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Abstract: Antibiotics are commonly used to control, treat, or prevent bacterial infections, however
bacterial resistance to all known classes of traditional antibiotics has greatly increased in the past
years especially in hospitals rendering certain therapies ineffective. To limit this emerging public
health problem, there is a need to develop non-incursive, non-toxic, and new antimicrobial techniques
that act more effectively and quicker than the current antibiotics. One of these effective techniques is
antibacterial photodynamic therapy (aPDT). This review focuses on the application of porphyrins
in the photo-inactivation of bacteria. Mechanisms of bacterial resistance and some of the current
‘greener’ methods of synthesis of meso-phenyl porphyrins are discussed. In addition, significance
and limitations of aPDT are also discussed. Furthermore, we also elaborate on the current clinical
applications and the future perspectives and directions of this non-antibiotic therapeutic strategy in
combating infectious diseases.
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1. Introduction

The rapidly growing resistance of bacteria to antibiotics has been regarded as one of the most
important clinical challenges facing the entire world today. Antibiotics are traditionally used to control,
treat, or prevent bacterial infections. However, in recent years, resistance is becoming more of a
problem, especially in hospitals. Improper prescriptions of anti-effective agents in the environment and
frequent transmission of microorganisms across the world by people travelling around the globe also
constitute a major concern [1]. Several epidemiological reports have shown that bacterial resistance
to all known classes of traditional antibiotics has greatly increased in the last 20 years, especially in
hospitals rendering certain therapies ineffective [2]. For instance, it was reported that there was a
significant increase of methicillin resistant Staphylococcus aureus type t002 isolates from hospitals in
the United States in 2013 [3]. In addition, about 10% of patients were appraised by the Centers for
Disease Control and Prevention (CDC) who develop a hospital-acquired infection when admitted
into hospitals in the United States of America; many of which die because of their infections [4]. The
situation is more critical in the developing world where the infection rate is about 75% [5,6]. The
statistics for South Africa probably fall somewhere in between the foregoing percentage numbers [7].

However, the recent advances in the search for new antibiotics are not adequate to deal with the
growing rate of resistant bacteria strains that have emerged in this century [2]. To limit this emerging
public health problem there is a need to develop non-incursive, non-toxic, and new antimicrobial
techniques that act more effectively and quicker than the current antibiotics [8–10]. One of these
methods is antibacterial photodynamic therapy (aPDT) [11–13]. Several reports have revealed that
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aPDT is effective against traditional resistant strains in clinical trials [14–16], animal models [17,18], and
in vitro [19–21]. For example, in vitro tests revealed that aPDT efficiently destroy a clinical isolate of
Pseudomonas aeruginosa, which is considered as one of the life-threatening nosocomial pathogens [22].

1.1. Antibacterial Photodynamic Therapy (aPDT)

Photodynamic therapy is traditionally used against cancer in malignant and non-malignant
tumors [23]. The suggestion to use PDT for microbial destruction came into reality in the mid-1990s
as bacteria cells replicate at a very high rate, much like those of malignant cells [24]. Antibacterial
photodynamic therapy, therefore, is a non-antibiotic process, which produces bacterial cell death
in the presence of photosensitizing drugs, light energy of appropriate wavelength, and molecular
oxygen [25,26].

1.1.1. Mechanism of Porphyrin Photosensitization: Photophysical and Photochemical Processes

During aPDT, the photosensitizer (PS) is added to a bacterial sample, and the PS-bacteria mixture
is irradiated with visible light of a wavelength, which causes excitation of the PS to its singlet excited
state. The excited singlet state is unstable and lives for less than 1 µs. It can fall back to the ground
state via emission of a secondary photon in the form of fluorescence (Figure 1). The singlet state
undergoes intersystem crossing into the excited triplet-state to produce a therapeutic effect [24]. It
plays the most significant role in the photochemical reactions involved in the lethal photosensitization
(LP) process [27,28]. The PS triplet state can also phosphoresce by obtaining correct spin orientation of
its excited electron. It can produce chemical changes in the bacterial cell via two competing pathways,
named type I and type II reaction.

1.1.2. Type I Reaction

This is characterized by dependence on target substrate concentration. The triplet state PS can
transfer its energy in the form of an electron or proton to a substrate within the cell (e.g., water in the
cell membrane or the cytoplasm), to produce radical ions, which, in turn, react with oxygen to produce
cytotoxic reactive oxygen species (ROS) such as superoxide (O2−), hydrogen peroxide (H2O2

−), and/or
hydroxyl radicals (OH−). These highly reactive radicals can pass quickly through cell membranes
causing oxidative damage and cannot be expelled from the cell. They can also react with organic
substrates (e.g., fatty acid, lipids, oxygen) in a series of chain reactions to produce more cytotoxic
radicals [29].
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1.1.3. Type II Reaction

This is characterized by dependence on oxygen concentration. The triplet state PS can transmit its
energy directly to triplet ground state molecular oxygen (3O2) found in most cells to form excited state
singlet oxygen 1O2 [31]. PDT relies on the production of 1O2 as the predominant cytotoxic ROS for its
lethal effects. It reacts with more than one target within a cell including DNA bases, proteins, and
cholesterol found in cell membranes [32].

