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Introduction
Ciliated organisms are found in each of the existing eukary-
otic clades, including Excavata, such as euglenids, Rhizaria, 
such as ameboflagellates, Chromalveolata, such as dinoflagel-
lates, Amoebozoa, such as pelobionts, Plantae, such as green 
algae, and Opisthokonta, such as the fungus Batrachochytrium  
dendrobatidis and animals. Thus, the eukaryotic cenancestor 
must have had a cilium, which performed both motor and 
sensory functions (Satir et al., 2008; Cavalier-Smith, 2010). In 
multicellular organisms, many cilia have become specialized 
cellular antennae, known as primary cilia, which regulate pro-
cesses such as embryogenesis, tumorigenesis, feeding behavior, 
kidney function, vision, and smell (Davenport et al., 2007; 
McEwen et al., 2008; Han et al., 2009; Wong et al., 2009; Goetz 
and Anderson, 2010; Hildebrandt et al., 2011). Unlike primary 
cilia, motile cilia and flagella are restricted to a handful of 
human tissues, in which they propel sperm, regulate embry-
onic left–right patterning, clear airway mucus, and partici-
pate in cerebrospinal fluid movement (Bloodgood, 2010).

Cilia are not fully encompassed by the membrane (Fig. 1); 
yet, their composition is distinct from that of the surrounding 

cytosol and plasma membrane. Other specialized subcellular do-
mains, such as neuronal axons, generate their unique composition 
through multiple mechanisms (Winckler and Mellman, 2010). 
Some proteins are delivered directly to axons by means of spe-
cific targeting signals and pathways (selective targeting). Other 
proteins accumulate in axons by being endocytosed from so-
matodendritic, but not axonal, membranes (selective removal). 
Yet, other proteins concentrate inside axons by specifically in-
teracting with axonal components (selective retention), whereas 
still others cannot enter axons because they are anchored to 
cytoskeletal or extracellular matrix elements elsewhere in the 
cell (selective exclusion). These mechanisms act in concert with 
diffusion barriers at the base of the axon, which restrict entrance 
and exit of both membrane and soluble proteins (Winckler and 
Mellman, 2010). Emerging evidence suggests that, similar to 
axons, selective targeting, exclusion, retention, and diffusion bar-
riers also control ciliary composition (Mazelova et al., 2009a; 
Dishinger et al., 2010; Hu et al., 2010; Francis et al., 2011).

Building the cilium: Where the centriole 
meets the membrane
The ciliary axoneme is nucleated from the mother centriole, the 
older of the two centrioles in the centrosome (Bornens, 2012). 
Because mother centrioles are part of spindle poles during cell 
division, cilia must disassemble before mitosis and form again 
only upon entry into G1 (Kobayashi and Dynlacht, 2011).

Ciliogenesis begins with the attachment of the distal end of 
the mother centriole to a vesicle (Fig. 1; Sorokin, 1962, 1968). 
This attachment is mediated by the centriolar distal appendages, 
also called transition fibers when they are associated with a 
cilium (Anderson, 1972; Deane et al., 2001). After docking, a 
bud emerges from the mother centriole, bending the membrane 
(Sorokin, 1962). This bud elongates from its tip to form the 
axoneme, but the base remains structurally distinct and will 
become the transition zone (Rosenbaum and Child, 1967; 
Boisvieux-Ulrich et al., 1989). The transition zone starts 
where the nine microtubule triplets in the basal body become 
doublets and is characterized by Y links, champagne glass-
shaped structures that connect each doublet to the overlying 
membrane (Gilula and Satir, 1972). This overlying membrane 

Cilia are conserved, microtubule-based cell surface pro-
jections that emanate from basal bodies, membrane-
docked centrioles. The beating of motile cilia and flagella 
enables cells to swim and epithelia to displace fluids. In 
contrast, most primary cilia do not beat but instead detect 
environmental or intercellular stimuli. Inborn defects in 
both kinds of cilia cause human ciliopathies, diseases with 
diverse manifestations such as heterotaxia and kidney 
cysts. These diseases are caused by defects in ciliogenesis 
or ciliary function. The signaling functions of cilia require 
regulation of ciliary composition, which depends on the 
control of protein traffic into and out of cilia.
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conservation, Y link assembly has species-specific requirements 
(Craige et al., 2010).

From the transition zone, the axoneme elongates until it 
reaches a stable length (Ishikawa and Marshall, 2011). As no 
protein synthesis occurs within the cilium, intraflagellar trans-
port (IFT) must deliver axoneme components to the ciliary tip 
for assembly (Rosenbaum and Child, 1967). IFT is a bidirec-
tional axoneme trafficking system driven by microtubule mo-
tors (Kinesin-2 and cytoplasmic Dynein propel the anterograde 
and retrograde directions, respectively) that are associated with 
two subcomplexes, IFT-A and -B (Pedersen and Rosenbaum, 
2008). Although Kinesin-2 and IFT-B subunits are essential 
for axoneme formation, cytoplasmic Dynein and many IFT-A 
subunits are not, but disruptions in either cause cilia to be-
come short and bulbous (Marszalek et al., 1999; Huangfu  
et al., 2003; Huangfu and Anderson, 2005; May et al., 2005; 
Pedersen and Rosenbaum, 2008; Tran et al., 2008; Ocbina  
et al., 2011; Qin et al., 2011). These data suggest that the IFT-B 
complex is required for anterograde IFT, which traffics tubulin 
subunits and other building blocks to the ciliary tip and is thus 
required for ciliogenesis, and that IFT-A complexes participate 
in retrograde IFT. These results do not exclude roles for IFT-B 
in retrograde trafficking or for IFT-A in the anterograde traffick-
ing of some cargo.

