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M
any environmental changes have accompa-
nied the rising onset of obesity and diabetes.
Much has changed in our world to explain
this epidemic incidence of obesity and di-

abetes, and many of those changes have not been carefully
studied. Our foods have changed; living conditions, activity
levels, the air we breathe have all changed: so where can
we start looking for culprits?

Striking correlations between the toxin polybrominated
diphenyl ethers, air conditioning, antidepressant prescriptions,
and average home temperature and the prevalence of
obesity have been shown by Allison and colleagues (1).
The worldwide expansion of metabolic diseases across all
age-groups decreases the likelihood that our air or
unique living conditions are the main culprits. The dif-
ferences in activity levels among boys and girls, old and
young, a farmer and an office worker make it unlikely that
decreased activity, though detrimental, can be the only
main explanation. However, food is now universally
shared across the globe, particularly processed food. Food
is different today than it was in the past; over 4,000 new
agents have entered our food supply intentionally or in-
advertently: almost none of those have been evaluated as
potential causes of obesity or diabetes. The body weight
and composition of food animals have changed (2): the
average weight of cattle has increased as it has in humans;
however, the percent body fat has actually declined. There
have been dramatic changes in poultry such that the av-
erage age at market has decreased from 112 days to 42
days (3). The average weight has more than doubled, and
feed efficiency has increased almost threefold with a de-
crease in mortality. Science has likely helped to increase
efficiency and require less food. The mineral content of

fruits and vegetables has changed over the past 40 years
(4–7), probably because of optimized and standardized
growing conditions. The packaging and preparation of our
food have also changed leading to an increase in nonedible
packing materials in the food (5–8). Many foods contain
preservatives, emulsifiers, flavor enhancers, food coloring,
and other fillers that have not been previously consumed
in significant quantities. Virtually none of these nonfood
compounds have been carefully assessed for a potential
impact on obesity or diabetes.

There have been extensive studies of pancreatic islets,
liver, fat cells, as well as brain, gut, vasculature, and muscle.
Evidence now exists to support an important role for each
in metabolic homeostasis and for a causative role for several
organs in both diabetes and obesity (9–11). Many treatments
for, and much of the research in, obesity have focused on
the role of diet and physical activity. Most pharmacological
research focused on the control of food intake, increasing
energy expenditure or improving insulin action. These fo-
cused efforts were based on excellent models, but despite
evidence to support their utility, they have not yet slowed
the growth in rates of obesity or diabetes.

We need an alternative model. My model proposes that
environmentally induced elevated background levels of in-
sulin, superimposed on a susceptible genetic background,
or basal hyperinsulinemia is the root cause of insulin re-
sistance, obesity, and diabetes.

There is a strong relationship between basal insulin
levels, obesity, and diabetes in humans (12). Increasing
fasting insulin levels compared with those in lean control
subjects have been documented as subjects progress from
obesity to impaired glucose tolerance and severe diabetes
(13,14). This correlation provides no information on cau-
sation, and the same relationship with insulin resistance
could be shown. However, there is evidence that hyperse-
cretion of insulin can precede and cause insulin resistance.
For example, rodents infused with insulin via an implanted
minipump become hyperinsulinemic and insulin resistant
with impaired glucose tolerance (14). Furthermore, in
human studies, inhibition of hyperinsulinemia with diazo-
xide actually causes weight loss and decreases insulin
levels without impairing glucose tolerance in obese hu-
mans (15–17). These studies suggest that hyperinsulinemia
can cause insulin resistance and that lowering insulin se-
cretion in hyperinsulinemic individuals may be beneficial.

The proposed new model (Fig. 1) is based on the hy-
pothesis that excessive b-cell secretory responses, possi-
bly to environmental agents (Factor X in the scheme), may
be a contributing or major cause of obesity and type 2
diabetes. The communication system envisioned involves
metabolic signals, specifically redox indicators, which cir-
culate in the blood (Fig. 2). They cause different functional
changes in different tissues (Fig. 3). So the same change in
redox indicators could change secretion in b-cells, lipolysis
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in adipocytes, and glucose production in the liver and or-
chestrate a systemic response to metabolic stress.