These ROSs cause bacterial cell death through several mechanisms. These include oxidation of
membrane lipids and amino acids in proteins, cross-linking of proteins, and oxidative damage to
nucleic acids, which results in the disruption of the normal functioning of the microorganism (Figure 1).
This is the principal route of bacterial cell death in vitro [33,34].

The singlet oxygen has been considered the main ROS through which the PS exert their
photodynamic action [35–37] and it has also been shown to inactivate the antioxidant enzymes
such as superoxide dismutase, catalase, and peroxidase [38,39].

Many of the PSs such as porphyrins, chlorins, and phthalocyanines utilized for aPDT studies have
the macrocyclic tetrapyrrole nucleus, however, porphyrins are the most widely used PDT drugs.

1.2. What Are Porphyrins?

The word “porphyrin” is derived from the Greek word “Porphura” meaning “Purple”. Porphyrins
are a large group of fluorescent crystalline intensely colored pigments with natural or synthetic
origin [40,41]. They are made up of a substituted aromatic macrocyclic ring consisting of four
pyrrole-type residues, connected by four methine groups (Figure 2).
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Figure 2. (A) Tetraphenylporphyrin and (B) 5,10,15-Tris(p-chlorophenyl)-20-(2-hydroxy-3-

methoxyphenyl)-21H,23H-porphyrin. 

In compliance with Hückels rule of aromaticity (4n + 2 π electrons), the porphyrin nucleus 

possesses a total of 22 π electrons, with 18 π electrons delocalized over the macrocycle. Due to their 

aromatic nature, porphyrins generally participate in electrophilic substitution reactions at the meso 

positions, which are the most electron dense and, as such, are the most reactive [40]. Porphyrins have 

very intense absorption bands in the visible region due to the extensive electron delocalization within 

the macrocyclic molecules, which in turn, is responsible for their characteristic bright colors. They 

show a strong absorption band at ~420 nm, known as the Soret band and the weaker satellite 

absorption Q bands between 600 nm and 800 nm (Figure 3) [42].  
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cytochrome oxidase, and vitamin B12) [32]. 
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Figure 2. (A) Tetraphenylporphyrin and (B) 5,10,15-Tris(p-chlorophenyl)-20-(2-hydroxy-3-methoxyphenyl)
-21H,23H-porphyrin.

In compliance with Hückels rule of aromaticity (4n + 2 π electrons), the porphyrin nucleus
possesses a total of 22 π electrons, with 18 π electrons delocalized over the macrocycle. Due to their
aromatic nature, porphyrins generally participate in electrophilic substitution reactions at the meso
positions, which are the most electron dense and, as such, are the most reactive [40]. Porphyrins
have very intense absorption bands in the visible region due to the extensive electron delocalization
within the macrocyclic molecules, which in turn, is responsible for their characteristic bright colors.
They show a strong absorption band at ~420 nm, known as the Soret band and the weaker satellite
absorption Q bands between 600 nm and 800 nm (Figure 3) [42].
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Figure 3. Absorption spectrum of meso-5,10,15,20-tetrakis(3,5-dimethoxyphenyl)porphyrin
in dichloromethane.

1.2.1. Porphyrins as Colors of Life

Porphyrins are often regarded as colors of life because they are widely distributed in living
tissues [40] where they participate in vital biochemical processes (Figure 4), namely the oxygen
transport (myoglobin and hem) and the photosynthesis (chlorophylls). They are also involved
in electron transport (cytochromes b and c), and O2 activation and utilization (cytochrome P450,
cytochrome oxidase, and vitamin B12) [32].
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1.2.2. Classification of Porphyrins

Porphyrins can be classified as first and second generations [44]. The first-generation porphyrins
are the primitive porphyrins known as hematoporphyrin derivatives (HpD) present in the first
commercially available PDT drug, Photofrin. These porphyrins are limited by impurity, poor
in-depth light absorption, and photosensitivity [45]. The latter is an uncomfortable body reaction
that occurs because of the activation of the photosensitizer remaining in the body by sunlight
after PDT. The second-generation porphyrins, such as chlorin, bacteriochlorin, and phthalocyanine
derivatives (Figure 5) emerged to resolve some of the problems associated with the first-generation
porphyrins [44,46]. They are characterized with higher purity, better in-depth light absorption, and
lesser photosensitivity [46].
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Figure 5. Structures of porphyrin derivatives. (A) Hematoporphrin (HpD); (B) Chlorin; (C)
Bacteriochlorin; (D) Phthalocyanine [47].

1.2.3. General Synthesis of Porphyrins

The synthetic PSs studied in aPDT are based mainly on meso-tetra-arylporphyrins [48]. The
popularity of this type of porphyrins results from their simple preparations and potentials toward



Molecules 2019, 24, 2456 6 of 28

further chemical transformations. In fact, the synthetic approaches usually involve the condensation
of pyrrole with suitable aldehydes in one-flask or two-step one-flask procedures [49]. The wide
range of available aldehydes provides porphyrins with different aryl or heteroaryl substituents at
the meso-positions.