Transition fibers may promote ciliogenesis by recruiting 
IFT components to the ciliary base (Deane et al., 2001; Ishikawa 
et al., 2005; Graser et al., 2007; Singla et al., 2010). Transition 
zone proteins are also required for ciliogenesis in some cell 
types of both C. elegans and mice (Garcia-Gonzalo et al., 2011; 
Williams et al., 2011). Because some transition zone proteins 
interact with IFT components, they might also help recruit them 

contains the ciliary necklace, a circumferential set of intra-
membranous particles (Fig. 2, A–C; Gilula and Satir, 1972; 
Sattler and Staehelin, 1974; Menco, 1980; Hufnagel, 1983; 
Fisch and Dupuis-Williams, 2011).

The transition zone houses a network of ciliopathy pro-
teins that play important roles in Y link and axoneme formation 
(Fig. 2, D–G; van Reeuwijk et al., 2011). One of these com-
plexes spans the membrane and contains many of the proteins 
implicated in Meckel syndrome (MKS) and Joubert syndrome 
(JBTS), two ciliopathies characterized by brain, kidney, and 
limb defects (Dowdle et al., 2011; Garcia-Gonzalo et al., 
2011; Sang et al., 2011; Chih et al., 2012). Another transition 
zone complex contains Nphp1, 4, and 8, three proteins encoded 
by genes mutated in nephronophthisis (NPHP), a cystic kidney 
ciliopathy (Winkelbauer et al., 2005; Fliegauf et al., 2006; 
Vierkotten et al., 2007; Jiang et al., 2008, 2009; Sang et al., 2011; 
Won et al., 2011). In Caenorhabditis elegans, homologues of 
the MKS–JBTS and NPHP complexes have overlapping func-
tions in forming both Y links and transition fibers (Williams  
et al., 2008, 2010, 2011; Huang et al., 2011; Warburton-Pitt  
et al., 2012). Nphp8, mutations in which can also cause MKS 
or JBTS, functionally interacts with members of both C. elegans 
modules and is required for the transition zone localization of 
MKS–JBTS proteins (Huang et al., 2011; Williams et al., 2011). 
Thus, Nphp8 connects both modules, functionally if not struc-
turally. In other organisms, a similar role may be played by 
Cep290, a protein that is absent from C. elegans but is involved 
in human NPHP, MKS, and JBTS and is part of the MKS–JBTS 
complex (Garcia-Gonzalo et al., 2011; Sang et al., 2011). In the 
green alga Chlamydomonas reinhardtii, Cep290 is essential for 
Y link formation, indicating that, despite their evolutionary 

Figure 1.  Ciliogenesis. Cilium formation starts 
when a mother centriole contacts a ciliary ves-
icle. Axonemes elongate at their tips and so 
are constructed from proximal to distal, with 
the most proximal region giving rise to the tran-
sition zone. The ciliary vesicle grows with the 
axoneme and gives rise to the ciliary sheath, 
whose fusion with the plasma membrane ex-
ternalizes the cilium and transforms the outer 
sheath into the periciliary membrane.
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Figure 2.  The transition zone. (A) Freeze-etch electron micrograph of tracheal epithelial cilia. The ciliary necklaces are at the ciliary base.  
(B) Electron micrograph of a cross section through a transition zone of a mollusk gill cilium, showing the microtubule doublets connected to the  
ciliary membrane by nine Y links. (C) Diagram of the transition zone, showing the Y links connecting the microtubules to the ciliary necklace. The  
A indicates the convex freeze-fracture face of the membrane. A–C are obtained from Gilula and Satir (1972). (D) Domain structure of transition  
zone components. The Tectonic proteins (TCTN1–3) share a signal peptide (pink bars) and a cysteine-rich Tectonic domain. Transition zone trans-
membrane proteins (TMEMs) include TCTN2, TCTN3, TMEM17, TMEM67, TMEM231, and TMEM237 (predicted transmembrane helices are 
shown as yellow bars). MKS1, B9D1, and B9D2 share B9 domains related to lipid-binding C2 domains. Several transition zone proteins contain 
C2 domains, coiled-coil (CC) domains, or both. Inversin (INVS) and NPHP5 have calmodulin-binding IQ motifs. NPHP4 contains two major sperm 
protein (MSP) domains, NPHP3 is an ATPase with tetratricopeptide repeat (TPR) domains, NEK8 is a serine/threonine kinase, and ATXN10 contains 
Armadillo repeats. (E) The transition zone protein interaction network. Genetic experiments in C. elegans reveal two main functional modules in 
this network. The first module is mostly comprised of genes, the human homologues of which are implicated in NPHP, whereas the second contains 
genes associated with MKS and JBTS. These functional modules closely match the results of biochemical experiments in mammalian cells. According 
to these, proteins in the MKS–JBTS module (green) mostly interact with other proteins within the same module and only rarely with those in the NPHP 
module (each line designates a reported protein–protein interaction). The NPHP module consists of several interconnected complexes, shown in  
different colors (Sang et al., 2011; van Reeuwijk et al., 2011). (F) Most known transition zone proteins are encoded by genes mutated in at least  
one of three related ciliopathies, NPHP, JBTS, and MKS. (G) Schematic of a Y link with a model of its composition. Nphp1 and Nphp4 bind  
microtubules, so they may connect Y links to microtubule doublets (Mollet et al., 2005). Cep290 and other coiled-coil proteins may form the central portion 
Y links. C2 and B9 domain-containing proteins are predicted to bind lipids, so they may be membrane proximal. Tctn1 also interacts with transmembrane 
proteins but is predicted to be on the extracellular face of the ciliary necklace, as it contains a signal peptide.
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photoreceptors adapt to darker environments by increasing 
Transducin and decreasing Arrestin in their outer segments, 
which are specialized cilia (Calvert et al., 2006). Thus, under-
standing how proteins reach the ciliary base and how they enter 
and accumulate in the cilium is essential to understanding cilium-
based intercellular communication.

