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Abstract

Septic arthritis (SA) represents a medical emergency that needs immediate diagnosis and urgent treatment. Despite
aggressive treatment and rapid diagnosis of the causative agent, the mortality and lifelong disability, associated
with septic arthritis remain high as close to 11%. Moreover, with the rise in drug resistance, the rates of failure of
conventional antibiotic therapy have also increased. Among the etiological agents frequently isolated from cases of
septic arthritis, Staphylococcus aureus emerges as a dominating pathogen, and to worsen, the rise in methicillin-
resistant S. aureus (MRSA) isolates in bone and joint infections is worrisome. MRSA associated cases of septic arthritis
exhibit higher mortality, longer hospital stay, and higher treatment failure with poorer clinical outcomes as
compared to cases caused by the sensitive strain i.e methicillin-sensitive S. aureus (MSSA).
In addition to this, equal or even greater damage is imposed by the exacerbated immune response mounted by
the patient’s body in a futile attempt to eradicate the bacteria. The antibiotic therapy may not be sufficient enough
to control the progression of damage to the joint involved thus, adding to higher mortality and disability rates
despite the prompt and timely start of treatment. This situation implies that efforts and focus towards studying/
understanding new strategies for improved management of sepsis arthritis is prudent and worth exploring.
The review article aims to give a complete insight into the new therapeutic approaches studied by workers lately in
this field. To the best of our knowledge studies highlighting the novel therapeutic strategies against septic arthritis
are limited in the literature, although articles on pathogenic mechanism and choice of antibiotics for therapy,
current treatment algorithms followed have been discussed by workers in the past. The present study presents and
discusses the new alternative approaches, their mechanism of action, proof of concept, and work done so far
towards their clinical success. This will surely help to enlighten the researchers with comprehensive knowledge of
the new interventions that can be used as an adjunct therapy along with conventional treatment protocol for
improved success rates.
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Background
Bacterial septic arthritis (SA) represents infection of the
joints caused by the colonization of the joint cavity by a
pathogenic bacteria. Acute bacterial arthritis represents
an orthopedic emergency that needs early diagnosis and
aggressive treatment to save the patient’s life and risk of

irreparable joint degradation [1–4]. In some cases, septic
arthritis may remain untreated and although the patient
may survive the acute phase, but the chronic inflamma-
tory condition may set in, which is altogether more chal-
lenging to treat [5–7].
Septic arthritis due to a pathogenic bacterial strain is

mostly mono-articular involving one joint (as a typical
red, swollen and painful joint). However, it may present
itself as poly-articular as well (~22% of cases) [8–10].
Old age, diabetes mellitus, cirrhosis, renal disease,
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rheumatoid arthritis, osteomyelitis, prosthetic joint, re-
cent joint surgery, concurrent skin infection, intravenous
drug use are the possible risk factors [9, 11–13]. Looking
at the incidence rates, SA exhibits an annual incidence
of six to ten cases per 100,000 patients per year and an
associated mortality rate as high as 10-15% [4, 14–19].
The possible entry points of bacterial inoculation in

the joint include, three possible routes i.e. a) direct seed-
ing due to recent arthroplasty surgery such as prosthetic
implantation or fracture fixation or joint aspiration or
intra-articular steroid injection, b) through the
hematogenous route from a distant infection reservoir
[20, 21] and c) due to extension of contiguous infection
underlying bone infection in cases of osteomyelitis or
prosthetic infected joint with involvement of biofilm
bacteria [15, 22, 23]. Such biofilm bacteria exhibit a high
degree of recalcitrance towards both immune attack and
antibiotics, further complicating the clinical outcome
[24]. Among the etiology associated with SA, Staphylo-
coccus aureus has been the predominant pathogen re-
sponsible for 40%–50% of the cases of septic arthritis
and further 6% to 22% of S. aureus isolates being identi-
fied as MRSA, hinting towards the frequent involvement
of MRSA in bone and joint infections and its rise among
orthopedic settings [25–29]. MRSA septic arthritis has
been reported to be associated with longer hospital says,
longer courses of antibiotic therapy, comparatively more
number of surgical interventions [19, 30]. In fact, MRSA
infection of joints were found more likely to be inad-
equately treated with ineffective and inappropriate em-
piric therapy as compared to MSSA infections adding to
higher rates of treatment failures are seen [31, 32]. An-
other worrisome fact remains the increasing cases of
community-acquired MRSA (CA-MRSA) mediated joint
infections seen in young adults or children with no his-
tory of hospital stay or contact with healthcare staff [33–
35]. CA-MRSA and strains display different genetic
properties and different antibiotic patterns than
hospital-acquired MRSA (HA-MRSA) and thus may re-
quire an altogether different set of prescribed antibiotics
and treatment regimen [36, 37].
The second major challenge that calls for a search for

improved management protocols is the destruction im-
posed by the exacerbated inflammatory process seen in
patients with SA. This inflammatory response may turn
chronic, causing persistent and irreversible damage to
the affected joint and its architecture in a futile attempt
to clear the bacterial infection [6, 9, 38–40].
With this scenario, the need to look into new alterna-

tives for improved management of septic arthritis new
adjunct therapies that can be given along with antibiotics
represents a fruitful approach. Also, current research to-
wards approaches for down-regulation of the heightened
immune response to minimize the tissue damage is also

required. The present review focuses to highlight the
new treatment and management strategies which need
further exploration to find clinical approval and success
in the fight against SA. The major focus of the present
review, however remains S. aureus which is the predom-
inant problem pathogen and its recalcitrance emphasizes
on the need to developing new strategies for effective
management and treatment of S. aureus mediated
arthritis.