Intracellular redox is defined as the ratio of reduced
NADH to its oxidized partner NAD. These compounds do
not normally pass in and out of cells but are in equilibrium
with metabolites that do move across membranes. Thus,
the ratio in the cell can be known by the ratio of indicator
metabolites. Accordingly, the ratio of lactate to pyruvate in
the blood reflects the cytosolic NADH-to-NAD ratio. This is
mainly controlled by muscle and is usually about 10 in both

muscle and blood (18,19) (Fig. 2). b-Hydroxybutyrate–to–
acetoacetate (b/A) ratio reflects the mitochondrial redox
state and is mainly controlled by liver and usually around 1
(20,21) (Fig. 2). These circulating metabolites are referred
to as redox indicators. A change in redox will influence
different organs in different ways. This is conceptually a
highly refined system that assures that after ingestion of a
meal, all the metabolically important organs in the body
respond appropriately: b-cells secrete insulin, the liver
stores glucose, adipose tissue increases fat storage, and
the brain signals satiety.

Focusing on the b-cell, consider what happens in this
model when insulin secretion is increased due to genetic
or environmental influences such as a false stimulus (a
fictitious example, Factor X) (Fig. 1). How will this impact
both our understanding and the model itself?

Our fictitious Factor X may influence insulin secretion
by acting directly on the b-cell or indirectly by changing
the circulating redox indicators produced through an ef-
fect on another organ. If an increase in insulin secretion
is sustained, an increase in insulin-generated signals
throughout the body occurs. This can cause hepatic insulin
resistance and increased fat mass—both key pathophysi-
ological components of obesity and type 2 diabetes.

To test a model of hyperinsulinemia as cause of obesity-
associated type 2 diabetes, it is necessary to find a way to
induce insulin secretion at nonstimulatory glucose levels.
It is well established that exposure to free fatty acid (FFA)
affects basal insulin secretion, but this takes time. We
confirmed that elevated basal and suppressed glucose-
stimulated secretion occurs after an 18-h exposure to FFA
in isolated islets (Fig. 4A). Infusion studies in humans by

FIG. 1. Model of b-cell secretion of insulin leading to hyperinsulinemia
and causing obesity, diabetes, and insulin resistance.

FIG. 2. Illustration of communication of intracellular redox state to the blood stream: equilibration of cytosolic and mitochondrial redox as
reflected in the muscle cytosolic lactate-to-pyruvate ratio (L/P) and liver mitochondrial b/A ratio.

B.E. CORKEY

diabetes.diabetesjournals.org DIABETES, VOL. 61, JANUARY 2012 5



Boden and colleagues (22–24) also show a marked ability
of FFA to increase circulating insulin levels in normal,
obese, and type 2 diabetic subjects.

In order to study basal hyperinsulinemia, we needed a
model system and sought a well-controlled cellular system
to determine what could rapidly increase basal secretion
in the absence of stimulatory glucose. Using cultured INS-1
cells, we screened substances that have entered our food
supply in recent years and identified common lipid food
additives that increased insulin secretion at basal glucose
levels including monoacylglycerides. They are formed and
degraded in the gut, and by lipoprotein lipase in periph-
eral tissues, and are commonly added in small quantities
as emulsifiers and preservatives. The ability of mono-
oleoylglycerol (MOG) to stimulate insulin secretion at basal
glucose was concentration dependent and significant at
a concentration as low as 25 mmol/L (Fig. 4B). The physi-
ological relevance of monoglycerides is not established
because there appear to be few measurements (25,26) and
no standard for the level of circulating or tissue mono-
glycerides.