Trafficking of soluble proteins to the ciliary 

base. Cytosolic proteins should be able to reach the ciliary 
base by diffusion. However, transport to Xenopus laevis cen-
trioles is at least threefold faster than diffusion, and several 
centriolar components require microtubules and the Dynein–
Dynactin complex to reach centrioles (Young et al., 2000; 
Dammermann and Merdes, 2002; Quintyne and Schroer, 2002; 
Guo et al., 2006; Kodani et al., 2010). Furthermore, the ciliary 
localization of Gli2 requires cytoplasmic microtubules, the 
minus ends of which anchor to the subdistal appendages of the 
basal body (Mogensen et al., 2000; Kim et al., 2009).

Interestingly, some of the proteins involved in this 
microtubule-dependent pathway, including PCM-1 and Par6-, 
accumulate in centriolar satellites, electron-dense granules 
that surround centrioles (Kubo et al., 1999; Dammermann and 
Merdes, 2002; Kodani et al., 2010). These satellites are also 
observed in the vicinity of ciliary basal bodies (Kubo et al., 
1999; Mogensen et al., 2000; Kunimoto et al., 2012). Several 
ciliopathy proteins, including Ofd1, Cep290, and the BBSome 
complex, localize to centriolar satellites as well as the cilium 
(Nachury et al., 2007; Kim et al., 2008, 2009; Lopes et al., 2011). 
Collectively, these data suggest a role for minus end–directed 
microtubule traffic of soluble proteins toward the ciliary base 
and the use of satellites as way stations for some (Fig. 3 A).

Trafficking of soluble proteins into the cilium. 
Two large complexes involved in flagellar motility, the outer 
Dynein arms and the radial spoke complex, both require IFT to 
enter flagella, suggesting that there is a size limit for entry into 
the cilium that is overcome using IFT (Fig. 4, A and B; Qin et al., 
2004; Hou et al., 2007). However, the molecular mass barrier 
to ciliary entry may be high; in rods, single (27 kD), tandem 
(54 kD), and triple GFP (81 kD) all reach the outer segments, 
and mathematical modeling suggests they diffuse freely through 
the connecting cilia (Calvert et al., 2010; Najafi et al., 2012).

Alternatively, different cell types may have different re-
quirements for ciliary entry. Although photoreceptor connect-
ing cilia structurally resemble the transition zones of other cilia, 
connecting cilia may be optimized for fast protein exchange to 
adapt to changes in illumination (Calvert et al., 2006). Dextrans 
of 40 kD and larger fail to enter cilia of nonphotoreceptor 
cells, whereas dextrans 10 kD or smaller readily enter, sug-
gesting that the cilia of some cell types have low size exclu-
sion limits (Kee et al., 2012).

Given that the basal body lumen is filled with electron-
dense material, the only path available for soluble proteins to 
access the cilium may be between adjacent transition fibers 
(Fisch and Dupuis-Williams, 2011; Brito et al., 2012). These 
spaces, 60 nm at their widest, could theoretically fit large 
protein complexes but not vesicles (Nachury et al., 2010). 
However, the actual exclusion limit for these spaces may be 
lower and remains unknown. A size exclusion barrier might 

to the ciliary base (Zhao and Malicki, 2011). However, cell 
types that grow axonemes in the absence of specific transition 
zone components display normal levels of IFT proteins and 
normal IFT rates, indicating that this may not be the case 
(Garcia-Gonzalo et al., 2011; Williams et al., 2011).

