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Abstract: The incidence and prevalence of diabetes are increasing worldwide, and cardiovascular
disease (CVD) is the leading cause of death among subjects with type 2 diabetes (T2D). The assessment
and stratification of cardiovascular risk in subjects with T2D is a challenge. Advanced glycation
end products are heterogeneous molecules produced by non-enzymatic glycation of proteins, lipids,
or nucleic acids. Accumulation of advanced glycation end products is increased in subjects with
T2D and is considered to be one of the major pathogenic mechanism in developing complications in
diabetes. Skin AGEs could be assessed by skin autofluorescence. This method has been validated
and related to the presence of micro and macroangiopathy in individuals with type 2 diabetes. In this
context, the aim of this review is to critically summarize current knowledge and scientific evidence on
the relationship between skin AGEs and CVD in subjects with type 2 diabetes, with a brief reference
to other diabetes-related complications.

Keywords: cardiovascular disease; advanced glycation end products; diabetic retinopathy; cardiovascular
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1. Introduction

The incidence and prevalence of diabetes are increasing worldwide [1]. Diabetes is
one of the leading causes of mortality and major morbidities, including cardiovascular
disease (CVD), chronic kidney disease, and blindness [2]. Due to advances in healthcare
and the widespread screening of serum glucose, the occurrence of complications has
significantly decreased in recent years [3]. Even so, diabetes and its complications still
rank as some of the most common causes of death and quality-of-life deterioration due
to disease progression [4]. CVD is the leading cause of death among diabetic patients
in whom adverse cardiovascular outcomes occur, which on average is 14.6 years earlier
and with increased severity compared to individuals without diabetes [5]. People with
type 2 diabetes (T2D) have a two-fold increased risk of developing CVD [5,6].

It is well known that chronic hyperglycemia is related with chronic complications of
diabetes. However, two large studies revealed that tight glucose control slightly but not
significantly reduced the risk of cardiovascular disease in either type 1 [7] or type 2 diabetes
patients [8]. Furthermore, the exaggerated risk for CVD in this population is not fully
explained by conventional risk factors such obesity, hyperglycemia, dyslipidemia, and
hypertension, and in fact a substantial proportion of this risk remains unexplained [9,10].
Therefore, specific diabetes-related risk factors should be accounted for in assessments of
excess risk for CVD, and the accumulation of advanced glycation end products (AGEs),
heterogeneous compounds produced by the non-enzymatic reaction of glucose to pro-
teins through the Maillard reaction, could be among them. In recent years, a simple and
non-invasive method for AGE assessment through skin autofluorescence (SAF) has been
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developed. This method is based on specific fluorescence of certain skin AGEs, and valida-
tion studies have shown a strong correlation between SAF and the content of specific AGEs
in skin biopsies [11,12].

In this context, the aim of this review is to critically summarize current knowledge
and scientific evidence on the relationship between skin AGEs and CVD in subjects with
type 2 diabetes, with a brief reference to other diabetes-related complications.

2. Formation of AGEs and Physiopathology

AGEs are formed by the Maillard process, which is a non-enzymatic glycation of
proteins, lipids, or nucleic acids. Protein glycation is mainly started when the carbonyl
groups of reducing sugars, such as glucose, interact non-enzymatically with the reactive
amino group of proteins, such as lysine or arginine residues. After that, this interaction
forms an unstable aldimine compound, the Schiff base. The Schiff base can be rearranged
to produce a stable Amadori product (for example HbA1c), which accumulates on proteins
over a period of several weeks. The Amadori product undergoes oxidative degradation
to generate highly reactive intermediate dicarbonyl compounds that interact again with
free amino groups of proteins. Then, complex chemical reactions occur, and thus a highly
heterogeneous, often fluorescent, insoluble, and irreversible group of AGEs is formed,
which accumulates and damages long-lived proteins such as extracellular matrix collagen.
In summary, in the Maillard process, there are early stage reactions that lead to the formation
of early glycation adducts (such as HbA1c), and later-stage reactions subsequently form
AGEs [13].