Several additional nonlipid stimuli were also identified
in our screening, including artificial sweeteners and iron.
Artificial sweeteners that are also frequently present in
modern foods were found to impact insulin secretion.
Shown here is insulin secretion at basal and two stimula-
tory concentrations of glucose in response to saccharin,
aspartame, and sucralose (Fig. 4C). All stimulated basal

secretion acutely, but saccharin was most potent and also
inhibited glucose-stimulated secretion. Interestingly, only
saccharin stimulated basal secretion at concentrations that
might be achieved by high levels of consumption, for ex-
ample, in diet beverages.

Iron consumption has increased as the lean content of
food animals has increased, although it is not clear that
this has affected tissue iron content. Here we show that
iron increased both basal and stimulated insulin secretion
(Fig. 4D). Thus, iron, saccharin, and MOG can be used as
tools to study the mechanism of basal insulin secretion.

It is well established in the b-cell that metabolism of
glucose generates sequential signals (Fig. 5) that increase
cytosolic and mitochondrial redox half-maximally at 21 s
(27). Respiration or oxygen consumption follows at 29 s re-
sulting in ATP production that is half-maximal at 45 s (27).
There is also efflux of intermediates from the citric acid
cycle that form malonyl CoA at ,1 min (28). Malonyl CoA
blocks fat oxidation and causes an increase in cytosolic
long-chain acyl-CoA (LC-CoA) at ;100 s and at 325 s; a fi-
nal series of steps result in a rise in cytosolic Ca21 just
prior to enhanced insulin exocytosis (27). These changes
reflect glucose metabolism leading to signals that de-
polarize the b-cell and open Ca21 channels and stimulate
the movement of insulin-containing secretory vesicles to
the membrane where they release their contents. Several
of these signals were examined in response to the nonfood
compounds we had identified.

(Redox Indicators)

FIG. 3. Model of redox as master regulator of metabolism affecting insulin secretion, hepatic glucose handling, and adipocyte lipid storage.
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MOG neither changed Ca21 nor altered the normal
responses to glucose (data not shown). Likewise there was
no affect on respiration in the absence or presence of
stimulatory glucose (data not shown). The expected re-
sponse to glucose was not altered by MOG between 25 and
100 mmol/L. In contrast, redox increased rapidly above
control in response to MOG at basal glucose (Fig. 6), with
an area under the curve that was more than double basal
values.

Reactive oxygen species (ROS) are chemically reactive
molecules containing oxygen. In high amounts ROS cause
damage known as oxidative stress. However, ROS form as
a natural byproduct of metabolism, and modest ROS pro-
duction has important roles in cell signaling (29,30). Con-
ditions that increase redox, as we found with stimulatory
glucose and MOG, can lead to production of modest
amounts of ROS in mitochondria. Thus, redox and ROS are
candidate signals for basal insulin secretion, and we asked
whether the putative signal was essential or sufficient.

Here we show that MOG induced a robust increase in
ROS measured using the fluorescent indicator HyPer (Fig.
7A). It is well known that Fe can induce ROS (31), and we
illustrate this (Fig. 7B) at both basal and stimulatory glu-
cose. Finally, we found that saccharin, but not the other
artificial sweeteners, increased ROS generation at basal

glucose (Fig. 7C). These data indicate that the compounds
that stimulated basal insulin secretion most effectively also
generated ROS.

To test the notion that ROS generation was essential, we
used ROS scavengers to deplete intracellular ROS. This
not only prevented MOG-induced basal insulin secretion
but also markedly decreased secretion from basal and 6
mmol/L glucose (Fig. 7D). The ability of the ROS scav-
engers to prevent MOG-induced basal secretion implicated
an obligatory role for ROS in hyperinsulinemia and possi-
bly even in normal basal secretion. It should be noted that
ROS scavenging is likely to have effects that can be either
beneficial or detrimental depending on the ROS level (32).