The elongation of the axoneme requires a parallel expan-
sion of the ciliary membrane. This expansion takes place at 
the plasma membrane in epithelial cells but occurs intracellu-
larly in mesenchymal cells (Sorokin, 1962, 1968). In the latter 
case, the ciliary vesicle fuses with secondary vesicles, creating 
a ciliary sheath with an inner and an outer membrane (Fig. 1). 
In epithelial cells, ciliary membrane expansion may result from 
both vesicle fusion at the ciliary base and the lateral diffusion 
of lipids and proteins from the contiguous plasma membrane. 
Consistent with the intimate involvement of vesicle trafficking 
in ciliogenesis, several proteins involved in vesicle budding 
(AP-1 and Clathrin), targeting (Rab8, Rab11, and TRAPP), 
tethering (Exocyst), and fusion (SNAREs) participate in cilio-
genesis (Yoshimura et al., 2007; Mazelova et al., 2009b; Zuo  
et al., 2009; Kaplan et al., 2010; Westlake et al., 2011).

Fusion of the ciliary sheath with the plasma membrane 
exposes the cilium to the extracellular space (Fig. 1). Because this 
process is topologically equivalent to other forms of exocytosis, 
externalizing the cilium likely requires exocytic machinery. Upon 
fusion, the outer membrane of the ciliary sheath becomes the 
periciliary membrane, a domain that continues to act as the dock-
ing region for cilium-bound vesicles and thus plays an important 
role in the homeostasis of mature cilia (Bouck, 1971; Peters et al., 
1983; Papermaster et al., 1985; Nachury et al., 2010).

How are ciliary membrane and axoneme extension co
ordinated? One regulator of this coordination may be Broad 
minded (Bromi; Ko et al., 2010). A Bromi mouse mutation 
causes an expansion of the ciliary membrane, within which the 
axoneme is curled, consistent with miscoordination of axoneme–
membrane attachment or growth. Bromi acts via cell cycle–
related kinase (CCRK), whose disruption recapitulates the 
Bromi phenotype. Interestingly, mutations in the C. reinhardtii 
CCRK orthologue lead to one flagellum being longer than the 
other (Tam et al., 2007). Thus, CCRK may have a conserved role 
in controlling the size of the ciliary axoneme and membrane.

Ciliary protein trafficking
Trafficking of receptors and signal transducers to primary cilia 
is critical for ciliary function and is disrupted in ciliopathies 
(Berbari et al., 2008a; Garcia-Gonzalo et al., 2011; Lancaster  
et al., 2011). Furthermore, ciliary signaling often involves regu-
lated trafficking of select proteins into and out of cilia. A good 
example is vertebrate Hedgehog signaling. Sonic hedgehog 
binds to its receptor Patched, causing it to exit the cilium and 
allowing Smoothened to enter, which in turn affects the cili-
ary accumulation and activity of Gli transcription factors 
(Corbit et al., 2005; Haycraft et al., 2005; Rohatgi et al., 2007; 
Kim et al., 2009). Similarly, regulated trafficking of signaling  
proteins into or out of C. reinhardtii flagella is required for mating 
and phototaxis (Pan et al., 2003; Wang et al., 2006; Huang et al., 
2007; Lechtreck et al., 2009). In addition, ciliary protein traf-
ficking can modulate signaling sensitivity. For example, retinal 



701Mechanisms of ciliogenesis and ciliary access • Garcia-Gonzalo and Reiter

unfolded repeats form a meshwork that occludes the nuclear 
pore lumen (Hoelz et al., 2011). In this way, importins and ex-
portins catalyze the nucleocytoplasmic transport of their cargos, 
which they recognize via NLSs or nuclear export sequences 
(NESs), respectively. Giving direction to the process is a con-
centration gradient of the GTP-bound form of the small GTPase 
Ran, which accumulates inside the nucleus where it stimulates 
cargo dissociation from importins and cargo association with 
exportins. The Ran-GTP gradient is in turn generated by the 
asymmetric distribution of RCC1, the chromatin-associated 
exchange factor that generates Ran-GTP, and RanGAP, the 
cytosolic enzyme that generates Ran-GDP (Cook et al., 2007).

also reside at the transition zone, where Y links may regulate 
soluble protein entry (Menco, 1980). In addition to acting as 
size exclusion filters, these physical barriers may also function 
as “smart” filters, allowing passage of large proteins only if they 
contain ciliary localization sequences (CLSs).

Recently, it has been suggested that ciliary and nuclear 
entry share several characteristics (Fig. 4 B; Dishinger et al., 
2010; Kee et al., 2012). The nuclear pore excludes proteins 
greater than 30 kD but allows passage of larger proteins if 
bound to importins or exportins (Cook et al., 2007). Importins 
and exportins directly interact with and transiently displace 
the phenylalanine-glycine repeat nucleoporins, whose natively 