Methodology
PubMed as well as internet searches (Google search en-
gine) were used without time restriction following use of
related keywords and search terms such as MRSA, methi-
cillin-resistant Staphylococcus aureus, S. aureus, biofilm,
Septic arthritis, Phage therapy, Anti-microbial peptides
applying combination of one or more key words in rele-
vance to septic arthritis. For collecting data on proof of
concept, more emphasis was laid on articles showing in-
vitro and in –vivo efficacy studies (non-antibiotic interven-
tions) related to bone and joint infections from 2010 on-
wards. Texts and authoritative Web sites were also
reviewed. Articles were included if they were applicable to
a) pathophysiology and disease course of septic arthritis b)
management of septic arthritis c) phage therapy, AMP as
antibacterial strategies and their mechanism of action d)
non-antibiotic interventions used against bone and joint
infections, e) anti-inflammatory management of bone and
joint infections ie immunotherapies f) in vitro, in –vivo
and clinical cases related to studying the potential of
phage therapy, AMP’s, immunotherapies against septic
arthritis and related to bone and joint infections (e.g
osteomyelitis, prosthetic implant infections). Article per-
taining to management of rheumatoid arthritis or osteo-
arthritis or non-bacterial causes of bone and joint damage
were excluded.
Firstly, both the authors (JW, LW) screened the titles

and abstracts of articles obtained from the initial search
while excluding articles that did not fit into the context
for this review. Further, full text of the shortlisted arti-
cles were read and relevant information abstraction per-
formed. Information from the source documents was
organized into various categories pertaining to and as
per the sub-sections of the flow of the review article.
Following information extraction, 189 citations were in-
cluded in this review and the information was organized
into the following relevant categories: Pathophysiology
of Septic Arthritis, New intervention and management
approaches that included AMPs, Phage therapy, Adjunct
immunotherapies.

Pathophysiology of septic arthritis : a closer look
The consensus for mainstay treatment for SA still re-
mains the complete aspiration of purulent material
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followed by long-term (at least six weeks) of antibiotics,
which begins as intravenous and then by oral adminis-
tration [15, 41, 42]. This treatment regimen may help to
tackle the emergency period, but the infection can per-
sist, resulting in a chronic state that may gradually lead
to permanent joint damage or degenerative joint disease
[9, 43]. Therefore, before discussing the possible treat-
ment options that are worth exploring, it is essential to
understand the disease pathogenesis and what contrib-
utes to joint damage. The bacteria may gain entry into
the joint space through either the hematogenous route
or through direct invasion or possibly through the
spread of a bone infection [41–44]. The synovial mem-
brane has a complex architecture with dense vascularity
but the vessels of the synovial intima do not have a lim-
iting basement membrane. This allows passage of large
molecules such as hyaluronic acid across the basement
membrane essential to lubricate this articular cartilage
[9, 13, 14, 45]. But, this also enables the constant contact
with blood or lymph which facilitates hematogenous
entry of bacteria or phagocytes carrying bacteria to enter
the synovium. Once inside the synovial space, the bac-
teria adhere to the synovial cells and express host-
derived extracellular matrix proteins (elastin, collagen, fi-
brinogen, fibrin, collagen, hyaluronic acid) that aid in
bacterial adherence to joint tissue [23, 46, 47]. Also, cer-
tain bacteria, such as S. aureus, Streptococcus sp,. Neis-
seria gonorrhoea exhibit tissue tropism for the synovium
[48]. Among the bacterial factors that mediate adherence
is the “Microbial surface components recognizing adhe-
sive matrix molecules (MSCRAMMs). S. aureus ex-
presses a myriad of an adhesive surface protein termed
as MSCRAMMS that play a vital role in adherence of
the cocci to the joint matrix [49–51]. This MSCRAMM
group includes Clumping Factor A and B i.e ClfA, ClfB;
Sdr family of proteins (SdrC, D and E); Fibronectin bind-
ing protein (FnBPA, FnBPB), collagen adhesion (CAN),
Bone sialoprotein binding protein (Bbp), Elastin binding
protein (Ebp), autolysins A and E etc .[9, 50, 52, 53]. It
was observed that mice which was infected with a mu-
tant strain devoid for the collagen adhesin gene, showed
43% low occurrence of septic arthritis than in the corre-
sponding wild type [54]. Moreover, past studies have
depicted that collagen-binding protein (Can) was
expressed by as high as 56% of S. aureus isolates associ-
ated with a bone infection showing its tropism for bone
and collagen matrix [55]. In another study, mice vacci-
nated with a recombinant form of the adhesin showed
significant reduction in the sepsis-associated mortality
rate (13% vs 87% in non-vaccinated group) [56]. Simi-
larly, guniea pigs infected with mutant S. aureus strain
i.e defective in expression of fibronectin-binding protein
showed three times less adherence to miniplates im-
planted in than normal wild type strains [57] stressing

on the critical role that fibronectin-binding proteins
(FbpA and FbpB) play in pathological course of SA.
Once adhered, the bacteria multiply using the synovial
milieu as an ideal culture medium. Recent evidence have
suggested the existence of biofilm-like clumps or ag-
glomerates for S. aureus and MRSA strains in the syn-
ovial fluid of patient suffering from chronic joint
infections and septic arthritis [57–59]. Pestrak et al. [60]
highlighted on the role of host factors such as fibrinogen
and fibronectin in the formation of such biofilm-like ag-
gregates within the joint fluid. These biofilm bacteria ex-
hibit altered phenotypes called small colony variants
(SCVs) that exhibit slow growth and such forms are cap-
able of intracellular persistence within the osteoblasts, fi-
broblasts, neutrophils etc. This property enables the
pathogen to evade the immune attack while displaying
higher recalcitrance towards deployed antibiotics [61–
64]. Such biofilm clumps in the synovial fluid and nearby
tissue act as communicating niches of hiding bacteria
that may later re-populate to new sites leading to a sec-
ond wave of re-infection and re-seeding [65, 66]. Besides
this, S. aureus secretes virulence factors such as entero-
toxins, protein A, capsular polysaccharide (aid in evasion
from phagocytosis and promote intracellular survival of
capsular strains) along with staphylococcal toxic shock
syndrome toxin (TSST-1) that acts as superantigen for
non-specific activation of a large number of T-cells play
important role in progression of the disease [67, 68]. It
has been studied that α-hemolysin also causes blood co-
agulation, platelet aggregation, neutrophil adherence and
lymphocyte DNA degradation [69]. CA-MRSA expresses
Panton-Valentine toxin (unlike HA-MRSA) which en-
ables the cocci to survive within the neutrophils and
even multiply, thus contributing to the development of
fulminant joint infection even in young healthy children
and adults [70, 71]. It is associated with MRSA cases
that cause more invasive osteoarticular disease requiring
higher surgical interventions, longer stay in hospital and
increased rates of septic shock and prolonged antibiotic
treatment [72].
Following a bacterial seeding, the bacterial products