The focus on ROS was based on the relationship between
ROS and mitochondrial redox. Clearly MOG increased re-
dox and generated ROS; but if they were causally related,
a change in redox alone should have the same effect. To
test this idea, we used b-hydroxybutyrate (b-OHB) that
increases redox specifically in the mitochondria (33) (Fig.
2). We asked whether an increase in redox induced by
b-OHB could cause an increase in ROS and secretion. As
shown in Fig. 8A, b-OHB greatly increased redox in the
isolated islet cells, an effect that was attenuated by the
oxidized member of the couple, acetoacetate. As can be
seen in Fig. 8B, increasing mitochondrial redox in this way

FIG. 4. Insulin secretion. A: Effect of 18-h exposure to 100 mmol/L fatty acid (FA) on insulin secretion from isolated rat islets (73). B: Concen-
tration dependence of MOG-stimulated insulin secretion from dissociated rat islets at basal 3 mmol/L glucose (73). C: Effect of artificial sweet-
eners on insulin secretion in dissociated rat islets (74). Effect of iron exposure in INS-1 (832/13) cells (Deeney et al., unpublished data). Data
shown are means 6 SEM for at least three experiments.
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indeed generated ROS. Data shown here demonstrated
that b-OHB also stimulated insulin secretion at 3 mmol/L
glucose (Fig. 8C).

We found that, consistent with a direct and essential role
of ROS, scavenging with N-acetylcysteine (NAC) prevented
insulin secretion (Fig. 8C). Previous studies showed that
ROS are sufficient signals for insulin secretion. Studies
performed by Pi et al. (29) show that ROS, added as per-
oxide or generated internally through addition of diethyl
maleate, stimulated insulin secretion in a dose-dependent
manner.

Taken together, these data suggest that agents that in-
crease redox or generate ROS, result in stimulation of
basal insulin secretion. These data further indicate that
hypersecretion of insulin can be caused directly by ROS
and that ROS are essential and sufficient signals.

However, ROS are not the only essential and sufficient
signals. There is abundant evidence in the literature that
an increase in cytosolic Ca21 directly stimulates and its
removal prevents secretion (34,35). However, Ca21 does
not change with MOG at basal glucose. Another important
signal is LC-CoA, the active form of FFA, that is derived
from both internal and external sources. Prentki and I
have published many studies documenting an important
role for LC-CoA in glucose-stimulated insulin secretion
(28,36–39).

Exocytosis of insulin is enhanced in permeabilized b-cells
in response to increasing Ca21 with a further increase in

secretion induced by the addition of LC-CoA at each Ca21

concentration (40). Stein et al. (41) were the first to show
that insulin secretion requires FFA. There is little or no
glucose-stimulated insulin secretion in perfused pancreas
from fasted rats without the addition of FFA (41). Pre-
sumably this happens because fasted rats have depleted
islet fat stores—so robust secretion in vitro required added
fat. Additional evidence for a role for the active form of FFA
was obtained by blocking LC-CoA formation to prevent in-
sulin secretion. Figure 9 shows the sites where we can ei-
ther inhibit FFA production with the lipase inhibitor orlistat
(42) or prevent FFA activation with triacsin C (43,44).

We documented a concentration-dependent decrease in
glucose-stimulated secretion, using triacsin C (Fig. 10A).
We also found that inhibiting lipolysis with orlistat blocked
insulin secretion from glucose alone or glucose plus for-
skolin (Fig. 10B). These data are consistent with an es-
sential role for LC-CoA in insulin secretion. Interestingly,
although LC-CoA levels also increased with MOG (data not
shown), we do not yet know whether inhibition of LC-CoA
formation from MOG blocks secretion.

These and other data lead to the conclusion that Ca21,
LC-CoA, and ROS may all be essential signals for insulin
secretion under some circumstances, but ROS is so far the
only documented signal essential for basal hypersecretion
in the absence of fuel stimuli. Interestingly, FFAs con-
tribute to both LC-CoA and ROS generation (45), thus
providing two essential signals.