Figure 3.  Trafficking to the ciliary base. (A) Soluble proteins (red circles) may reach the ciliary base by diffusion (center) or travel as cargo on minus 
end–directed microtubule motors, such as the Dynein–Dynactin complex (D/D; left). (right) Trafficking of soluble cargo may also involve centriolar satellites, 
large protein aggregates that may serve as assembly points, and way stations for cilium-bound proteins. (B) Trafficking of some transmembrane proteins 
(red) along the Golgi may be aided by IFT20, which may then hand them off to Arf4. Arf4 orchestrates the formation of cargo-containing cilium-bound 
vesicles that contain active Rab11 (blue), whose effector Rabin8 recruits active Rab8 (green) to the vesicle surface. Rab8 in turn recruits effectors that medi-
ate the vesicle’s approach, tethering, and fusion with the periciliary membrane. (C) Transmembrane proteins (red) may reach the cilium laterally from the 
plasma membrane or aboard vesicles that fuse with the periciliary membrane. Cilia-bound vesicles may derive from the Golgi or from recycling endosomes, 
which themselves may receive input from the Golgi and plasma membrane.
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the kinesin motor domain, accumulate in the nucleus instead of 
the cilium (Dishinger et al., 2010). Furthermore, grafting the 
Kif17 CLS onto a nonciliary kinesin causes the resulting fusion 
protein to go to the cilium (Dishinger et al., 2010). Therefore, 
ciliary localization of Kif17 requires both importin binding and 
an additional activity present in its motor domain, possibly plus 
end–directed microtubule motility. Kif17 is in turn required for 

Surprisingly, importin binding is also required for some 
proteins to accumulate inside cilia (Fan et al., 2007; Dishinger  
et al., 2010; Hurd et al., 2011). One such protein is the kinesin 
Kif17, whose ciliary localization depends on importin-2 bind-
ing to an NLS-like CLS in Kif17 (Dishinger et al., 2010). Indeed, 
replacing the CLS in Kif17 with a bona fide NLS supports its 
ciliary entry, and Kif17 mutants containing the CLS, but lacking 

Figure 4.  Access into and maintenance of distinct ciliary compartments. (A) Both soluble and transmembrane proteins may need to associate directly 
or indirectly with plus end–directed microtubule motors (Kinesin-2 or Kif17) to enter the cilium. The entrance may be between adjacent transition fibers.  
(B) Like the nuclear pore, the ciliary base can exclude proteins on the basis of their size. Thus, small proteins may diffuse into the cilium, but large proteins 
may need to associate with transport machinery to enter the cilium. (C) Potential locations for diffusion barriers preventing entrance of membrane proteins 
into cilia include the border between the plasma and periciliary membranes (blue), the bottom of the ciliary pocket where transition fibers anchor the basal 
body to the membrane (red), and the ciliary necklace (green). (D) Septin rings (red) form membrane diffusion barriers that define specific membrane com-
partments (green), including those of cilia, flagella, the midbody, dendritic spines, and yeast buds. (E) Soluble and membrane proteins may be retained 
inside cilia by directly or indirectly interacting with microtubules. (F) Selective exclusion and retention can account for differences in periciliary and plasma 
membrane composition. The cortical actin cytoskeleton is excluded from the region under the periciliary membrane. As a result, membrane proteins that 
directly or indirectly interact with actin filaments are excluded from the periciliary region. Conversely, certain proteins, such as Galectin-3, that accumulate 
in the periciliary region may be retained by extracytosolic interactions with the ciliary membrane or by interactions with the basal body or its associated 
microtubules (dashed arrows). c, cargo; GalNAc, N-acetyl-galactosamine.
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Like Rhodopsin, ciliary targeting of Polycystin-1 and -2, 
two transmembrane proteins involved in polycystic kidney dis-
ease, is dependent on Arf4-binding CLSs that contain VxPx 
motifs and, at least for Polycystin-1, also depends on ASAP1 
and Rab11 (Geng et al., 2006; Ward et al., 2011). Similarly, the 
CNGB1b subunit of the olfactory CNG channel contains a VxPx 
CLS (Jenkins et al., 2006). Therefore, Rhodopsin, Polycystins, 
and the CNG channel appear to use a common ciliary targeting 
mechanism. Formation of these cilia-bound vesicles may also 
involve clathrin coats and AP-1 adaptors, as these are required 
to move ODR-10, another GPCR, to C. elegans sensory cilia 
(Dwyer et al., 2001; Kaplan et al., 2010). As clathrin and AP-1 are 
essential for budding of endosome-bound vesicles from the TGN, 
endosome- and cilium-bound vesicles may form by similar mecha-
nisms, or some ciliary proteins may travel to cilia via endosomes 
(Fig. 3 C; Bonifacino and Traub, 2003; Kaplan et al., 2010).

Like Clathrin and AP-1, other proteins may have spe-
cialized roles in ciliary trafficking. For example, IFT20, a 
component of the IFT-B complex involved in ciliogenesis, 
also localizes to Golgi cisternae, post-Golgi vesicles, and basal 
bodies (Follit et al., 2006, 2008; Sedmak and Wolfrum, 2010). 
This localization suggests that IFT20 may have roles in mov-
ing proteins from the Golgi to the basal body, and indeed, 
moderate knockdown of IFT20 inhibits the ciliary localization of 
Polycystin-2 (Follit et al., 2006). GMAP210, a protein required 
for the Golgi but not basal body localization of IFT20, also 
promotes the ciliary localization of Polycystin-2, consistent 
with a trafficking role for IFT20 in the Golgi (Follit et al., 
2008). Similarly, IFT20 is required in rod cells for the efficient 
transport of Rhodopsin out of the Golgi (Keady et al., 2011). 
IFT20 interacts with the cytosolic tail of Rhodopsin but not 
through the VxPx motif (Keady et al., 2011). It will be interesting 
to see whether IFT20 binds to other ciliary membrane proteins, 
such as Polycystin-1 and -2, to target them to cilia.