and toxins initiate the inflammatory cascade character-
ized by an influx of immune cells, neutrophils , activa-
tion of macrophages, and release of inflammatory
cytokines such as IL-1β, IL-6, TNF-α, MIP-2,
Granulocyte-macrophage colony-stimulating factor
(GM-CSF) [9, 43]. Toll-like receptors (TLR’s) play a key
role as transmembrane proteins involved in recognizing
bacterial pathogen-associated molecular pattern mole-
cules (PAMP’s) and up-regulated expression of TLR’s re-
sults in nuclear translocation and activation of
transcription factor NF-kB that further promotes secre-
tion of pro-inflammatory cytokines and neutrophil infil-
tration [73–75]. These cytokines recruit more
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phagocytic cells to the site and also activate host C-
reactive protein (CRP) levels of the liver which in turn
activate the complementary pathways. The phagocytosis
of bacteria by macrophages, synoviocytes, PMNL’s re-
lease more lysosomal enzymes and reactive oxygen spe-
cies (ROS) and further induction of cytokines, leading to
the development of redness, swelling, pain [23, 39, 76].
This inflammatory reaction mounted by the host is pro-
tective and along with antibiotic therapy may help to
contain the spread of infection further. But, if in case the
infection is not cleared, there continues an ongoing bat-
tle of the host mounted an immune response against
bacteria and the immune system exacerbates rather than
ameliorates the outcome of septic arthritis [2, 13, 21,
77]. Soon, the T-cells also start to enter the joint cavity
and get activated upon antigen presentation supported
by host antigen-presenting cells (APC’s). The heavy in-
flux of T-cells, B-cells, macrophages causes thickening of
the synovial membrane. High levels of cytokines induce
the release of host matrix metalloproteinases (stromely-
sin and collagenases) and lysosomal enzymes, which fur-
ther worsen joint degradation [78, 79]. As the intra-
articular pressure rises, the synovial vasculature may get

compressed with thrombosis and further permanent
damage to the articular cartilage impeding the blood and
oxygen supply as well. This may extend to the articulat-
ing bone resulting in serious damage to bone growth, es-
pecially in children, and causing permanent cartilage
erosion [13, 43, 80]. A schematic illustration of the
pathophysiology and damage involved is presented in
Fig.1.

New intervention and management approaches
The new approaches against SA have been divided
broadly as anti-bacterial strategies’ and immune based
management options that are worth exploring. Each ap-
proach has been discussed in terms of its mode of action
and supported with recent data (in vitro and in vivo
studies) and discussion of the major findings.

Anti-microbial peptides (AMP’s)
Antimicrobial peptides also referred as host defense pep-
tides (HDP’s) present a promising class of anti-bacterial
agents that exhibit potent antimicrobial activity against
broad range of pathogenic microorganisms. AMPs are
highly conserved, short (15-50) amino acid sequences

Fig. 1 Schematic illustration of the pathophysiology and damage involved in septic arthritis. (MSCRAMMs; microbial surface components
recognizing adhesive matrix molecules, MMPs; Matrix metalloproteinases, ROS; reactive oxygen species, TLR: Tolle like receptors)
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that are effector molecules of the innate immunity and
can be of plant, animal or microbial origin [81, 82].
AMP’s are mostly cationic peptides that show rapid kill-
ing and are effective against range of drug-resistant
pathogens [83, 84].

Mechanisms
The classical mode of action of these peptides includes
direct killing via both membrane targeting as well as
non-membrane targeting routes (Fig.2). The membrane
targeting includes binding of the AMP through its bind-
ing domain to the bacterial membranes. The outer sur-
face of both Gram-positive and Gram-negative bacteria
contain structures [Lipopolysaccharide (LPS), phospho-
lipids, teichoic acids etc.] that impart a net negative
charge allowing easy electrostatic interaction with cat-
ionic AMP’s. Once bound, the next step includes the
formation of membrane-embedded pore within the lipid
bilayer (as explained through torroidal, barrel stave or
carpet model) [85–87]. Few AMP’s have also been
shown to cause damage by targeting internal targets
within the bacterial cell such as disruption of vital

proteins, enzymes, DNA/RNA, protein folding etc. [88–
90] without causing substantial membrane
permeabilization but still leading to cell death.
Besides, the membrane damage and direct killing, the

other mechanisms recently highlighted include the
immune-modulatory ability of AMP. The immunomod-
ulatory functions displayed by AMPs include: chemo-
taxis of immune cells thus aiding faster clearance and
more effective resolution of resident bacteria, activation
of immune cells but in a regulated and controlled man-
ner, interference with Toll-like receptor (TLR) pathways
that mediate the release of pro-inflammatory cytokines
and reactive oxygen species, induction of anti-
inflammatory cytokines essential to optimize the height-
ened inflammatory process, scavenging of bacterial en-
dotoxins and their inactivation as well as promoting
wound healing and angiogenesis etc. [91–93]. The major
class of AMP i.e cathelicidins and defensins act as potent
chemoattractants via their ability to bind chemokine re-
ceptors, leading to activation and recruitment of several
immune cell types, including monocytes, neutrophils,
dendritic cells and also the T-cells [94–96]. This

