above in Section 4), these models pro-

vided further evidence for the lack of ex-tail states (with an approximate 7:3 A:U ratio) in the

CO1B, CO3B, and CO3P samples. In Models G3 and G4, state 2 has converged to an ex-tail

adding state for the CO1P, ND1B, and ND1P datasets. Interestingly, the unstructured models

also suggest a surprising sub-population of tails which immediately enter an ex-tail state

Fig 13. Unstructured model topologies. Post-training unstructured model topologies and emissions of U and A

nontemplated tail addition to populations of 3’ mRNA ends of the mitochondrial genes indicated at the top. Models go

from simplest in the top row (G1, 1 state) to complex at the bottom (G5, 5 states). The areas covered by the separate

colors in each state circle are proportional to their emissions: uncolored circle labeled ‘B’ indicates the beginning/end

state, red is single adenine addition, and blue is single uracil addition. The thickness of the arrows connecting states is

proportional to the transition probability.

https://doi.org/10.1371/journal.pone.0244858.g013
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without the prior addition of longer U- and A-homopolymers, which we discuss below. An

unanticipated discovery such as this reveals the value of unstructured models in this work. For

the unstructured models, G5, with 5 emissive states, was the highest complexity that we exam-

ined. It has 53 free parameters. They are of high enough dimension that the Baum-Welch

training algorithm does not always converge to the global optimum. This increase in local

optima results in a difficulty in drawing consistent inferences about the connections to actual

biological states in this model. Therefore, we conclude that models with more parameters than

Model G5 can have little relevance, at least in this two-observable emission system.

Finally, working off the unstructured models and the emissions that are presented in Fig

13, we added constraints that delineate the A-homopolymer only state suspected earlier to be

a discrete entity (Fig 4). As it was clear that even an unstructured model identifies an ex-tail

state when it exists, we customized one model for tail populations from transcripts that should

be comprised of only in-tails, and one for populations consisting of both in-tails and ex-tails.

The basic connectivity and model-to-biological state correspondences of our final consensus

models before training (initial values) are shown in Fig 14, a 4-state model for tail populations

of in-tails only and a 5-state model for populations containing ex-tails. In both, state 1 was

constrained to have a self-transition matching that of a model trained on A-only tails, and

state 1 is only accessible by transitions from itself or the initial (B) state. It is unclear a priori
how exactly to separate the A-only state 1 and state 2 in training the models, and so it is impos-

sible to distinguish their separate functional roles. This ambiguity corresponds to the biological

question of how separate in location, composition, and regulation the process of A-only addi-

tion is from the A-and-U in-tail addition. Thus states 1 and 2 remain hybrids of the two possi-

ble biological pathways, one of which may only add As, and the other which transitions into

the A- and U-adding process.

After training, the random models with these constraints converge to those shown in Fig

15. The models readily show qualitative differences in emissions of tail populations between

the mRNAs and between life-stages. An exception is the tail dataset pair CO3B/CO3P, whose

models have trained into very similar forms. As tails are known to play regulatory roles, this

indirectly suggests that the pre-edited CO3 mRNA is less differentially regulated between

lifestages.

The small numbers of U-additions present in states 1 and 2 in Fig 15 are presumably the

result of sequencing and replication errors which introduced spurious Us. While it would be

Fig 14. Final model topologies. Pre-training model topologies and emissions for the best unstructured models for

each tail dataset. The areas covered by the separate colors in each state circle are proportional to their emissions:

uncolored circle labeled ‘B’ indicates the beginning/end state, red is a single adenine addition, and blue is a single

uracil addition.

https://doi.org/10.1371/journal.pone.0244858.g014
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possible to use our trained models to remove these, circular data modification has the potential

to distort and overfit it. Therefore, we did not attempt to correct these minor aberrancies.