AGEs accumulate in the body during aging, but the degree of accumulation of AGEs
is associated with increased production and decreased degradation and renal clearance.
In patients with diabetes, chronic hyperglycemia accompanied by hyperlipidemia, oxida-
tive/carbonyl stress, and, sometimes, decreased renal function leads to the accumulation
of AGEs [14]. Accumulation of AGEs could be considered as one of the major pathogenic
mechanisms resulting in end-organ damage in subjects with diabetes [15].

The formation and accumulation of AGEs can cause damage and may contribute to
diabetic complications mainly by two pathways. First, cross-links can be formed with
long-lived proteins in the body such as those constituting the extracellular matrix (ECM)
and vascular basement membranes (BMs). These proteins are highly susceptible to AGE-
modification. Functionally, AGE-mediated crosslinks in BM are known to cause reduced
solubility and decreased enzymatic digestion [16]. Moreover, AGE formation has been
shown to affect the three-dimensional nature of BM proteins, thereby causing structural
and functional abnormalities. For example, AGE-modification of vitronectin, laminin,
and collagen can seriously alter molecular charge characteristics, upset the ability to form
precisely assembled matrix aggregates, and thus disrupt biological attachment sites that
enable cells to adhere to their substrates [15]. Thus, the presence of AGE on vascular BM
may have direct pathological consequences, particularly in diabetics, who have accelerated
formation and accumulation of AGEs.

Second, AGEs can cause deleterious effects by the activation of receptors for AGEs
(RAGEs). The most widely studied is RAGE, but other binding proteins include AGE
receptors (Rs) 1, 2, and 3 (AGE-R1, AGE-R2, and AGE-R3/galactin-3, respectively), and the
ezrin, radixin, and moesin (ERM) family [17].

RAGE is a member of the immunoglobulin superfamily of receptors. AGEs, by in-
teracting with RAGE, trigger the activation of secondary messenger pathways such as
protein kinase C. A crucial target of RAGE signaling is nuclear factor (NF)-KB, which
is translocated to the nucleus where it increases transcription of a number of proteins,
including endothelin-1, intercellular adhesion molecule-1, tissue factor, E-selectin, vascular
endothelial growth factor (VEGF), and proinflammatory cytokines and mediators of ox-
idative stress [18,19]. All these molecular mediators are involved in the development of
diabetic complications. The main mechanisms by which AGE accumulation participates in
the development of complications in T2D are summarized in Figure 1.
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Figure 1. Multi-pathway contribution of AGEs to diabetic complications. Accumulation of advanced
glycation end product (AGE) may result from hyperglycemia, hyperlipidemia, and oxidative stress,
with or without impaired renal function. AGEs can form cross-links with proteins that affect the three-
dimensional structure and thereby the functions of these proteins, and they can also cause deleterious
effects by the activation of receptors for AGEs (RAGEs), which in turn can lead to activation of second
messengers and transcription factors that up-regulate pro-inflammatory cytokines and mediators of
oxidative stress. These effects modify pathways which contribute to the development and progression
of diabetic complications. NO, nitric oxide; ROS, reactive oxygen species; MAP, mitogen-activated
protein; Cdc42, cell division cycle 42 protein; NF-KB, nuclear factor kappa-light-chain-enhancer of
activated B cells; VEGF, vascular endothelial growth factor; TNF-α, tumor necrosis factor α; ICAM-1,
intercellular adhesion molecule-1, VCAM-1 Vascular cell adhesion protein 1.

Endothelial damage is a common feature in diabetic complications, and the increase
of capillary permeability (or vascular leakage) is one of its hallmarks. In this regard, the
activation of the ezrin, radixin, and moesin (ERM) complex deserves a brief comment.
ERM includes membrane-associated proteins and acts as a cytoskeleton-membrane linker.
ERM proteins present two conformations: an inactivated one, in which they are folded by
an intramolecular interaction between the amino- and carboxyterminal domains; and an
activated conformation, where the two domains separate, unmasking their binding sites.
ERM protein activation in endothelial cells induces the cytoskeleton reorganization in stress
fibers, leading to the disassembly of focal adhesions and the formation of paracellular gaps,
which result in an increase of vascular permeability [20]. The activation of these proteins is
induced by mediators involved in diabetic complications such as AGEs, oxidative stress,
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PKC activation, and TNF-α. It is known that the interaction between AGE and its receptor
(RAGE) activates the MAPK and RhoA kinase signaling pathways, which are both able to
induce moesin phosphorylation [21]. Furthermore, there is evidence that vascular leakage
induced by AGEs and mediated by moesin phosphorylation also occurs in endothelial
cells of brain and retina in murine models, and in human umbilical vein cell (HUVEC)
cultures [21]. In short, AGE accumulation and the activation of RAGE cause moesin
phosphorylation, which plays a key role in vascular leakage and endothelial dysfunction.