Fig. 2 iagrammatic illustration of the membrane and non-membrane mechanisms adopted by AMP’s to kill bacteria. (TLR: Toll-like receptors, ROS:
Reactive oxygen species, TNF: Tumour necrosis factor, IL: Interleukin)
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recruitment may actually enhance the bacterial clear-
ance. Also, the immune cells recruited by AMPs may
also, play a regulatory function in balancing the inflam-
matory process. Secondly, AMPs modulate the activation
of macrophages and dendritic cells by interacting with
specific Toll-like receptor (TLR) ligands and by perturb-
ing their pathways thus preventing undue activation of
macrophages and dendritic cells [97–99]. For example,
LL-37 suppresses the TLR-2 and TLR-4 induced produc-
tion of TNF-α, IL-1β, IL-8 [97, 100]. Similarly, the 13-
mer Indolicidin, inhibited Escherichia coli O111:B4 LPS
induced TNF- α secretion even when added at a delay of
one hour [101]. To add to this, innate defense regulators
(IDR) which are bactenecin-derived host defense pep-
tides such as IDR-1002 have also shown to down-
regulate the heightened immune response by decreasing
production of TNF-α, IL-6, IL-8, and nitric oxide which
is triggered by TLR ligands [102, 103]. Another synthetic
peptide i.e IDR-1018 and clavanin A increased the levels
of anti-inflammatory cytokine IL-10. In addition, AMP’s
are able to scavenge the endotoxin LPS thus preventing
the binding to TLR4 and further inflammatory activation
[104]. LPS-scavenging and anti-endotoxin activity was
reported while studying frog dermaseptin-derived pep-
tides [105] and thrombin-derived C-terminal peptides
(TCPs)].
AMP’s can thus work both as anti-bacterial killing

peptides as well as participating in normalization of the
deranged immune that causes significant tissue damage
(even after acute episode has subsided) and thus repre-
sent an ideal option in the fight against management
and treatment of SA. Moreover, AMP’s have been shown
to work in a synergistic fashion when used together with
conventional antibiotics [106, 107] making them ideal to
be used as an adjunct therapy.

AMP’s and Septic Arthritis
Although the research targeting use of AMP’s against
bacterial arthritis is scarce, we present few important
findings. Varoga et al .[108] reported enhanced expres-
sion of human β-defensin-2 (HBD-2) in synovial mem-
branes that were exposed to bacteria (using a stable
synoviocyte line K4IM) mimicking a case of septic arth-
ritis. The study showed that bacteria-colonized synovial
membranes displayed comparatively higher levels of hu-
man β-defensin-2(HBD-2) peptide than unexposed sam-
ples. This suggests the involvement of these cationic
peptides in intra-articular defense mechanisms and their
role in regulating the pathological course of septic
arthritis.
Studies also highlighted the protective role of AMP’s

(HBD1, HBD2) as part of innate system of the articular
cartilage against infection and emphasized that purified
or recombinant AMP’s represent potential therapeutic

agents that can be administered in septic arthritis to fur-
ther boost the innate resistance system of the synovial
tissue [108–110].
Recently, Elizagic et al. [111] investigated the anti-

microbial activity of peptides derived from C-type Lectin
Domain Family 3 Member A (CLEC3A) against septic
arthritis. CLEC3A is a cartilage-specific protein that is
present in articular cartilage and also in growth-plate
cartilage tissue in both resting and proliferating types.
Researchers designed peptides and recombinantly
expressed CLEC3A domains and in vitro assays using
these recombinant peptides exhibited significant killing
activity against E. coli, P. aeruginosa and S. aureus by
membrane pore formation and permeabilization and also
showed reduced bacterial adhesion when titanium im-
plants were coated with recombinant CLEC3A peptides.
This hints towards their potential therapeutic use against
prosthetic-induced cases of septic arthritis. Another ad-
vantage offered is that since CLEC3A-derived peptides
are normally expressed in the articular cartilage system
under physiological conditions, using them would lead
to no or minimal immunogenic reaction thus prolonging
their retention in vivo.
Another study by Ries and co-workers [112] studied

anti-bacterial efficacy of LyeTxI-b, a synthetic peptide
derived from Lycosa erythrognatha spider venom in mice
model of S. aureus-induced arthritis. Results indicated
that Lye Txl-b was able to significantly reduce the bac-
terial load in the affected joint space and the simultan-
eous reduction in the number of inflammatory cell
recruitment in the bacteria challenged joint. Also, when
co-therapy of Lye TxI-b was given with clindamycin, a
higher reduction in the levels of IL-1β cytokine (a major
cause of tissue destruction) and CXCL1 chemokine in
the joint were observed when compared to non-treated
joints. This indicates towards potential role of this pep-
tide as a promising adjunct strategy for better control of
infection and inflammation in SA. Table 1 delineates the
recent new developments pertaining to improved deliv-
ery and efficacy of various AMP’s showing potency
against the pathogens commonly associated with bone
and joint infections.

Phage therapy: a new era of treatment
The use of lytic bacteriophages to kill pathogenic bac-
teria is referred to as phage therapy. Bacteriophages per-
fectly fit into the class of safe and potent antimicrobial
agents and the reasons are many-fold. Firstly, from a
clinical standpoint, phage therapy represents a safe ap-
proach and exhibits little or no history of adverse effects
or tissue toxicity [120, 121]. Secondly, phages owing to
their self-replicating nature exhibit the unique property
of auto-dosing at the expense of host-pathogen [122,
123]. Thirdly, phages being selective in their action, do
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not alter or disrupt the normal flora, unlike long-term
antibiotic-based therapy which poses significant damage
to the body’s normal flora. Phages also exhibit synergy
when given along with antibiotics as co-therapy, further
decreasing the frequency of emergence of resistant mu-
tants [124–126]. Phage-based therapeutics have re-
surfaced again as they exhibit potent efficacy against a

range of bacterial infections especially those caused by
drug-resistant strains and this approach warrants further
work [127–129].

Mechanisms
Lytic phages work as killing machines. They start their
process of infection after adsorption to their particular

Table 1 New Developments related to AMP research against Bone and Joint Infections

AMP Study Highlights References

Engineered chimeric bifunctional peptides
(TiBP1-GGG-AMP, and TiBP2-GGG-AMP)

• Two bi-functional chimeric peptides synthesized with an aim to strongly bind to ti-
tanium substrate (high affinity) while retaining antimicrobial motif free.

• Significant reduction in bacterial adhesion and colonization of S. aureus, S. mutans
and E. coli as tested.