Rothemund’s Method

Rothemund and Menotti [50] were the first to synthesize meso-tetraphenylporphyrin, thus
pioneering the initial synthesis of meso-substituted porphyrins. The compound was obtained by
reacting pyrrole and benzaldehyde in pyridine, in a sealed tube at 220 ◦C for 24 h, with a yield of about
10% (Scheme 1).
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Scheme 1. Synthesis of tetraphenylporphyrin via Rothemund method.

Due to the relatively low yields and harsh reaction conditions, efforts were subsequently geared
towards developing more efficient reaction conditions that would enable the preparation of a wider
variety of meso-substituted porphyrins with higher yields.

Adler–Longo’s Method

Adler and Longo [51] later modified the Rothemund and Menotti method under milder reaction
conditions. The reaction modification involved refluxing pyrrole and benzaldehyde in propionic acid
for 30 mins at 141 ◦C (Scheme 2). This affords many more substituents on the benzaldehyde to be
converted to their corresponding porphyrins in yields of up to 20%. The disadvantage of this protocol
is that purification of the product is tedious due to the production of a high degree of tar during the
reaction. Also, attempts at making porphyrins from benzaldehydes bearing sensitive functional groups
such as hydroxyl, thiol, and amino groups failed under these reaction conditions.
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Regardless of these issues, the relative simplicity and robustness of Adler–Longo method is still
regarded as the most effective in the large-scale preparation of porphyrins.
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Lindsey’s Method

Lindsey and co-workers [49] developed a protocol that can be utilized to make porphyrins that
require the use of acid-unstable aldehydes not generally used under Adler–Longo method. In the
Lindsey reaction, equimolar concentrations of pyrrole and benzaldehyde are reacted with trifluoroacetic
acid (TFA) or boron trifluoride etherate (BF3.OEt2) as catalysts, at room temperature, under an inert
gas atmosphere for 1 h in dichloromethane (DCM) as solvent, using a water scavenger (triethyl
orthoacetate). This is followed by the addition of 2,3-dichloro-5,6-dicyanobenzoquinone (DDQ) to
convert the prophyrinogen intermediate to porphyrin (Scheme 3). The advantages of this method are
that it allows more facile purification and affords higher yields.
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Other Synthetic Methods

There is a growing need for the development of new synthetic routes involving environmentally
sustainable processes, hence, some strategies were recently adopted to prepare meso-substituted
porphyrins using alternative energy sources, reaction media, and catalysts, including microwave
irradiation, water as solvent, or solid acid catalysts. These synthetic methods are discussed in the
following sections.

Microwave-Assisted Synthesis

Zerrouki et al. [52] employed microwave-activated two-step synthetic approach to prepare some
unsymmetrical A3B type meso-tetraarylporphyrins. Benzaldehyde, pyrrole, dichloromethane, and a
10% molar equivalent of molecular iodine were activated under microwave (MW) irradiation, then
p-chloraniline was added and a second session of microwave irradiation was effected (Scheme 4).
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was used as an acid promoter. The advantages of this protocol over other methods are that it uses
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reagents and solvents without the need for prior distillation, it is very easy to perform, and gives the
final meso-tetraphenylporphyrin product within a short reaction time with reasonable yields (47%).

Water has been used as potential solvent for hydrophobic organic acid or as base catalyst and, in
some cases, as oxidant because of its stability at temperatures above its boiling point and pressures
above 16 bar [53]. These unique properties of overheated water under microwave irradiation have
been employed for the preparation of meso-arylporphyrins. Henriques and co-workers [54] reported
good to moderate yields of porphyrins under these reaction conditions (Scheme 5).
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In another development, Joshi [55] described a ‘greener’ approach method for the synthesis of
meso-arylporphyrins, in which the obnoxious strong organic acids (TFA, TsOH, and BF3·Et2O) are
replaced by the acidic cation exchange resin Indion-130 (Scheme 6). The resin was used as a catalyst in
the condensation of pyrrole with several substituted aromatic aldehydes, using triethyl-orthoacetate
and dichloromethane as solvent.
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Solventless Reactions

Drain and coworkers [56] developed a proficient one-step route for the synthesis of
meso-tetraarylporphyrins using only oxygen as oxidant. Benzoic acid was added as adjuvant
to the reaction mixture of pyrrole and benzaldehde (in gas phase) to improve the yield of the porphyrin
(Scheme 7).
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Ionic Liquids as Alternative Solvents

Chandramouli [57] reported a fast and efficient pathway for the synthesis of
meso-tetra-arylporphyrins, using an acidic ionic liquid, 1-butyl-3-methylimidazolium tetrafluoroborate
([bmim]BF4) as solvent to catalyze the condensation of pyrrole with aryl aldehydes under Adler’s
reaction conditions (Scheme 8). The products were obtained in higher yields than those of the traditional
Adler’s method.
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1.3. Unique Properties of Porphyrins as Drugs for aPDT

Many groups have shown porphyrins to be efficient PSs for use in aPDT. Porphyrins have
demonstrated significant broad spectrum of action against Gram-(+) and Gram-(−) bacteria at very
low concentrations (0.1–5 µM). Their antibacterial activity induced photodynamic therapy shows the
following unique properties.