3. Assessment of AGEs

The plasmatic determination of AGEs, such us N-ε-carboxymethyl lysine (N-ε-CML) or
pentosidine, have been proposed as biomarkers for diabetic complications. Several papers
have shown that circulating levels of AGEs in patients with diabetes are associated with
the progression of atherosclerosis [22], renal failure [23], or diabetic retinopathy (DR) [24].
However, there are also other studies that did not show the same association [25–27].
Circulating AGEs are rapidly broken down to AGE peptides or free AGEs, which are
excreted by the kidney, thus having a fast turnover [28]. Moreover, biochemical and
immunochemical assays for circulating AGE determinations are complex, time consuming,
expensive, and of low reproducibility [29]. In addition, there is a significant variation with
renal function. All these reasons limit their use in current clinical practice.

Vlassara et al. [30] demonstrated that tobacco use and nutritional intake of AGE-rich
meals (such as the modern western diet, where food is processed for safety, conservation,
and the improvement of taste, flavor, and appearance) influences AGE accumulation.
Moreover, cooking methods that utilize high temperature and low moisture increase the
AGE content of food above the uncooked state [31]. Adherence to a Mediterranean diet
(the pattern of which is based on foods with a low content of AGEs, such as vegetables,
fruits, fish, whole grains, olive oil, and nuts) was inversely associated with SAF [32].

Serum AGEs do not necessary reflect tissue AGE levels. Since AGEs accumulate in
long-lived proteins, it seems reasonable to assess AGEs in accessible tissues such as the
skin, where long-lived proteins are present. Skin AGEs are mainly accumulated in collagen,
which has a low turnover and represents the diabetic milieu influence over a longer time
period than HbA1c; thus, skin AGEs may reflect the impact of both oxidative stress and a
history of sustained hyperglycemic episodes [33]. The first evidence that accumulation of
AGEs in skin tissue was related to the presence of micro and macrovascular complications
in type 1 diabetes was in 1986 [33]. Some years later, the DCCT-EDIC sub study showed
that skin AGEs levels measured in biopsy specimens were associated with the development
and progression of diabetic complications in type 1 diabetes, even after adjustment for
HbA1c [34]. Similar results were also reported in type 2 diabetes in the UKPDS [8].

Nevertheless, the assessment of AGEs in skin biopsy is not feasible in daily clinical
practice. Based on specific fluorescence of some AGEs, a simple and non-invasive method
for skin AGEs assessment has recently been developed through skin autofluorescence (SAF).
Skin autofluorescence is measured using an autofluorescence reader (AGE ReaderTM device
(DiagnOptics TechnologiesBV, Groningen, the Netherlands)), which illuminates 4 cm2 of
the skin surface on the volar side of the forearm, guarded against surrounding light, and
uses an excitation light source with a peak excitation of 370. Subsequently, the emitted
fluorescence light (within the wavelength range of 420–600 nm) and the reflected excitation
light (within the wavelength range of 300–420 nm) from the skin are measured with a
spectrometer. SAF is calculated in arbitrary units (AUs) as the ratio between the emitted
light and the reflected light, multiplied by 100. A series of three consecutive measurements
are carried out, taking less than a minute [11]. Notably, it has been demonstrated that SAF
has a strong correlation with the specific AGEs, such pentosidine, carboxymethyl-lysine, or
carboxyethyl lysine content in skin biopsies [11,12].
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4. SAF and Diabetic Microvascular Complications

It is well known that SAF values are related with the development of diabetic micro
and macrovascular complications, and this is supported by multiple evidence, not only
in cross-sectional studies [35–41] but also in prospective trials [42,43]. Wang et al. [44]
recently published a large cross-sectional study comprising 825 subjects with type 2 dia-
betes showing that SAF is an independent predictor of T2D complications, including DR,
diabetic kidney disease, diabetic cardiovascular disease, and diabetic peripheral neuropa-
thy. Additionally, as the number of complications increases, the SAF value also increases.
Hosseini et al. [45], in a systematic review and meta-analysis, suggested that SAF levels
could be a predictor of chronic micro and macrovascular complications in DM.