[113]

OP-145 incorporated into Polymer-Lipid Encap-
sulation Matrix (PLEX)-coating

• Breij and co-workers incorporated a synthetic peptide OP-145 into PLEX coating to
obtain high peptide levels for prolonged periods at the implant-tissue interphase.

• PLEX coated nails inserted into rabbits inoculated with S. aureus.
• Result showed sustained release of OP-145 from plex coatings into the joint space
and around the nails.

• Effective resolution of induced infection in 67% of test animals within 28 days as
shown by culture tests.

[114]

Five Artificial Peptides synthesized from
optimized peptide library

• Bormann and co-researchers synthesized short artificial AMPs using solid phase pep-
tide library.

• Later, studied their anti- biofilm potency and their effect on human osteoblast cells.
• Peptides showed marked reduction in biofilm formation by S. aureus, E.coli, P.
aeruginosa, MRSA and MSSA strains as tested by microcalorimetry and FISH.

• Peptides able to significantly reduce internalization of bacteria within osteoblast cells
with no effect of viability of human osteoblast cells.

[115]

Novel in house designed potent ultrashort
AMP i.e RBRBR

• Research team developed novel in house designed potent ultrashort AMP i.e RBRBR
and encapsulated it in chitosan based nanoparticles using ionotrophic gelation
method (RBRBR-CS-NP).

• Encapsulated peptide showed progressive sustained release till 14 days.
• Signficant decrease in S. aureus counts by three log counts with 98% inhibition of
biofilm formation.

• No toxicity against mammalian cells and human erythrocytes.

[116]

LL-37 • Kang and co-researchers developed 24 hour S. aureus biofilm on cobalt chromium
discs followed by treatment with LL-37, AgNP’s and conventional antibiotics
combinations.

• LL-37 effective in decreasing counts of S. aureus by as high as four log reduction in
CFU and this was even more than combination groups i.e AgNP’s and rifampin and
even combination of gentamycin and rifampin.

• Potential application of LL-37 against bone and joint related biofilm mediated infec-
tions strongly advocated.

[117]

HHC36 peptides • Chen and co-workers developed a Pandora box approach i.e a novel system promot-
ing on demand release of AMP in and around the affected joint area and implant
when bacterial infection occurs and lowers the surrounding pH.

• This Pandora box was loaded with HHC36 peptide inside the specially designed
titania nanotubes (Ti-NTs) nanotubes and “closed” (surface-modified) with a pH-
responsive molecular gate.

• The poly (methacrylic acid) (PMAA) swelled under normal conditions (pH 7.4) and
collapsed under bacterial infection when pH drops below 6.0 allowing release of
AMPs to kill bacteria immediately.

• This approach exhibited excellent activity against MRSA, E. coli, P. aeruginosa thus
representing a novel smart drug delivery technology worth exploring.

[118]

Romo1-Derived Antimicrobial Peptide (AMPR-
11)

• Lee and team developed AMPR-11, the antimicrobial peptide (AMP) derived from
mitochondrial nonselective channel Romo1.

• Peptide represents a novel class of fast acting AMP exhibiting broad spectrum
antibacterial activity against range of clinical pathogens and multi-drug resistance
(MDR) strains.

• Exhibits unique mechanism of killing which includes bacterial membranes by
interacting with cardiolipin and lipid A.

• Exhibited significant activity against intracellular invading bacteria and superior
in vivo efficacy in murine model of sepsis.

[119]
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host bacterium through specific receptors. Soon after at-
tachment, they inject their genome into the host cyto-
plasm and utilize the host’s proteins and machinery to
reproducing within and assemble into a large number of
progeny phages. Finally, the new progeny phages lyse
their host bacteria and get released to start another
round of infection. Besides this conventional mode of
killing, phages also exhibit anti-biofilm activity [130,
131]. This is particularly important as recent studies
have highlighted on the presence of free-floating bacteria
in clumps or as biofilm-like aggregates seen in the syn-
ovial fluid of infected joints and being involved with the
pathogenesis of infectious arthritis [24, 57, 132] Dast-
ghyeb et al .[58] demonstrated that methicillin resistant
S. aureus (MRSA) was able to form biofilm-like aggre-
gates seen in human synovial fluid (SF) present within
the joint cavity. These biofilm-like agglomerations tend
to decrease the ability of the neutrophil-mediated killing
of the cocci within the synovial fluid [57] while making
the pathogen more recalcitrant. Phages are equipped
with virion-associated de-polymerases and peptidoglycan
degrading endolysins that degrade the biofilm matrix,
penetrating the deeper layers of biofilm and attacking
bacterial cell walls [132, 133]. Phages are also able to
bind and lyse the bacteria that are metabolically dormant
or the slow-growing persister cells (low-metabolic cells)
that may reside within the deeper layers of host tissue
[134]. These slow-growing cells exhibit altered pheno-
types and often escape from the attack of antibiotics and
thus re-emerge to start another round of infection days
or months after the primary antibiotic therapy has
stopped. S. aureus and S. epidermidis are known to form
small colony variants (SCVs) that have been found asso-
ciated with fibroblasts in joint infections and these SCV’s
are responsible for intracellular persistence, re-infection,
and treatment failures [63, 64, 135]. Evidence studies re-
port that S. aureus is also able to survive intracellular
and successful internalization within the bone cells, fi-
broblasts, osteoblasts, macrophages, epithelial cells
[136–140] and by this, it may evade its clearance from
the immune cells as well as from the administered drugs.
However, studies have indicated towards the ability of
phages to penetrate the eukaryotic cells and attack the
intracellular populations of pathogens that may hide
within, thus reducing recurrent infections [126, 141].
Another major aspect of phages is their potential role