• Porphyrins have relatively low toxicity in vitro and in vivo and can be functionalized to be water
soluble or water insoluble [58].

• They can be cleared in a reasonable time from the body and rapidly from the skin to avoid
photosensitive reaction [32].

• Porphyrins can also possess competent amphiphilicity and ability for numerous chemical
modifications [59].

• They have high quantum yield (above 0.70) for 1O2 generation and high one-photon absorption
coefficient (≈500,000 M−1cm−1) [60].

• Porphyrins possess a high binding affinity to cellular components, membranes, proteins, and
DNA [61,62].
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• Furthermore, they have a “therapeutic window” whereby they are active in killing bacterial
cells, including multi-drug resistant bacteria (e.g., MRSA), whilst not damaging cultured human
cells [11,63].

• Porphyrins possess large number of different mechanisms in affecting microbial and viral
pathogens. The possibility of bacteria acquiring resistance will be sufficiently reduced [1,64].

2. Bacteria

Although some bacteria are vital for our everyday health and wellbeing others can also cause
infection, hence, methods of eradicating virulent bacteria are needed. Bacteria are generally classified
into two groups; namely Gram-(+) such as Staphylococcus aureus, Bacillus subtilis, and Enterococcus
faecalis and Gram-(−) such as Escherichia coli, Pseudomonas aeruginosa, and Klebsiella pneumonia [65].

2.1. Differences in Membrane Structure Between Gram-(+) and Gram-(−) Bacteria

Differences in the cell wall ultra-structure of Gram-(+) and Gram-(−) bacteria (Figure 6) play a
remarkable role in the sensitivity of bacteria to LP. Generally, all classes of PS molecules bind efficiently
to Gram-(+) bacteria and inactivate them but Gram-(−) bacteria are known to be more resistant to
treatment with PS [66,67].
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The high susceptibility of Gram-(+) species to PS is attributed to the presence of a relatively porous
layer of peptidoglycan and lipoteichoic acid in their cell wall, which allows PS molecules to diffuse
to the target sites within the cell. In contrast, the cell wall of Gram-(−) bacteria contains negatively
charged lipopolysaccharide (LPS), which hinders the permeability of neutral or anionic porphyrins
in the external environment into bacterial cell; however, cationic porphyrins interact effectively with
these negatively charged surfaces of Gram-(−) bacterial cell wall and photo-inactivate them [2,11,68].

There are two approaches to overcome this problem and achieve broad spectrum activity especially
with neutral and anionic PSs. The first approach is to use membrane disorganizing agents to enhance
their permeability such as polymyxin B nonapeptide (PMBN) or ethylenediaminetetraacetic acid
(EDTA) [69]. These agents destabilize the cell wall structure by removing the Mg2+ and the Ca2+ ions,
which neutralize the superficial negative charges. Malik and co-workers [70] found that pre-treating
bacterial cells with EDTA results in the loss of a substantial amount of their LPS. Cells pre-treated
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with PMBN did not cause the release of LPS into the medium as with EDTA. The polycation displaces
the divalent cations by binding strongly to the highly negatively charged surface. This causes an
expansion on the surface of the outer membrane and allows the diffusion of hydrophobic molecules.
Thus, the use of PMBN and EDTA widens the spectrum of photodynamic inactivation of bacteria.

The second approach is to attach a cationic polypeptide to the neutral or anionic PS molecule, so
that it can bind to the negative charges of LPS [71,72].

Another solution is increasing the selectivity of the PS to the target micro-organism [73]. This can be
accomplished through the conjugation of the PS molecule to monoclonal antibodies or bacteriophages,
which allow selective binding to specific structures of the target microorganism. This approach can
limit the destruction to host tissues surrounding the infected area. These techniques have been verified
successfully in vitro against MRSA [48,74,75] and in vivo against a P. aeruginosa skin-infection model
in mice [20,76,77].

2.1.1. Mode of Porphyrin Action on Bacterial Cell

Larson and Marley [78] have described three modes of action by which light-activated antimicrobial
agents can interact with the cell:

1. The first is that the PS settles outside the cell, generating reactive oxygen species in solution,
which can diffuse into the cells of the target organism and react to induce cellular damage.

2. The second mechanism is that the PS binds to or becomes localized at the cell membrane (by
hydrophobic or coulombic interactions)—upon light absorption, the PS transfers energy (e.g., an
electron, hydrogen atom etc.) to target biomolecules within the cell, resulting in ROS production
that cause cell damage. Anionic porhphyrins follow this mechanism of photosensitization.

3. The third possibility is that the PS penetrates the interior of the cell and becomes associated with
an intracellular target, possibly a protein (inducing enzymatic damage) or the nucleus (inducing
genetic damage). Cationic porphyrins that bind strongly to the polyanionic macromolecules such
as DNA are good examples of this type of phototoxic agent [79].

2.1.2. Mechanisms of Porphyrin Photodynamic Inactivation of Bacteria

The mechanisms by which porphyrins cause bacterial cell death are complex and non-specific.
Many investigators [37,68,80–82] have suggested that the ROS generated from type I and II reactions
can cause microbial cell damage via three main mechanisms.