In diabetic nephropathy, the majority of studies has reported a positive association
between SAF and diabetic nephropathy [27,40], but some of them did not find this asso-
ciation [36,46]. It seems that in the kidney, activation of RAGE with AGEs may induce
podocyte apoptosis and generation of monocyte chemoattractant peptide-1 and transform-
ing growth factor-β, leading to albuminuria and glomerular sclerosis [47]. Moreover, in pop-
ulations with end-stage renal disease, SAF is associated with cardiovascular events (CVE)
and predicts mortality in subjects with and without diabetes [48–50]. Shardlow et al. [48]
published a large study including 1707 subjects with chronic kidney disease (CKD) stage 3,
with a follow up of 5 years in which fatal and non-fatal CVE were collected. The Kaplan–
Meier analysis showed a progressive increase in CVE across tertiles of baseline SAF. Ad-
ditionally, multivariable analysis identified SAF as an independent risk factor for time
to first cardiovascular event in subjects with early stage 3 CKD. These findings have not
only been seen in subjects with early stages of CKD, but also in patients with end-stage
kidney disease. Furuya et al. [50] demonstrated that skin AGEs values were significantly
higher in hemodialysis patients with de novo CVD in comparison with those patients
without CVD. It is known that reduced nitric oxide production and/or its bioavailability is
a common feature in high-risk patients such as diabetes, leading to endothelial dysfunction
and CVD. AGEs can contribute to this alteration, in particular in the setting of CKD. In this
regard, Ando et al. [51] found that (1) AGEs increase the level of an endogenous nitric oxide
synthase inhibitor, asymmetric dimethylarginine, in endothelial cells; and (2) circulating
levels of AGEs are correlated with serum asymmetric dimethylarginine and are inversely
associated with endothelial function in diabetic patients with end-stage renal disease. These
findings suggest that the link between AGE and asymmetric dimethylarginine could be a
mediator involved in the high cardiovascular risk that present those patients with CKD.

In the case of DR, evidence is controversial. Some studies reported a lack of association
between DR and skin AGEs [36,52]. However, most recent studies have found a clear
independent correlation with development of retinopathy and its severity [38,46,53–55].
Interestingly, Takayanagi et al. [55] demonstrated that skin AGEs are not only related with
the presence and severity of DR but also with the progression of DR. It is believed that
the association between skin AGEs and DR is due to the important role of AGEs in the
oxidative stress-induced apoptosis of the retinal pericytes [56]. It is known that AGEs
can induce intrinsic signaling pathways mediated mainly through RAGEs expressed on
the membrane of pericytes, leading to apoptosis [57]. Since pericyte function is the main
regulator of the basement membrane at the blood retinal barrier [58], selective pericyte loss
leads to disruption of the blood retinal barrier and the development of DR [59]. In addition,
AGE accumulation upregulates VEGF, a major mediator of diabetic macular edema and
proliferative DR [60,61]. Lu et al. [61] demonstrated that AGEs can stimulate the expression
of VEGF in rat and rabbit retina; to examine whether AGEs increase retinal VEGF mRNA
levels in vivo, AGEs were injected into the vitreous of rat and rabbit eyes, and in situ
hybridization studies and Northern blot analyses were completed. Rat retinal VEGF mRNA
levels were increased in the ganglion, inner nuclear, proximal photoreceptor, and retinal
pigment epithelial and choroidal layers of the AGE-injected rat and rabbit eyes. Moreover,
Northern blot analyses of rabbit neurosensory retina identified a 4.8-fold increase in VEGF
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mRNA levels in the AGE-injected eyes. These data provide a potential mechanistic link
between hyperglycemia, VEGF, and DR.