(other than lytic) in modulating the immune system at
different levels. Studies report that phage therapy can
help to correct the heightened levels of inflammation
seen in many infections in different ways [142–146].
These may include; 1) the ability of phages to reduce
high levels of pro-inflammatory cytokines (TNF-α, IL-1,
IL-8, MIP-1), 2) through LPS binding 3) inhibition of ex-
cessive reactive oxygen species (ROS) species production

and 4) induction of synthesis of potent anti-
inflammatory cytokine essential in limiting cell and tis-
sue injury during bacterial infections IL-10. Phage ISP
specific for S. aureus phage showed induction of anti-
inflammatory IL-1 receptor antagonist (IL-1RA) synthe-
sis by human monocytes thus leading to the repression
of pro-inflammatory cytokines [147]. Phages have also
been shown to down-regulate the expression of TLR4
and TLR2 expression which are key sensors involved in
the detection of S. aureus pathogen via interacting with
specific PAMPs that leads to activation of NF-κB, lead-
ing to cytokine production, cell infiltration, phagocytosis
etc .[148, 149]. Zhang and co-workers [150], S. aureus
phage vB_SauM_JS25 inhibited the production of pro-
inflammatory cytokines possibly via inhibiting the NF-κB
(a key transcription factor for encoding pro-
inflammatory cytokines) phosphorylation which led to
the decline in the levels of inflammatory cascade media-
tors. Thus, it is evident that besides its killing ability,
phages also lead to down-regulation of excessive im-
mune responses, thus contributing to the maintenance
of immune homeostasis. A detailed representation of the
different mechanisms through which phage may help to
resolve septic arthritis infection have been depicted in
Fig.3.

Phage therapy and SA
Phages have been tested against bone and joint infec-
tions including osteomyelitis and prosthetic or ortho-
pedic implant infections but studies strictly focused on
the use of phages in resolving cases of acute septic arth-
ritis is still scarce. However, conditions such as osteo-
myelitis or bacterial colonization of orthopedic implants
closely mimic and act as important predisposing condi-
tions that may lead to septic arthritis involving the joint
space. Table 2 depicts the outline of recent in-vitro, in-
vivo and clinical cases wherein phages showed excellent
efficacy in treating various bacterial infections of bone
and joints (including those caused by MRSA and other
drug-resistant strains).
Septic arthritis represents an orthopedic emergency

which is tackled by surgical interventions along with
high doses of intravenous antibiotics given immediately
within the first 24 hours [7, 155, 156]. Phages can also
be administrated intravenously during this emergency
period in order to provide more effective control of the
infection process and associated sepsis as demonstrated
in past studies [122, 157–160]. In a recent study by Ferry
and co-workers [161], a cocktail of S. aureus specific
bacteriophages (1010 PFU/ml) impregnated in hydrogel
were given to a 49-year old patient suffering from mega-
prosthetic infection as part of salvage therapy along with
debridement, antibiotics and implant retention (DAIR).
The selected phages showed sustained release from the
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Fig. 3 Detailed representation of the different mechanisms through which phage may help to resolve septic arthritis infection. Image created
using Biorender (SCV’s: small colony variants, TNF: tumor necrosis factor, TLR: toll-like receptors, NF-κB : IL-Interleukin, ROS: reactive oxygen
species; MIP: macrophage Inflammatory Proteins)

Table 2 Recent studies demonstrating the therapeutic success of phage therapy in treatment of bone and joint infections

Outline of Study Major Findings Reference

Therapeutic efficacy of cocktail of five phages against S. aureus
given intraperitoneally at a dose of 108 PFU/ml in a rat model of
joint infection (alone as well as along with vancomycin)

• Phage treatment alone led to 5-fold reduction in bacterial load in
the peri-implant tissue.

• When given in combination with vancomycin, 6.2 fold reduction
occurred.

• 22.5 fold decrease in bacterial burden in the joint tissue unlike
sham treated animals.

• Phage treated animals showed marked reduction in swelling and
joint inflammation.

[151]

• Therapeutic efficacy of MRSA phage MR-5 given single as well as
co-therapy with linezolid in resolving MRSA mediated implant in-
fection in mouse model of post arthroplasty joint infection.

• Phage MR-5 alone as well as mixed with linezolid was encapsu-
lated in biodegradable HPMC gel and coated onto K-wires.

• Coated and uncoated K-wires inserted into the mice femur
followed by MRSA inoculation.

• Dual Hydrogel based system exhibited release of both agents i.e
phage and linezolid in a slow sustained manner in the joint
tissue

• Combination therapy showed synergistic effects.
• Highest decrease in bacterial burden, improvement in joint
mobility and lowered cytokine levels seen in combination group.

[126]

• To evaluate efficacy of S. aureus specific bacteriophage cocktail
formulations against MRSA employing rabbit model of
osteomyelitis.

• Phage therapy initiated 3-6 weeks post development of experi-
mental osteomyelitis.

• Test animals received four repeated doses of seven MRSA phages
in a cocktail mix given at the interval of 48 h.

• Test rabbits recovered from the infection within two weeks with
marked decline in local oedema, erythema and induration.

• Phage treated group showed new bone formation and improved
histopathology.

[152]

• Clinical case study of salvage phage therapy in a 72 year old
male with a chronic MRSA prosthetic joint infection.

• Infection persisted even after two DAIR procedures.
• Patient administered three doses of 2.7 × 109 PFU through i.v
route along with daptomycin.

• Phages were able to sterilize the patient’s severe chronic MRSA
joint infection with a single virulent bacteriophage given i.v for
three days giving negative cultures.

[153]

Clinical case:
• 42-year old man with multidrug-resistant left tibial infection was
positive for multidrug resistant strains of Klebsiella pneumoniae and
Acinetobacter baumannii.

• Patient received combination therapy of bacteriophage
(intravenous bacteriophage therapy at 107 PFU/mL titers) and
antibiotics.

• Within days of phage administration, the patient showed
improved wound healing, decrease in the chronic bone pain.

• Negative bacterial cultures obtained for both the causative
bacteria and patients’ leg was thus saved from amputation
surgery.