Functional Damage

These comprise the inactivation of essential enzymes, oxidation of protein−protein cross−links,
and inhibition of metabolic processes such as DNA synthesis, and glucose transport [11,34].

Morphological Changes

These include alteration of mesosome structure [83]. Mesosomes are invaginations of the plasma
membrane responsible for the synthesis of cross-wall in dividing bacteria. They are usually tubular,
vesicular, or lamellae in shape [84]. When porphyrins bind to the plasma membrane of bacteria, the
structure of mesosomes are altered and they take a laminated, myelin-like form, which subsequently
disrupt the division of bacterial cells.

Cell Membrane Damage

This may result in the breaking down of cellular contents and subsequent disruption of the
membrane transport system and enzymes [85,86].

Although some damages to the nucleic acid may occur, it has been discovered that these damages
can be repaired by DNA repairing systems [87,88].
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3. Choice of Light Source

The choice of light source to photo-inactivate pathogens depends primarily on the depth of
the infected tissues into which the light should penetrate. The selected wavelength must match the
absorption spectrum of the PS of choice. The most effective irradiation is that in the red and NIR range
of the spectrum [89].

A few collections of light sources (Figure 7) have been used over the years. The most popular laser
being the Argon dye laser, with tuneable wavelength that is suitable to that of the optimum absorption
wavelength of the PS. However, they are costly, need an external water-cooling system and separate
power supply, as well as a lot of maintenance [90].

The He–Ne laser and the semiconductor diode lasers are two laser systems that have been used
widely for photodynamic inactivation of bacteria in recent years. They are cost effective because of their
small size, handiness, dependability, and reasonably cheapness. However, the wavelength generated
is not tuneable, hence, has to be pre-matched for a chosen PS [91]. The He–Ne laser radiates at 632.8
nm while other semiconductor diode lasers emit at longer wavelength of 630–950 nm.
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Non-laser light sources are used primarily in dermatology. These sources are regular lamps
that produce incoherent light, generate a lot of heat, whose output wavelength is achieved by using
filters [93]. There are many varieties of lamps that emit incoherent light with continuous spectrum such
as incandescent lamps, xenon arc lamps, and those with the spectrum in bands (gas discharge lamps
or metallic vapor lamps), which have been used to lethally photo-inactivate some of the pathogens
associated with wound infections [91].

For example, a halogen lamp with a wavelength range between 350–800 nm at an intensity rate of
90 mW/cm2 in combination with porphyrin has been used successfully to inactivate E. coli [94].
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However, for in vitro aPDT studies, broadband light sources such as broad arrays of light-emitting
diodes (LED) are considered suitable light sources [95]. LED are preferable than other light sources
because of their large output, lower thermal tissue destruction, facile fabrication, large area illumination,
and cost efficiency [96].

4. Antibacterial Photodynamic Effects of Porphyrins

Many groups have shown porphyrins to be efficient PSs for use in aPDT. Studies by Orenstein
et al. [97] showed that it was possible to kill Staphylococcus aureus, a Gram-(+) bacterium, using
deuteroporphyrin but Gram-(−) bacteria such as Escherichia coli and Pseudomonas aeruginosa could not
be inhibited using deuteroporphyrin alone. Malik et al. [70] overcame this problem by pre-treating the
cells with either EDTA or PMBN.

Other studies, conducted using meso substituted porphyrins, have also demonstrated that the
molecules need to be cationic in order to photoinactivate both Gram-(+) and Gram-(−) bacteria.
For example, Ragas and co-workers [82] investigated the potential of aryl cationic porphycenes
as photosensitizing drugs in aPDT in vitro and in vivo infection models and noticed that the
structural porphyrin isomer successfully inactivated different Gram-(+) and Gram-(−) bacterial
and fungal cells. Zoltan et al. [98] also observed an efficient inactivation of Escherichia coli when
meso-tetra(pyren-1-yl)porphyrin complexes of Ni(II), Cu(II), and Zn were tested against the bacteria.

Tavares et al. [99] examined the mechanisms of photodynamic inactivation (PDI) of bacteria using
cationic porphyrins. They proposed that singlet oxygen is more responsible for the PDI process of the
bioluminescent E. coli than free radicals generated by the cationic porphyrins.

Maisch et al. [100] studied the inactivation mechanism of several cationic porphyrins against
different S. aureus and E. coli strains and concluded that the killing was mediated predominantly by
ROS, including singlet oxygen. Furthermore, a novel porphyrin-based photosensitizer, XF73, has been
reported by Taub et al. [101] to show high efficacy in killing MRSA without damage to healthy human
cells. They concluded that this PS can inhibit MRSA infection in hospitals as well as for burns and
other open wounds.