The association between diabetic neuropathy (DN) and SAF has been reviewed
recently by Papachristou et al. [62], and the association is quite unanimously agreed
upon [63,64]. Most evidence shows that increasing SAF levels predicts the development of
DN [43,64,65]. In addition, increases in skin AGEs may precede small sudomotor dysfunc-
tion and altered vibration perception threshold [64,66]. It is believed that the accumulation
of AGEs in the peripheral nerves leads to the enhancement of reactive oxygen species,
which promotes neural inflammation and impairs axonal transport. These perturbations,
along with direct neuronal toxicity from intracellular sorbitol accumulation (due to hy-
perglycemia), culminate in DN [62]. Nevertheless, it should be noted that published
studies are heterogeneous, including populations with different diabetes type, different
SAF cut-off values, and different methods of DN assessment, so this evidence must be
taken with caution.

5. SAF and Diabetic Macrovascular Complications

Subjects with diabetes presented an increased risk for myocardial infarction and
stroke caused by vascular occlusion and are more likely to develop serious cardiovascular
and cerebrovascular disease than non-diabetic subjects [67,68]. The vascular occlusion
process is pathophysiological and characterized by plaque formation. The interactions
between cytokines, growth factors, and the different vessel wall cell types that contribute to
atherogenesis are extremely complex and multifactorial. Atheromatous plaque formation
in subjects with diabetes is practically the same from that occurring in non-diabetic subjects,
although the distribution of plaques may be different, and diabetic lesions characteristically
show a higher tendency for focal medial calcification [69]. AGEs have been accepted as
having a key role in the formation and acceleration of atherosclerotic lesions, even in
normoglycemic patients, but especially in diabetics [15].

The assessment and stratification of cardiovascular risk in subjects with T2D is a
challenge. The UKPDS risk score is still one of the most used tools to give cardiovascular
risk estimates in people type 2 diabetes [70]. Lutgers et al. demonstrated that SAF pro-
vides additional information to the UKPDS risk score for the estimation of cardiovascular
prognosis in T2D [71]. In addition, there is emerging evidence indicating that SAF is an
important biomarker not only of the presence of cardiovascular disease but also of their
outcomes [72,73].

AGEs may contribute to cardiovascular events and cardiovascular mortality by three
well-established pathophysiological mechanisms: (1) AGEs can affect the physiological
properties of cardiac proteins in the extracellular matrix by creating cross-links, which
provoke decreased flexibility of the matrix proteins and produce stiffness in vascular
walls [74]; (2) AGEs induce endothelin-1 production [75] and reduce nitric oxide [76] at
the vascular level, thus resulting in vasoconstriction and the loss of vascular compliance;
and (3) AGEs can cause multiple vascular and myocardial changes through the interaction
with RAGEs, leading to atherosclerosis, thrombosis, and vasoconstriction [77]. It should be
noted that RAGEs mediate the induction of fibrosis through the increase of TGF-β [78] and
influence calcium metabolism in cardiac myocytes [79].

5.1. SAF and Subclinical Cardiovascular Disease

It is well established that SAF is a good predictor of subclinical cardiovascular disease
in patients with and without diabetes (Table 1).
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Table 1. SAF as a biomarker of the presence of subclinical cardiovascular disease.

First Author (Year) Participants and
Diabetes Type Measurement Main Findings

Temma (2015) [37] 61 T2D C-IMT SAF well correlated with the degree of
max-IMT of the carotid artery.

Hangai (2016) [27] 122 T2D baPWV; C-IMT; CACs
SAF positively correlated with CACs.
Stronger with CACs than either PWV
or IMT.

Fujino (2018) [80] 108 (50% T2D) Coronary plaques
assessed by OCT.

SAF positively associated with more
vulnerable and calcified plaques.

Ninomiya (2018) [81] 140 (T1D and T2D) Subclinical atherosclerosis:
FMV, IMT, baPWV

SAF is an independent determinant of
brachial FMD (indicator of endothelial
dysfunction), and SAF is associated with
IMT and baPWV (markers of
early-stage atherosclerosis).

Yoshioka (2018) [46] 162 T2D and 42 controls C-IMT SAF was an independent determinant of
max-IMT (early-stage atherosclerosis).

Osawa (2018) [82] 193 T2D and 24 controls C-IMT, ankle-brachial
index, baPWV

SAF was significantly associated with
C-IMT and baPWV but was not an
independent determinant of C-IMT and
baPWV after adjustment for confounders.