[154]
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hydrogel with stable titers for at least 6 h showing a sig-
nificant reduction in numbers in vitro. This approach
clearly demonstrates the feasibility of the use of bacterio-
phage cocktails along with surgical interventions that
can be administered either intravenously along with an-
tibiotics or can even be placed locally entrapped within
such hydrogel systems during the debridement proced-
ure adopted. A similar approach was used with Phage-
Bioderm, a polymeric bandage that was directly placed
at wound site allowing the release of phages slowly over
an extended period aiding in healing of infected venous
ulcers and poorly healing wounds [162, 163]. Another
possibility can also be a direct injection of phage prepa-
rations into the affected joint lesion area for improving
phage targeting inside the body and also reducing the is-
sues related to systemic phage clearance from the blood
[152]. Phages have been successful in saving patient’s life
from overwhelming sepsis as reported by recent studies.
Dupplesis et al. [164] reported the successful administra-
tion of phage cocktail against refractory P. aeruginosa
bacteremia in a 2-year-old boy that showed allergy to
antibiotics. Phage cocktail was given intravenously every
6 h for a period of36 h. Blood cultures turned and thus

phage cocktails were able to bring complete sterilization
of the blood. In another case of acute P. aeruginosa
septicemia, 50 ml of lytic phage cocktails were adminis-
tered in a 6 h i.v infusion for 10 days. Post-phage ther-
apy, the blood cultures turned negative, and a drop in
CRP with disappearance in fever were seen within days
[165]. These findings indicate the possible role of phage
administration in cases of septic arthritis both during
and after the emergency period to prevent joint damage,
acute sepsis, and mortality and development of chronic
SA.

Adjunctive immunotherapies
In SA, killing the bacteria may not be the sole option for
successful disease management and strategies aimed to
abrogate the progressive bone destruction by balancing
the heightened immune response is equally important.
Although the interplay between host cytokines, interleu-
kins, host immune cells , bacterial clearance and pro-
gression of infection is a highly complex network and is
beyond the scope of the present review, but few import-
ant therapeutic targets with possibility to use as adjunct

Fig. 4 Schematic illustration of the various adjunct immunotherapy based treatments against septic arthritis (iNOS: Inducible nitric oxide synthase,
PRP-L: platelet rich plasma lysate, MMPs: Matrix metalloproteinases)

Wang and Wang BMC Musculoskeletal Disorders          (2021) 22:530 Page 10 of 18



therapy have been discussed as follows and is also
depicted in Fig.4.

Matrix metalloproteinases (MMPs) based therapy
MMP’s represent important mediators in the synovial
tissue destruction and pathogenesis of septic arthritis.
These are calcium- and zinc dependent endopeptidases
and have been classified as 24 different members (colla-
genases, gelatinases, stromelysins, matrilysins, membrane
types etc.) [166, 167].MMP expression is elevated in sep-
tic and aseptic arthritis and this contributes to tissue de-
struction owing to their capability of degrading
extracellular matrix (ECM) [168–171]. Bacterial prod-
ucts and their toxins, cytokines such as TNF-α,IL-1β
and also the transcription factor, NF-kB have been im-
plicated inactivation of these endopeptidases. As a result,
inflammatory cells, synovial fibroblasts, chondrocytes,
resident articular cells, synovial fibroblasts, osteoclasts
start the release of MMP’s thus adding to their height-
ened level s[167, 172–174]. These elevated levels of
MMP’s cause progressive bone and cartilage destruction
in septic arthritis even after bacterial clearanc e[166,
175]. Therefore, one approach directed towards
neutralization of key MMP’s and studying the effect on
disease progression seems worth exploring. Gjertsson
et al .[175] had highlighted the role of MMP-7 in the
joint destruction in a S. aureus induced mouse model of
arthritis. The team studied the course of infection in
MMP-7 deficient mice and wild type controls which
were experimentally inoculated via intravenous route
with S. aureus LS-1 followed by development of septic
arthritis. Findings showed that MMP-7 deficient mice
showed reduced and less severe destruction due to arth-
ritis both clinically and histologically although no effect
on the impact on clearance of bacterial load was seen.
Recently, Sultana et al. [167] studied the protective ef-

fect of MMP-2 neutralisation on the course of S. aureus
septic arthritis in mice and effect on cytokine regulation.
MMP-2 is involved in activation of pro-IL-1β to
activeIL-1β as well as in activation of other inflammatory
cytokines i.e TNF-α andIL-1b [176]. Sultana and co-
workers administered MMP-2 inhibitor (N-[(1, 10-
Biphenyl)-4-ylsulfonyl]-D-phenylalanine) at a dose of 5
mg/kg given intraperitoneally 24 h post- infection with
S. aureus and continued up to 15 days. Results depicted
that as compared to untreated animal group, the animals
treated with MMP-2 inhibitor showed a) higher reduc-
tion in associated swelling of the joints b) significantly
reduced bacterial counts seen in synovial tissue at day 3
and day 9 post-infection c) significant decrease in levels
of TNF-α, IL-1β , IL-6, IL-12 and d increase in IL-10 ,
decrease in myeloperoxidase (MPO) enzyme levels.
These findings clearly indicate that neutralisation of
MMP-2 represents a potential target to prevent joint

destruction and regulate the cytokine levels during the
arthritic episode. Further, Sultana and co-researchers
[174] also evaluated the effect of combined therapy of
MMP-2 and tumor necrosis factor receptor 1 antibody
(TNFR1) on episodes of S. aureus induced septic arth-
ritis in mice. Combined treatment group showed marked
reduction in bacterial counts and low levels of pro-
inflammatory cytokines in serum and synovial tissues as
well as low arthritis index. Also, expression of cyclooxy-
genase (COX-2) and iNOS was significantly reduced in
the combination group thus suggesting that such com-
bination therapy represents a promising option in redu-
cing the bacterial burden in the infected joint tissue as
well as in decreasing the cartilage destruction and asso-
ciated inflammatory damage in septic arthritis.