Nitzan and Ashkenazi [102] revealed the effects of illumination by different light sources at different
wavelengths in Dinococcus radiodurans, using two different porphyrin derivatives; the hydrophilic
cationic 5,10,15,20-tetrakis(N-methylpyridinium-4-yl)porphyrin (TMPyP) and the neutral derivative
deuteroporphyrin (Dp). The most potent photo-destruction were obtained for both photosensitizers
when D. radiodurans cultures were treated with blue light (400–450 nm). Blue, green, and red light were
also used to induce photoinactivation of multiple antibiotic-resistant bacteria Acinetobacter baumannii
and Escherichia coli by the cationic photosensitizer and similar results were obtained. Complete
extermination of both bacteria was obtained with blue light [103].

Several studies have been conducted using (5,10,15,20-tetrakis(N-methylpyridinium-4-yl)porphyrin.
For instance, Maisch et al. [104] found that cells of Vibrio fischeri and of Escherichia coli, and
T4-like phages, that were photoinactivated in vitro to the detection limit in the presence of
5,10,15,20-tetrakis(N-methylpyridinium-4-yl)-20-(pentafluorophenyl)porphyrin triiodide do not
recover their viability in laboratory conditions after one week.

Hanakova et al. [105] examined the antibacterial PDT effect of TMPyP (5,10,15,20-tetrakis
(N-methylpyridinium-4-yl)porphyrin and ZnTPPS4 (Zinc-5,10,15,20-tetrakis(4-sulphonatophenyl)
porphyrin (Figure 8) bound to hp-β-cyclodextrin. They found that both porphyrins were able to reduce
the growth of S. aureus and E. coli strains
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Figure 8. Structures of TMPyP and ZnTPPS4.

In a recent development, Ruiz-Gonzalez and co-workers [106] used the novel
tricationic porphycene,2,7,12-tris(trimethyl-p-tolyl)–17-(p-(methoxymethyl)phenyl)porphycene
(NMe3MeO-TBPo,) and its predecessor, 2,7,12-tris(α-pyridinio-p-tolyl)–17-(p-(methoxymethyl)phenyl)
porphycene (Py3MeO-TBPo,) to photoinactivate Gram-(+) S. aureus and Gram-(−) species such as P.
aeruginosa and E. coli.

Neutral porphyrins like 5,10,15,20-tetrakis(4-hydroxyphenyl)-porphyrin (THPP) have been
considered as less phototoxic towards Gram-(−) bacteria. However, Wikene et al. [107] had shown that
only nanomolar amounts of THPP (Figure 9) in natural deep eutectic solvents (NADES) were needed
for complete photoinactivation of Enterococcus faecalis and Escherichia coli.
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Rahimi et al. [108] also investigated the effect of 5,10,15,20–tetrakis(4-nitrophenyl)porphyrin
(TNPP) and its zinc derivative on photoinactivation of P.aeruginosa and B. subtilis. The results show
that photoactivated TNPP (Figure 9) and ZnTNPP have effective inhibitory activity against B. subtilis
and P. aeruginosa, as compared with ampicillin. The interesting thing about TNPP and ZnTNPP
antibacterial activity is that it seems to be more active against the Gram-(−) P. aeruginosa, than the
Gram-(+) B. subtilis.

5. Significance of aPDT

Antibacterial effectiveness of PDT is considered a promising alternative to other kinds of antibiotic
treatment for several reasons, which include its multi-target process, broad spectrum of action, broader
therapeutic window than other antimicrobial therapies, even against pathogenic biofilms. Because
of the high reactivity of ROS, secreted virulence factors can be destroyed as these are commonly
proteins, enzymes, or amino acid residues [63]. aPDT is independent towards the resistance pattern
of bacteria to antibiotics; it produces extensive bacteria reduction with restricted damage to healthy
host tissue, and specifically delivers PS to the infected area [81,83]. It demonstrates fast inactivation
than usual antimicrobials [11,99,109,110]. It shows absence of photo-resistant strains and viability
recovery after multiple treatments [80,111–113]. It requires low infrastructure and equipment [114].
It is a simple-to-use and cost-effective therapeutic option for developing countries [115].
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6. Clinical Applications of aPDT

Many clinical trials of porphyrins and aPDT have been carried out for the treatment of
dermatological conditions [116–118]. Moreover, their intensive use in periodontitis [15,16,119,120]
has opened a wider application in the treatment of other infectious diseases of microbial origin. It is
currently envisaged that porphyrins would have application for treatment of topical human infections
and to replace ‘skin applied’ antibiotics [121,122].

6.1. Treatment of Wound Infections

A wound is a breach of the skin that can lead to infection and sepsis. When the bacterial load
exceeds 105 organisms per gram of tissue, or when the immune system becomes suppressed, infection
develops [123]. Hamblin and co-workers [11], using an animal model, demonstrated that bacteria
infecting a wound could be destroyed photo chemically without affecting the healthy host cells.
(Figure 10). E. coli present in the wound were quickly annihilated when chlorin(e6) photosensitizer
conjugated with poly-l-lysine, was topically applied. Likewise, porphyrins showed to be very effective
in destroying of S. aureus and selected viral pathogens in burn wound infections [17,124,125]. Barra et
al. [126] explored the possibility of fighting biofilms produced by the Gram-(+) bacteria Staphylococcus
species that commonly crowd superficial wounds and sores by combining PDT using 5-aminolevulinic
acid with an antibiotic, gentamicin. It was observed that the combined treatment effectively caused
detachment of the biofilm and bacterial death. Research findings have shown that PDT has the capacity
to destroy secreted virulence factors such as protease, which was speculated to be responsible for
healing in P. aeruginosa-infected wounds [76,77].
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Figure 10. Schematic diagram showing the stages involved in carrying out antimicrobial PDT on a
burn infection in mice. (A) Inoculation of the mouse with bacterial suspension; (B) injection with
photosensitizer solution; (C) irradiation of the infected site with red light [11,77].