FIG. 5. Time course of glucose-induced metabolic changes after glucose addition (27). PM, plasma membrane. TCA, tricarboxylic acid cycle.
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The potency of redox to directly impact ROS and insulin
secretion suggests that changes in redox could be induced
in other cells or organs and transmitted to the b-cell via the
blood stream. Redox ratios vary with nutritional state and
in response to obesity, diabetes, and high fatty acids
(19,46–48). There is additional evidence in the literature
that redox metabolites affect cell function. As an example,
Shaw and Wolfe (49,50) have shown that b-OHB infusion
decreases glucose production and FA release in dogs.

Redox has more than one meaning. I have focused on
the NADH-to-NAD ratio. It should be noted that this ratio
interacts with the thiol redox state because NADH and
NADPH can be interconverted and change the oxidation
state of glutathione as follows:

� Mitochondria

NADPH 1 NAD 5 NADP 1 NADH

� Cytosol

GSSG 1 NADPH 5 2GSH 1 NADP
H2O2 1 2GSH 5 GSSG 1 H2O
Citrate 5 Isocitrate
Isocitrate 1 NADP 5 aKG 1 NADPH
Isocitrate 1 NAD 5 aKG 1 NADH

Elegant work by Jones et al. (51–54) has shown regu-
lation by the redox state established by reduced to oxi-
dized thiols involving glutathione and cysteine. Changes in
thiol redox correlate with aging, diabetes, heart disease,
and some cancers. They regulate intracellular signal
transduction and mitochondrial ROS production. Thus, it
is important to consider redox as an integrated system that

involves the pyridine nucleotides, glutathione, thioredox-
ins, and multiple redox-sensitive proteins.

Diabetes and obesity are associated with increased cir-
culating levels of several metabolites that are known to
alter redox. These include the redox indicator lactate and
the essential branched-chain amino acids (BCAAs). Recent
metabolomic studies by Wang et al. (55) and Laferrère
et al. (56) measuring hundreds of blood metabolites have
emphasized a strong and predictive association with BCAA.
Interestingly, elevated FFAs have often been associated
with obesity and diabetes; however, a recent review of the
literature suggests that there is no consistent relationship
between FFA and BMI in the absence of diabetes (57),
consistent with the effectiveness of hyperinsulinemia to
suppress lipolysis. Thus, there can be metabolic adaptation
to hyperinsulinemia that permits maintenance of normal
circulating metabolites. This can also be observed in
patients with insulinoma who develop adaptive mechanisms
such as insulin resistance and short periods of fasting and
only infrequently suffer from symptoms of hypoglycemia
(58).

We previously documented an increase in mitochondrial
redox indicated by the b/A ratio in the liver that occurred
in response to branched-chain ketoacids, as well as lac-
tate, and was exaggerated in the presence of elevated FFA
(Table 1) (59–63). Since elevated BCAA, FFA, lactate, and
combinations of these metabolites are associated with dia-
betes and increase the liver redox state, they are expected
to increase the blood redox state reflected in the b/A ratio
(Fig. 2). Such an increase in redox could contribute to met-
abolic alteration in other organs and possibly sustained
hyperinsulinemia in the b-cell.

Much evidence indicates that redox changes with nutri-
tional state and may serve to communicate the metabolic

FIG. 6. Effect of MOG (left panel) and glucose (right panel) on rat islet redox state (73). (A high-quality digital representation of this figure is
available in the online issue.)
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status to all tissues. These redox changes may influence
various tissue-specific functions probably through ROS
generation. Previous studies have explored the role of in-
tracellular redox in regulating metabolism (30,64–68).
The capacity of extracellular redox to communicate to the
inside of the cell is potentially an important form of in-
terorgan communication that may prove exciting for fur-
ther investigation and possible intervention.

If the concept that redox-driven ROS generation is vali-
dated, particularly in humans, it may be possible to use this
knowledge to prevent a cascade from b-cell hypersecretion
leading to diabetes. The most striking example of rapid di-
abetes reversal is gastric bypass surgery (12,69).