In general these final models provide an improved fit to the data as determined by the

degree to which log-likelihood per emission matches actual values obtained for tail popula-

tions. For example, compared to our model B5 the final models improve the log-likelihood

per emission by a mean of 1% (this is the total log-likelihood of all sequences from the for-

ward-backward algorithm divided by the total number of nucleotides in the sequences). The

most extreme difference in model emissions between states can be clearly observed in Fig 15

between CO1 bloodstream and procyclic form tail populations. Since only the CO1P tail popu-

lation has tails in an ex-tail state, the CO1 models have differing total numbers of states (4 ver-

sus 5). Less visually obvious is that both CO1 samples have the largest proportion of A-only

state 1. This is detectable in Fig 15 as the narrower line representing a lower transition proba-

bility from the beginning state B to the U-adding state 3 in CO1 models compared to ND1 and

CO3. With a lower probability of tails initiating with U, it follows that a higher proportion of

tails will feed into the predominantly A-only state 1 (slightly thicker line for CO1).

Additional ways to view the accuracy of final model versus prior model emissions are to

compare plots generated with the model outputs with plots of the actual training data. In this

and previous work we have plotted directly from the data such features as tail length profiles,

homopolymer composition across the tail lengths, overall U and A homopolymer profiles, and

the homopolymer profile of the first A homopolymer in tails initiating with “A” (A1). The

latter metric is a simple one for which we have already compared the training data set with

model B3 emissions in Fig 11 (left two panels). We therefore decided to select this metric to

compare the relative abilities of the B2 and final model emissions to predict A1 homopolymer

length profiles for the tail populations. The A1 homopolymer length is a parameter capturing

both compositional and length data, so it seemed a relevant tool to compare models. A

Fig 15. Post-training final models. Post-training model topologies and emissions for the best unstructured models

for each tail dataset. The three models in the top row are in-tail only models, while the three bottom row models

include ex-tails. The areas covered by the separate colors in each state circle are proportional to their emissions:

uncolored circle labeled ‘B’ indicates the beginning/end state, red is a single adenine addition, and blue is a single

uracil addition. Line thickness indicates transition probability, with thicker arrows indicating higher probability and

thinner arrows indicated lower probability.

https://doi.org/10.1371/journal.pone.0244858.g015
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significant improvement is seen for shorter homopolymers. However, the ends of the distribu-

tions are not dramatically better, and in general the HMM framework is not optimal for

modeling the termination of nucleotide addition. This modeling difficulty suggests that a sepa-

rate biological mechanism may exist for termination. The same problem exists for the B3 mod-

els. When taken in sum, the shape of the A1 length profile curves of the final model (Fig 11

right panel) more closely align in shape and amplitude with those of the training data than

those of the B3 model. Some discrepancies, however, still exist.

Finally, ND1 tail population emissions best exhibit the unexpected feature of immediate ex-

tail states (state 5), particularly in ND1P tails where the transition probability from the initial

‘B’ state to state 5 is 0.045. We consider this to be an additional advantage of the final models.

Tails evidently entirely generated in an ex-tail state may reflect a real difference in regulation.

In other words, some ND1 transcripts in the procyclic life stage may bypass the expected in-

tail addition stages.

6 Conclusion and future application

The 3’ mRNA tail addition system in T. brucei mitochondria provides an excellent opportunity

to study the application of probabilistic modeling to elucidating genetic and biochemical

details of a complex system. Sequence data from this system consists of binary strings which

are relatively simple to characterize. Structured HMMs with small numbers (2-4) of hidden

states performed well at state classification tasks on these datasets, but failed as generative

models. The unstructured state models provided new, testable hypotheses on more subtle vari-

ations in tail addition that should correspond to distinct and yet unidentified biological states.

For example, we may hypothesize that these variations reflect subtle functional changes to

enzymatic or regulatory proteins that result from post-translational modifications, or changes

in composition to protein or RNA-protein complexes. Additionally, our added constraints to

the unstructured models to reflect the A-only addition pathway more clearly revealed the dif-

ferences between the datasets in both state transition probabilities and relative nucleotide com-

positions that define each state post-training. The clarity of modeling output shown here for

trypanosome mitochondrial mRNA tail addition demonstrates why it could serve as a real-

world introduction to the application of HMM for biological systems in a most simplified

form.
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