Recently, Bartolomeu [127] and her co-workers assessed the impact of photodynamic
therapy (PDT) on the virulence factors of six strains of S. aureus using the photosensitizer
(5,10,15,20-tetrakis(N-methylpyridinium-4-yl)porphyrin tetraiodide. They found out that the
expression of some external virulence factors was affected by antimicrobial photodynamic inactivation
(PDI) and enterotoxin producing strains were more susceptible to PDI than non-toxigenic strains. The
result was that the surviving bacteria did not develop resistance to PDI treatment.
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6.2. Treatment of Acne

Acne is the most prevalent skin disease. It is a condition that occurs when hair follicles become
clogged with oil (sebum) and dead skin cells. The commensal bacterium Propionibacterium acnes
accumulate in these sebaceous follicles where they secrete enzymes that break down sebum and cause
inflammatory acne lesions [128,129].

Meffert et al. [130] first reported the successful treatment of acne with visible light. Improvement
on this therapy was achieved when the endogenous porphyrins of P. acnes was photo-inactivated
with blue light (Figure 11) [131,132]. It was conceived that porphyrins through the generation of
the cytotoxic singlet oxygen might boost the perifollicular inflammatory reaction and activate the
expression of keratinocyte-derived IL-8 [133,134].Molecules 2019, 24, x 16 of 29 
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6.3. Periondontal Diseases

Dental infections are the greatest expanding field of clinical antibacterial PDT. Periodontal disease
is caused by a set of pathogenic bacterial species that form plaques and accounts for periodontal
inflammation and destruction. In vitro studies have revealed that many pathogens such as P. gingivalis,
Fusobacterium nucleatum, and Staphylococcus sp, which are prevalent in the subgingival periodontal
plaques, have been effectively exterminated by photodynamic treatment, both in aqueous suspension
and as a biofilm [135]. In addition, Garcia et al. [136] observed that photodynamic therapy causes the
reduction of periodontal tissue damage when compared to other treatment methods, such as scaling
and root planning and antibiotic therapy.

The process of aPDT treatment of periodontal disease may involve injecting a porphyrin into the
periodontal pocket, followed by irradiation with fiber optics inserted into the infected area (Figure 12).
This method ensures that only the disease lesions are treated while other beneficial microflora remain
unaffected. Likewise, Streptococci such as Fusobacterium nucleatum and Actinomyces viscosus, which
causes dental caries, could also be attacked [11].
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Figure 12. (A) Clinical situation of a patient before antibacterial photodynamic therapy (aPDT).
(B) Injection of the photosensitizer. (C) Irradiation with the diode laser. (D) The clinical situation six
months after therapy [137].

In a recent development, Cieplik et al. [138] evaluated the ability of (5,10,15,20-tetrakis
(N-methylpyridinium-4-yl)porphyrin tetra-(p-toluenesulfonate) and Methylene Blue to inactivate
root canal bacteria, Enterococcus faecalis. They observed that photoinactivation of bacteria (PIB) with
both PS led to reduction by ≤5 log10 of E. faecalis CFU for each setup. Conclusively, they suggested
that light activation of given intra-canal PS from outside a tooth may be possible at wavelengths ≤430
nm, facilitating clinical application of PIB in endodontics.

6.4. Treatment of Environmental Waters

Several studies have shown that aPDT is effective in the selective inactivation of pathogens in waste
waters, hence it is being considered as an alternative for the treatment of environmental waters such as
surface, ground, drinking, and waste waters [139–141]. This is demonstrated by the fact that Alves and
colleagues [142] compared the efficiency of seven cationic porphyrins differing in meso-substituent
groups, charge number, and charge distribution, (Figure 13) on the photodynamic inactivation of
a Gram-(+) bacterium (Enterococcus faecalis) and a Gram-(−) bacterium (Escherichia coli). Some of
the selected porphyrins have been shown to be efficient PS against other microorganisms such as
sewage bacteriophage [143], bacterial endospores [144], sewage fecal coliforms [141], and recombinant
bioluminescent E. coli [145]. Their results revealed that the various changes in the structures of the
porphyrins had different effects on the photoinactivation of both bacteria. They concluded that the
most active Tri-Py+-Me-PF4 porphyrin could serve as efficient photosensitizer that can efficiently
destroy a large spectrum of environmental bacteria. This photodynamic approach shows that the
application of porphyrins irradiated with natural light sources is cost effective and feasible.
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Figure 13. Structures of some cationic porphyrin derivatives. (A) Tetra-Py+Me; (B) Tri-Py+-Me-CO2H;
(C) Tri-Py+-Me-CO2CH3; (D) Tri-Py+-Me-PF4; (E) Di-Py+-Me-Di-CO2H adj; (F) Di-Py+-Me-Di-CO2H
opp; (G) Mono-Py+-Me-Tri-CO2H; [142].
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Almeida et al. [146] evaluated synergistic effect of PDI and antibiotics (ampicillin and
chloramphenicol) on four multidrug-resistant (MDR) bacteria (E. coli, P. aeruginosa, A. baumannii,
and S. aureus) in hospital wastewaters. A reduction of 6–8 log of the MDR bacteria was observed
after 270 mins of irradiation with white light at 40 W m−2 with 5.0 µM of the cationic porphyrin
(5,10,15,20-tetrakis(N-methylpyridinium-4-yl)porphyrin (Tetra-Py+-Me). The presence of the antibiotics
significantly enhanced the effectiveness of the PDI of the bacteria.