Jujić (2019) [83] 496 (10% T2D) Carotid ultrasound. (TPA)

SAF is associated with the degree of
atherosclerosis. A 1 SD increment in SAF
is associated with increased
atherosclerotic burden (TPA).

Sánchez (2019) [25] 2568 (non-diabetic
subjects)

TPA (vascular carotid and
femoral ultrasound)

SAF is associated with increased
atherosclerotic burden (the presence of
plaque, number of affected territories,
and TPA).

Birukov (2021) [84] 1348 (T2D and
non-diabetic subjects)

Vascular stiffness:
carotid-femoral and aortic
PWV and brachial and aor-
tic augmentation indices.

SAF is positively associated with
measures of arterial stiffness,
independent of potential cardiometabolic
confounders and glycemic status.

Planas (2021) [85] 156 T2D and
52 non-diabetic subjects.

Coronary atherosclerosis
assessed by CACs.

SAF is a good and independent predictor
of CACs ≥ 400.

Ying (2021) [86] 1013 T2D LEAD (color doppler
ultrasonography).

SAF is associated with the presence of
lower extremity atherosclerosis.

T2D: Subjects with type 2 diabetes; TD1: subjects with type 1 diabetes; C-IMT: carotid intima–media thickness;
baPWV: brachial-ankle pulse wave velocity; PWV: pulse wave velocity; CACs: coronary artery calcium score;
FMV: flow-mediated vasodilation; SD: standard deviation; TPA: total plaque area; LEAD: lower-extremity
atherosclerotic disease.

Arterial stiffness is associated with the prevalence of CVD and predicts future car-
diovascular events in healthy and high-risk patients [6]. The main components of the
extracellular matrix within the arterial wall are type I collagen, type III collagen, and elastin.
AGE accumulation leads to quantitative and qualitative alterations of collagens and elastin,
which could contribute to the decreased elastic properties of the vessels, thereby playing a
role in arterial stiffness [87]. SAF is strongly correlated with pulse wave velocity, brachial
and aortic augmentation indices, and ankle-brachial index, all of them markers of arterial
stiffness [72]. Birukov et al. [84] recently investigated the relationships between SAF and
vascular stiffness in a large study performed in diabetic and non-diabetic populations.
These authors concluded that SAF might be involved in vascular stiffening independently
of cardiometabolic risk factors, and it could be a rapid and non-invasive method for the
assessment of macrovascular disease progression across all glycemic strata [84]. However,
Osawa et al. [82], in a smaller study including only subjects with type 2 diabetes, showed
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that SAF was significantly associated with C-IMT and pulse wave velocity (PWv), but it was
not an independent determinant of C-IMT and PWv after adjustment for confounders [82].

Carotid intima–media thickness (IMT) is a useful marker of the progression of atheroscle-
rosis and is an excellent predictor of cardiovascular events. SAF was an independent
determinant of max-IMT (R = 0.45, β = 0.425, p < 0.01) in a small study with T2D sub-
jects [37]. Regarding SAF and atherosclerosis, a large study comprising 1013 subjects with
T2D showed a clear association between SAF and lower-extremity atherosclerotic disease
(LEAD) assessed by ultrasound [86].

Basic research has shown that the interaction of AGEs with RAGE in atherosclerotic
plaques trigger the production of inflammatory mediators, which lead to plaques more
vulnerable to rupture [88]. In addition, data regarding the important role of oxidative stress
on endothelial dysfunction and coronary artery disease are extensive [89]. However, most
markers for oxidative stress are not readily available for clinical practice. It is well known
that AGEs, by interacting with their own receptor RAGE, can induce intracellular signaling
that leads to enhanced oxidative stress [14]. Moreover, skin AGEs are stable and could be
non-invasively assessed, thus serving as a reliable biomarker of cardiovascular disease.

Coronary artery calcification score (CACs) is a common feature in advanced atheroscle-
rosis and a powerful predictor of future cardiovascular events such as myocardial infarc-
tion [6]. Our group has recently published a study comprising 156 subjects with T2D and
52 controls, and we have demonstrated that SAF is a good and independent predictor of
CACs ≥ 400 with OR 2.04 (CI 95% 1.07–3.88), p = 0.033, with area under the ROC curve of
0.77 (CI 95% 0.70–0.84) [85].