Intriguingly, IFT20 localizes predominantly to the cis- 
and medial-Golgi cisternae and not the TGN, where most 
transmembrane proteins are sorted for delivery to post-Golgi 
compartments (Follit et al., 2006). One possibility is that 
IFT20 accompanies its cargo as it moves through the cis- and 
medial-Golgi and hands it off to Arf4 at the TGN (Fig. 3 B). 
Alternatively, IFT20 might facilitate transport from the cis-
Golgi to the cilium, bypassing the TGN, as has been proposed 
for Polycystin-2 (Hoffmeister et al., 2011).

Post-Golgi trafficking of cilium-bound vesicles involves 
Rab11, whose active form recruits and activates the Rab8–guanine 
nucleotide exchange factor Rabin8, which in turn recruits Rab8 
and TRAPPII, a vesicle-trafficking complex (Knödler et al., 2010; 
Westlake et al., 2011). Active Rab8 then recruits effectors, includ-
ing the Exocyst complex and possibly MyosinV, that tether the 
vesicle to the periciliary membrane (Fig. 3 B; Deretic et al., 
2004; Ishikawa et al., 2005; Roland et al., 2007; Omori et al., 
2008; Mazelova et al., 2009b; Jin et al., 2011). The Exocyst com-
plex facilitates the pairing of cognate SNARE proteins, leading to 
vesicle fusion with the periciliary membrane (Mazelova et al., 
2009b). In addition to delivering membrane proteins to the cili-
ary base, this same pathway drives ciliary membrane expansion 
during ciliogenesis, indicating that both processes rely on the 

the olfactory cyclic nucleotide–gated (CNG) channel to accu-
mulate in cilia, supporting the hypothesis that kinesin–importin 
complexes transport other proteins into cilia (Jenkins et al., 2006).

Like importin-2, Ran is implicated in ciliary trafficking. 
A GTP-locked form of Ran causes Kif17 to move from the cili-
ary tip to less distal ciliary positions until it disappears from the 
cilium altogether (Dishinger et al., 2010). Interestingly, knock-
down of RanBP1, a RanGAP cofactor present in the cilium, 
leads to an accumulation of ciliary Ran-GTP and also causes 
Kif17 to leave the ciliary tip (Fan et al., 2011). These results can 
potentially be explained by effects of Ran-GTP on the balance 
between anterograde and retrograde trafficking of Kif17 along 
ciliary microtubules or by changes in microtubule dynamics, 
which Ran-GTP is known to regulate (Keryer et al., 2003; 
Mishra et al., 2010; Fan et al., 2011; Halpin et al., 2011). To-
gether with the fact that a GDP-locked Ran mutant that disrupts 
nucleocytoplasmic transport does not affect the ciliary localiza-
tion of Kif17, these data suggest that the ciliary functions of 
Ran differ from those in nucleocytoplasmic transport (Dishinger  
et al., 2010). Future experiments that address how Ran-GTP 
levels in the cilium are controlled, the function of nucleoporins 
at the ciliary base (Kee et al., 2012), and whether exportins reg-
ulate ciliary exit will clarify the extent to which trafficking 
through the ciliary base and nuclear pores resemble each other.

Intraciliary retention of soluble proteins. The 
steady-state accumulation of a protein within a cilium can be 
achieved by either promoting its entry or blocking its exit. 
Analogous to ciliary entry, a protein’s ciliary exit rate reflects 
two parameters: (1) how frequently it reaches the ciliary base 
from within the cilium, and (2) how efficiently it crosses the 
ciliary base. Many ciliary components directly or indirectly 
interact with microtubules, limiting their access to the ciliary 
base and retarding their exit (Sloboda and Howard, 2007). 
Also, a slow rate of exit across the ciliary base may cause 
some proteins to be retained at the transition zone or in the 
compartment above it where Inversin localizes (Shiba et al., 
2009; Sang et al., 2011).