An apparent cure of diabetes following Roux-en-Y gas-
tric bypass surgery has been reported in the majority of
patients with type 2 diabetes or impaired glucose tolerance
(13). There is no evidence for a sustained b-cell defect.
This even occurs in individuals who were insulin-requiring
patients with diabetes before surgery. It will be important
to determine whether changes in redox accompany the
transition from diabetes to normoglycemia and especially

to ascertain whether the relationship between redox and
insulinemia can explain these findings.

In summary, there is evidence that lowering basal in-
sulin can be achieved through gastric surgery (12,69), fat
loss (70–72), or drug inhibition of secretion (15–17).

H
y
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e
r

FIG. 7. Effect on ROS of agents that stimulate basal insulin secretion in INS-1 (832/13) cells. A: ROS generation by MOG measured in islet cells
virally infected with the ROS indicator HyPercyto (73). B: Iron increases ROS as documented by the ROS indicator dichlorofluorescein (DCF)
(Deeney et al., unpublished data). C: Effect of saccharin (Sacc) on ROS in cells virally infected with the ROS indicator HyPercyto (74). D: Effect of
ROS scavengers on insulin secretion from INS-1 cells (73). Data shown are means 6 SEM for at least three experiments.

TABLE 1
Effect of branched-chain ketoacids and oleate on hepatic
mitochondrial redox state

Substrate Control Oleate

Control 0.10 6 0.02 1.13 6 0.09
a-Ketoisocaproate (leucine) 0.14 6 0.01 1.10 6 0.10
a-Ketoisovalerate (valine) 1.32 6 0.05 1.91 6 0.13
Lactate 0.99 6 0.09 3.03 6 0.15
Pyruvate 0.37 6 0.05 1.13 6 0.09

Data are from Corkey et al. (60) and Williamson et al. (Control mech-
anisms of gluconeogenesis and ketogenesis. I. Effects of oleate on
gluconeogenesis in perfused rat liver. J Biol Chem 1969;244:4607–
4616).
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Validation of b-cell–mediated insulin resistance via hy-
persecretion would lead to radically different and novel
strategies for the treatment of insulin resistance and type
2 diabetes. Such validation would suggest possible early
interventions for prevention of basal hypersecretion
rather than early interventions that stimulate even more
insulin secretion. It may even be possible to use natural
nontoxic extracellular metabolites or diet to modulate
intracellular signal transduction and fluxes based on this
concept.

The approach I have discussed and the model I have
presented (Fig. 3) introduce the novel concept of redox as
a master regulator of metabolism. Metabolism generates
signals to alter metabolic function in b-cells and other
tissues thus regulating anabolic and catabolic function
appropriately. This is perhaps analogous to the generally

FIG. 8. Effects of 20 mmol/L b-OHB. A: NAD(P)H autofluorescence in islet cells (73). B: ROS generation in INS-1 (832/13) cells virally infected
with the ROS indicator HyPercyto (73). C: Effect of b-OHB and ROS scavenging by NAC on insulin secretion from islet cells (73). Data shown are
means 6 SEM for at least three experiments.

FIG. 9. Inhibition of LC-CoA formation by orlistat (lipase inhibitor) and
triacsin C (TC) (acyl-CoA synthetase inhibitor). DG, diacylglycerol; PL,
phospholipids; TG, triglyceride.
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accepted concept of transcriptional master switches that
regulate families of anabolic and catabolic genes. I have
also suggested that it is important to assess environmental
factors that have arisen in recent decades as modifiers of
redox or ROS.

In this conceptual model, insulin resistance is caused
by hyperinsulinemia and is an appropriate adaptation
to the increased need to store fat in adipose tissue
without causing hypoglycemia. Thus, insulin resistance
is an adaptive response that successfully maintains nor-
mal circulating levels of fat and glucose as long as the
b-cell is able to maintain sufficiently elevated insulin
levels (57). Perhaps the time has come to expand our
research focus to carefully investigate the environmental
changes that have accompanied the epidemic of obesity
and diabetes.
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