A recent meta-analysis and systematic review on the association of arterial stiffness
measured by PWv and atherosclerosis measured by carotid IMC with SAF has been pub-
lished [72]. The authors concluded that a positive weak association of PWv and carotid
IMC with SAF does exist.

These findings support the concept that AGEs and their receptor system (RAGE) play
an important role in the impairment of vascular function. Thus, AGEs are not only markers
of “metabolic memory” in diabetic subjects but also have an important pathogenic role
both in endothelial dysfunction and in the atherosclerotic process.

5.2. SAF and Cardiovascular Disease and Mortality

There is increasing evidence that SAF is a robust predictor of cardiovascular events
and cardiovascular death in subjects with T2D. In Table 2 we summarize this best evidence.

Table 2. SAF as a biomarker of cardiovascular outcomes.

First Author (Year) Participants and
Diabetes Type Outcome Follow Up Main Findings

Meerwaldt (2007) [42] 69 T2D, 48 T1D, and
43 controls CV mortality 5 years

SAF strongly associated with CV
mortality. OR 2.9 CI 95% 1.3–4.4
for T2D, and OR 2.0 CI 95%
1.3–2.7 for T1D.

Tanaka (2011) [40] 130 T2D Ancient macrovascular
complications Cross sectional

SAF associated with
macrovascular complications
(OR 7.25 CI 95% 2.22–23.7).

Noordzij (2012) [36] 563 T2D Ancient macrovascular
complications Cross sectional SAF was associated with

macrovascular complications.

De Vos (2015) [90] 267 (10% T2D) New amputations in
patients with PAD 5.3 years

SAF predicts amputations in
patients with PAD independent
of diabetes. HR 2.72 (CI 95%
1.38–1.539) per unit of SAF for
amputation.
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Table 2. Cont.

First Author (Year) Participants and
Diabetes Type Outcome Follow Up Main Findings

Furuya (2015) [50]
64 subjects with CKD
in hemodialysis (56.3%
subjects with diabetes)

New CV events 3 years
SAF is significantly associated
with incidence of new CV event
OR 2.96 CI 95% 1.26–8.16

Siriopol (2015) [49]
304 dialysis
subjects (18.4%
diabetic subjects)

CV mortality,
sepsis-related mortality,
other causes
of mortality

2.5 years

SAF is associated in all-cause
(HR 2.09 CI 95% 1.24–3.59) and
sepsis-related mortality (HR 3.44
CI 95% 1.59–7.42).

Yozgatli (2018) [91] 563 T2D
New CV events and
microvascular
complications

5 years

SAF is a significant predictor of
fatal and non-fatal CV events
(HR 1.53 CI 95% 1.24–1.48 per
unit of SAF in the development
of CV events.

Kunimoto (2021) [92]
204 subjects with heart
failure and CVD
(30% T2D)

Major CV event (all
cause of mortality +
unplanned
hospitalization for
heart failure)

1.6 years

Higher SAF levels are
significantly and independently
associated with major CV events.
SAF was associated with major
CV adverse event (OR 2 CI 95%
1.41–2.78, p < 0.01).

Boersma (2021) [93] 1318 T2D 1031
new T2D New CV events 3.7 years

SAF is significantly and
independently associated with
the new CV event and mortality
in people with T2D (OR 2.59 CI
95% 2.1–3.2).

Planas (2021) [94] 187 T2D and 57 controls First CV event 4.35 years
Higher values of SAF are
predictors of new CV events (HR
4.68 CI 95% 1.83–11.96).

T2D: subjects with type 2 diabetes; TD1: subjects with type 1 diabetes; CV: cardiovascular; PAD: peripheral artery
disease; OR: odds ratio; CI: confidence interval; HR: hazard ratio.

In a multicenter cross-sectional study comprising more than 500 T2D subjects,
Noordzij et al. [36] showed that SAF values were higher when a greater number of diabetic
complications was present. In addition, these authors observed that SAF was associated
with the presence of macrovascular complications in patients with diabetes, independently
of classical risk factors.

Mulder et al. [95] showed that SAF is elevated in acute ST-elevation myocardial
infarction compared with healthy controls. In addition, higher values of SAF were related
with more risk to die or to present a new myocardial infarction or heart failure in the
following year.