Trafficking of membrane proteins to the cili-

ary base. Transmembrane proteins start their lives in the 
endoplasmic reticulum, from which they travel to the Golgi 
apparatus. After reaching the TGN, they are sorted into vesicles 
bound to different subcellular destinations. The plasma mem-
brane acts as the default destination of TGN-derived vesicles, 
but targeting sequences on the transmembrane cargo proteins 
can drive vesicles to other compartments (Gu et al., 2001; Baker 
et al., 2008). In particular, CLSs on transmembrane proteins 
help recruit ciliary trafficking components that guide these 
vesicles to the periciliary membrane. For example, a VxPx motif  
in the cytosolic tail of Rhodopsin, a light-activated G protein–
coupled receptor (GPCR), recruits the small GTPase Arf4 to the 
TGN, leading to the formation of a complex that mediates Rho-
dopsin incorporation into cilium-bound vesicles (Fig. 3 B). This 
complex includes ASAP1, a protein that may couple cargo 
recruitment and vesicle formation, Rab11, which participates in 
ciliary vesicle trafficking, and Arfophilin-1/FIP3, which is a dual 
Arf/Rab11 interactor and may hence allow Rab11 recruitment to 
Arf4-containing vesicles (Mazelova et al., 2009a).
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components and, like the BBSome, is required for the ciliary 
accumulation of Sstr3 and Mchr1 (Berbari et al., 2008b; 
Mukhopadhyay et al., 2010). However, Tulp3 is not known 
to interact with the CLSs of these receptors, and its role in 
repressing Hedgehog signaling indicates that it has addi-
tional functions (Cameron et al., 2009; Norman et al., 2009; 
Patterson et al., 2009).

The main adaptor for Kif17 may be importin-2, which 
binds to and is required for the ciliary targeting of several 
membrane proteins (Fan et al., 2007; Hurd et al., 2011). An-
other Kif17 adaptor may be Ankyrin G, which interacts with 
a CLS on CNGB1b, the ciliary targeting of which is blocked 
by dominant-negative Kif17 (Jenkins et al., 2006; Kizhatil  
et al., 2009). The presence of two separate CLSs in CNGB1b, 
the VxPx-containing motif and the Ankyrin-binding sequence, 
raises the possibility that packaging into cilium-bound vesicles 
and entry from the periciliary membrane represent separate deci-
sions. Thus, cilium-bound cargo proteins and vesicle-trafficking 
components may be separated at the periciliary membrane, 
with the nonciliary vesicular components being retrieved from 
the periciliary membrane by endocytosis. Accordingly, the 
periciliary membrane, which when invaginated is called the 
ciliary pocket, is an active site of clathrin-dependent endocy-
tosis (Gadelha et al., 2009; Molla-Herman et al., 2010).

What is the nature of the membrane diffusion barrier at 
the ciliary base? Two recent studies have identified a Septin 
ring and members of the MKS–JBTS transition zone com-
plex as components of this barrier (Hu et al., 2010; Chih  
et al., 2012).

Septins are small GTPases that interact with membranes 
and can polymerize into filaments and rings (Weirich et al., 
2008). These rings form barriers to membrane diffusion in many 
contexts, from the yeast bud neck to dendritic spines (Fig. 4,  
C and D; Caudron and Barral, 2009). In sperm, the Septin4-based 
annulus forms a barrier that controls flagellar composition (Ihara 
et al., 2005; Kissel et al., 2005; Kwitny et al., 2010). Similarly, 
Septins 2 and 7 are part of a ring and restrict membrane protein 
diffusion at the base of primary cilia (Hu et al., 2010; Kim et al., 
2010b). Interestingly, the sperm annulus assembles from the 
flagellar pocket (Molla-Herman et al., 2010; Shang et al., 2010). 
Hence, the ciliary pocket, or more generally the periciliary mem-
brane, may play an analogous role in the formation of the ciliary 
Septin ring. Consistent with this hypothesis, the ciliary pocket is 
a docking site for actin filaments, which interact with Septins 
and modulate Septin ring formation (Weirich et al., 2008; Molla-
Herman et al., 2010; Kim et al., 2011).

Similar to Septins, components of the MKS–JBTS tran-
sition zone complex also restrict diffusion of membrane pro-
teins across the ciliary base, thus allowing ciliary membrane 
proteins to accumulate in cilia while keeping plasma membrane 
proteins out (Dowdle et al., 2011; Garcia-Gonzalo et al., 2011; 
Chih et al., 2012). In C. elegans, defects in ciliary composition 
have only been detected upon disruption of both MKS–JBTS 
and NPHP complex members (Williams et al., 2011). However, 
whether these complexes collaborate to form a membrane dif-
fusion barrier at the transition zones of other organisms is not 
yet clear.

same machinery (He and Guo, 2009; Mazelova et al., 2009b; Zuo  
et al., 2009; Follit et al., 2010; Kaplan et al., 2010; Hoffmeister 
et al., 2011; Ward et al., 2011; Westlake et al., 2011).

Vesicles containing cilium-bound membrane proteins 
may not always travel directly from the Golgi to the pericili-
ary membrane (Fig. 3 C). A possible way station is recycling 
endosomes, which contain Rab8, Rab11, and other cilia reg-
ulators (Finetti et al., 2009; Kaplan et al., 2010; Kim et al., 
2010a). In other instances the cilium is reached via the 
plasma membrane, as is the case of Smoothened (Milenkovic 
et al., 2009; Wang et al., 2009).