In another development, Alves [147,148] and coworkers used 5-pentafluorophenyl-
10,15,20-tri(4-pyridyl)porphyrin and the corresponding cationic 5,10,15-tris(1-methylpyridinium-
4-yl)-20-(pentafluorophenyl)porphyrin tri-iodide immobilized on cationized silica-coated magnetic
nanoparticles of Fe3O4 and CoFe2O4 for water disinfection. Their results indicated that the cationic
nanomagnet-porphyrin hybrids are highly efficient in bacterial destruction in water and wastewater
treatment and support many photoinactivation cycles.

7. Other Applications of Porphyrins

Several porphyrins are now approved for a variety of diseases, including cancers [149–151] and
age-related macular degeneration [152,153].

Porphyrin-based compounds have received significant importance in molecular electronics and
supramolecular building blocks. Recent applications of porphyrin dyes for dye-sensitized solar cells
have shown solar conversion efficiencies in silicon based photovoltaic devices [154,155].

In addition, porphyrins are frequently used to build structures in supramolecular chemistry.
For instance, a porphyrin–fullerene complex was involved in host–guest chemistry [156]. Vinodh
et al. [157] reported recent developments in the synthesis of porphyrin assemblies associated with
cyclodextrins, calixarenes, and resorcinarenes and their potential applications in the fields of molecular
encapsulation/recognition, and chemical catalysis.

Also, porphyrins such as nickel and vanadyl porphyrins have been used to establish the biological
origins of petroleum in organic geochemistry [158,159].

8. Side-Effects and Drawbacks of aPDT

PDT has many side effects and drawbacks. These include optical absorption limitation. Light
generated from standard laser and low-powered LED technology cannot penetrate more than 1 cm
of tissue depth when it is used to activate photosensitizers. Thus, these light sources are less
effective in treatment of systemic infections such as bacteremia and sepsis [160]. Another side effect
of aPDT is post-therapeutic photosensitivity [45,161]. It cannot be used in patients sensitive to
porphyrins and post-light therapy [162]. Moreover, the antibacterial effect stops when the light is
turned off. Furthermore, non-specific localization of photosensitizers could lead to light-associated
toxicity [44,163,164].

9. Future Perspective and Directions of aPDT

The clinical need for porphyrins and aPDT already exists in hospitals worldwide and their
applications have been growing rapidly in recent times. However, to improve their continual use in
the clinical environment, there are many factors of aPDT that need to be considered. Some of these
include more efficient light-delivery systems, the physiochemical characteristics of the porphyrins,
dose to be administered, rate of drug delivery, stability and ease of application, and clearance after
use. In addition, the barrier properties of the target site and patient acceptability may also have some
negative impact on antibacterial PDT. Deep treatments, using porphyrins that absorb in the NIR
region of the spectrum, can be achieved by two-photon PDT and/or metronomic PDT. The former is
based on the development of laser technology, which allows the application of short (approx. 100 fs)
laser pulses with high peak power. Instead of one, two light photons are absorbed and each photon
accounts for only half of the excitation energy. Metronomic PDT is based on the application of very low
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doses of porphyrins combined with low rates of irradiation lasting for extended periods of time [165].
The outcome is cell death by apoptosis with minimal tissue necrosis.

The efficiency of PDT could be significantly enhanced by using nanoparticles, which can improve
the photosensitizer solubility in aqueous media, its photophysical properties, and selectivity to the
target tissue [166]. Targeted delivery of porphyrins can be achieved by conjugation with antibodies,
engineered synthesis of molecules with specific structure, and even by attachment of porphyrins to
magnetic nanoparticles. In the latter case, an externally applied magnetic field directs the PS to the
area of infection [167]. Another significance of PDT that requires further investigation is its effect on
the host immune system [121]. To overcome some of these challenges, PDT needs commitment and
funds [168]. Information about this technique should also be disseminated by arranging aPDT-oriented
workshops for chemists, physicians, biologists, and clinicians.

10. Conclusions

Antibacterial photodynamic therapy as a non-toxic, non-invasive, and cost-effective method
is at the forefront for the treatment of infectious diseases. It offers the potential to significantly
improve the current means of antibiotic treatment and reduce potential future problems associated
with antibiotic-resistant bacteria.
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