Skin AGEs are not only associated with CVD and are useful as predictors of cardiac
events but are also associated with peripheral artery disease and can be considered as a
useful biomarker to predict amputations in these patients. In this regard, de Vos et al. [90]
demonstrated in a prospective study (5-year follow-up) comprising 252 subjects with
peripheral artery disease that SAF values were a strong predictor of amputation, with a
hazard ratio of 3.05 (CI 95% confidence interval [CI], 1.87–4.96); p < 0.0001).

Meerwaldt et al. [42], using a cohort of 69 T2D subjects with a follow-up of 5 years,
were the first to show that SAF was strongly associated with cardiac mortality (OR: 2.9; CI
95% 1.3–4.4). Yozgatli et al. [91], in a large and multicentric study comprising 563 subjects
with T2D with a follow up of 5 years, showed that SAF was a significant predictor of
fatal and non-fatal macrovascular events (HR 1.28 CI 95% 1.03–1.6, p < 0.001). In addition,
participants in the highest SAF tertile developed almost twice as many macrovascular
events compared with those in the lowest tertile. Interestingly, these authors found that



Int. J. Mol. Sci. 2022, 23, 6234 10 of 15

whereas SAF was associated with development of macrovascular events in people with type
2 diabetes, HbA1c was associated with the development of microvascular complications.

Cavero-Redondo et al. [73] published some years ago a systematic review and meta-
analysis about SAF as a predictor of cardiovascular and all-cause of mortality in high risk
subjects with renal or cardiovascular disease. Ten studies were included, but only two with
diabetic populations. They concluded that higher SAF levels were significantly associated
with higher pooled risk estimates for cardiovascular mortality (HR: 2.06; 95% CI, 1.58–2.67)
and all cause of mortality (HR: 1.91; 95% CI, 1.42–2.56). Therefore, SAF level could be
considered a predictor of all-cause mortality and cardiovascular mortality in subjects with
high risk with previous cardiovascular and kidney disease.

A recent article by Boersma et al. [93] explored the relation between SAF levels and the
development of type 2 diabetes, cardiovascular disease, and mortality, and it evaluated if
elevated SAF values may predict the development of CVD and mortality in individuals with
T2D. A total of 2349 subjects with T2D was included; 1318 reported a previous diagnosis of
T2D (median duration of the disease of 5 years), while the rest of the included subjects were
“new” cases of diabetics since the diagnosis was performed at baseline due to altered fast
glycaemia or an HbA1c out of range. They followed up these patients a mean of 3.7 years
and collected new CV events. They observed that individuals with “new” T2D had lower
SAF values than those with known type 2 diabetes, reflecting the longer period of exposure
to elevated glucose levels. In addition, SAF was significantly and independently associated
with the combined outcome of new CV events and mortality in T2D subjects (OR 2.59,
95% CI 2.10–3.20, p < 0.001).

Recently, Chen et al. [96] published a meta-analysis evaluating the prospective as-
sociation between skin AGEs and major adverse cardiovascular events (MACEs). They
concluded that the higher levels of SAF are significantly correlated with a higher pooled
risk of MACE.

We have recently published a prospective case-control study with 4.35 year of follow-
up in which 187 subjects with T2D without any apparent cardiovascular disease and
57 healthy age-matched controls were included. We found that SAF together with DR
were powerful predictors of CV events, and the higher values of SAF were independently
associated with the presence of CV events (HR 4.68 CI 95% 1.83–11.96, p = 0.001) [94].

These findings support the clinical utility of SAF to support risk assessment for CVD
and mortality, both in the general population and in people with type 2 diabetes

6. Conclusions

AGE accumulation has been demonstrated to play a pathophysiological role in the
development of chronic complications in diabetes. Moreover, SAF assessment has been
revealed to be an important biomarker of AGE burden and represents a more long-term
memory of cumulative metabolic stress than does HBA1c and other conventional risk
factors. As mentioned above, there is accumulating evidence to show the clinical utility of
the measurement of SAF for evaluating vascular risk in diabetes patients. We believe that
SAF could be a useful and simple tool, and clinicians should consider the level of SAF for
assessment of cardiovascular risk in subjects with type 2 diabetes. However, more research
is needed to establish an optimal and reliable cut-off of SAF for different populations to
help the clinicians to make clinical decisions.
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