Trafficking of membrane proteins into the  

cilium. One way for peripheral membrane proteins to enter 
the cilium is by associating with proteins that mask their hydro-
phobic moieties, thereby allowing them to behave like their 
cytosolic counterparts. For example, two N-myristoylated pro-
teins, Nphp3 and Cystin, rely on Unc119b, a soluble myristoyl-
binding protein, for transport to the cilium (Wright et al., 
2011). Interestingly, Unc119b cannot enter the cilium unless 
bound to its cargo (Wright et al., 2011; Zhang et al., 2011; 
Nakata et al., 2012). Upon ciliary entry, Arl3 dissociates the 
Unc119b–cargo complex, allowing the myristoylated cargo 
to associate with the ciliary membrane (Wright et al., 2011). 
Similarly, Pde6d, an Unc119b-related Arl3 effector, binds 
and helps bring prenylated proteins into photoreceptor outer 
segments (Zhang et al., 2004, 2007). Therefore, recognition 
and masking of lipid modifications may be a general mecha-
nism for transporting peripheral membrane proteins to cilia 
(Cevik et al., 2010; Emmer et al., 2010; Evans et al., 2010; 
Follit et al., 2010; Maric et al., 2011).

Unlike peripheral membrane proteins, transmembrane 
proteins must enter cilia by moving laterally from the pericili-
ary membrane, as membrane extraction or vesicle entry into 
cilia seems unlikely. Membrane diffusion barriers separate the 
ciliary and periciliary membranes in at least some cell types, in-
dicating that lateral transport between these two membranes 
must be facilitated by machinery that engages CLSs in the cargo 
(Hu et al., 2010; Chih et al., 2012). For example, ciliary GPCRs, 
including Mchr1, Sstr3, and Htr6, rely on a CLS in their third 
intracellular loop to enter cilia (Berbari et al., 2008a). Ciliary 
entry of these GPCRs requires direct binding of this CLS to the 
BBSome, a complex including most Bardet–Biedl syndrome–
associated proteins (Nachury et al., 2007; Berbari et al., 2008b; 
Jin et al., 2010; Seo et al., 2011). The BBSome also interacts 
with the IFT machinery, whose microtubule motors may pro-
vide the driving force needed for GPCRs to enter cilia (Ou et al., 
2007; Lechtreck et al., 2009).

More generally, direct or indirect association with mi-
crotubule motors may be the sine qua non for transmembrane 
proteins to cross the ciliary base. If so, different combina-
tions of motors, adaptors, and CLSs may control ciliary entry 
and exit (Fig. 4 A). As motors, Kinesin II and Kif17 mediate 
ciliary entry, whereas cytoplasmic Dynein 2 functions during 
exit (Jenkins et al., 2006; Ishikawa and Marshall, 2011). 
Adaptors for these motors may include IFT proteins, the 
BBSome, and Tulp3 (Ou et al., 2007; Lechtreck et al., 2009; 
Mukhopadhyay et al., 2010). Tulp3 interacts with IFT-A 



705Mechanisms of ciliogenesis and ciliary access • Garcia-Gonzalo and Reiter

(Vieira et al., 2006). Because Galectin-3 is secreted from cells 
and cross-links glycosylated proteins on the cell surface, its 
retention to the periciliary region may depend on interactions 
with unidentified periciliary transmembrane proteins, whose 
localization may in turn depend on associations with structures 
at the ciliary base (Fig. 4 F; Partridge et al., 2004; Ohtsubo  
et al., 2005; Huang 2010). Therefore, the distinct periciliary 
membrane identity could arise from a combination of retention 
and exclusion mechanisms even in the absence of a diffusion 
barrier separating it from the plasma membrane (Fig. 4 C). 
Additional mechanisms, such as selective removal, may also aid 
in the generation of a distinct periciliary membrane. For instance, 
Galectin-3–mediated cross-linking can prevent endocytosis of 
cell surface proteins, which might facilitate their accumulation 
in the periciliary membrane (Partridge et al., 2004; Winckler 
and Mellman, 2010).

How to reconcile the evidence for selective exclusion, 
retention, and diffusion barriers, all of which can control cili-
ary protein localization? Each of these mechanisms may apply 
to some, but not all, ciliary proteins, and some of these pro-
teins may be subject to multiple mechanisms of ciliary local-
ization control. This diversity of mechanisms may allow the 
cilium to maintain a unique composition despite not being 
bounded by the membrane.

Conclusion
The cilium is a specialized organelle whose function critically 
depends on its composition. To control which proteins enter 
and exit cilia, cells regulate protein entrance across its base, 
the only region not surrounded by a membrane. The ciliary 
base acts as a selective filter, allowing passage of proteins with 
specific biophysical properties or that associate with trans-
porters. Cells also control ciliary composition by controlling 
which proteins reach the ciliary base. Although soluble pro-
teins do so by diffusion or by traveling along microtubules, 
transmembrane proteins must incorporate into cilium-bound 
vesicles leaving the Golgi or enter indirectly via the plasma 
membrane or recycling endosomes. In addition to these selec-
tive targeting mechanisms, selective exclusion and retention 
also control the composition of cilia and may allow the pericili-
ary membrane to maintain its unique identity. Thus, the com-
plex architecture of the cilium allows for multiple independent 
regulatory mechanisms that control its composition and allow 
its function to emerge from its form.
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