IL-33 receptor (ST2) Deficiency/Blockage as possible Target
Interleukin-33 (IL-33) is a member of the IL-1 cytokine
family and it binds to its receptor ST2 expressed on acti-
vated mast cells and Th2 cells. The IL-33/ST2 axis plays
key roles in joint inflammation and immune mediated
diseases. Staurengo-Ferrari et al .[177] investigated the
role of IL-33 receptor (ST2) deficiency on the outcome
of septic arthritis. Results depicted that ST2−/− mice
showed higher reduction of hyperalgesia and lower paw
oedema scores. Also, wild type mice showed increased
levels of TNF-α and IL-1β , higher cell infiltration as
compared to the ST2−/− mice. The bacterial clearance
was also higher from joint and spleen as seen in ST2-/-
mice and the infection remained localized and this was
possibly due to the fact that higher expression of iNOS
and higher levels of nitric oxide (NO) was observed in
ST2-/- mice. Thus, it was concluded that ST2 deficiency
was associated with induction and enhancement of Th1
cell types leading to activation of neutrophils and macro-
phages with IFN-γ production, enhanced iNOS expres-
sion and improved bacterial killing resulting in effective
resolution of infection thus suggesting that ST2 defi-
ciency is beneficial in S. aureus-induced septic arthritis.

IL-15 blockage as possible target
Hennigson et al. [178] investigated the role of IL-15 in S.
aureus mediated arthritis. They used both IL-
15knockout as well as wild-type control mice treated
with anti-IL15 antibodies. Systemic arthritis was induced
in mice by injecting (i.v) toxic shock syndrome toxin
(TSST)–1 secreting strain i.e S. aureus LS-1.Results
showed that after inoculation, comparatively less severe
arthritis was observed in mice with deleted IL-15 gene
and in the mice group treated with antibody to IL-15
unlike wild-type mice. The severity of synovitis and de-
gree of joint and cartilage destruction was significantly
less with reduced number of osteoclasts seen in gene
knockout mice as well as mice treated with anti-IL-15
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antibody as compared with normal wild type controls.
This indicates that IL-15 is a mediator of joint destruc-
tion and serves as a potential therapeutic target.

IL-10 Adjunct therapy
Another cytokine essential for ameliorating the course of
S. aureus induced arthritis is IL-10.This anti-
inflammatory cytokine has been shown to promote bac-
terial clearance and down-regulates cell mediated im-
mune functions acting as an important immune-
regulatory cytokin e[179, 180]. Study involved Balb/c
mice (wild type as well as IL-10 gene deficient) that were
inoculated with high dose of bacteria. IL-10 gene knock-
out mice developed a more severe and destructive
course of infection with higher bacterial burden in asso-
ciated organs i.e blood and kidneys when compared to
wild type control group. This highlighted that recombin-
ant IL-10 may have a beneficial effect on the treatment
outcome and represents a possible adjunct to antibiotic
treatment.

IL-4 Blockage as possible Target
Hultgren et al. [181] studied the role of IL-4 , a Th2
cytokine in experimentally induced S. aureus septic arth-
ritis in IL-4-deficient C57BL/6 mice (IL-4−/−) and their
congenic controls (IL-4+/+) challenged with TSST-1
producing strains of S. aureus. The IL-4−/− mice
showed reduced joint inflammation and also decreased
bacterial load in joints and kidneys, lesser weight loss
and lower mortality score as compared to the congenic
controls. This highlighted the role of IL-4 in promoting
septic arthritis associated severity due to its inhibition of
bacterial clearance during the S. aureus infection thus
hinting towards use of IL-4 blockage as one of the treat-
ment targets for ameliorating the disease pathology.

Platelet-rich plasma (PRP) based treatment
PRP is made by extracting donor’s whole blood which
can also be pooled for use as regenerative therapy to
treat and manage various musculoskeletal conditions.
However, recently PRP has gained attention to exhibit
potent anti-biofilm effects as well. Pooled platelet rich
plasma lysate (PRP-L) has been suggested as an alterna-
tive strategy to augment the current antimicrobial treat-
ment against infectious arthritis since S. aureus and
Staphylococcus epidermidis are capable of forming float-
ing biofilm like aggregates in both human and bovine
synovial fluid. This may be a strong evading mechanism
adopted by these bacteria leading to relapse of the infec-
tion despite prolonged antibiotic therapy in septic arth-
ritis. Recently, Gilbertie et al .[182] demonstrated the
potential efficacy of PRP-L formulations against synovial
fluid biofilm aggregates in an in vitro equine model of
infectious arthritis. For this, equine synovial fluid was

collected and infected with S. aureus. This led to biofilm
like clumps or aggregates when incubated for a two hour
period in the synovial fluid. This was followed by treat-
ment of the infected synovial fluid with PRP formula-
tions alone as well as with aminoglycoside. Results
indicated that the PRP formulations displayed significant
anti-biofilm properties with marked reduction in bacter-
ial load and displayed synergism when given along with
amikacin. Further, lysis of PRP and pooling of the PRP
lysate (PRP-L) also exhibited higher anti-bacterial activ-
ity against S. aureus which strongly advocates its further
exploration as a valuable therapeutic adjunct therapy.
Box-1: Other Recent Developments against SA

• Cho et al .[183] developed a novel treatment for end-stage pyogenic
arthritis of the hip that consisted of developing antibiotic-loaded ce-
ment femoral head spacers. This technique was tested in 10 patients
suffering from acute hip arthritis and significant joint destruction. Results
demonstrated that the novel femoral head spacer technique showed
promising outcomes as seen by decreased pain in the affected hip, bet-
ter control of the infection with reduced burden of S. aureus and
Streptococcus species with preserved proximal femoral bone and soft
tissue tension thus overall improving the joint function and mobility in
the treated patents.
• Hsu et al. [184] developed a novel electrosprayed multi
pharmaceutical-loaded Nanoparticle system for direct knee injections for
treatment of native septic arthritis. The nanoparticles consisted of lido-
caine, vancomycin, ceftazidime–eluting poly (D,L–lactide–co–glycolide)
(PLGA). The biodegradable electrosprayed nano/microparticles released
high concentrations of antibiotics into the synovial knee tissue of rabbits
for more than 2 weeks which was well above the MIC90 for S. aureus.
• Schulz et al. [185] reported the use of a novel diagnostic method
termed the “Sepsis MetaScore” (SMS) which is an 11-mRNA host im-
mune blood signature. This represents a rapid blood test that can distin-
guish between bacterial inflammation and non-infectious causes of
inflammation thus directing correct treatment to be followed at the
earliest. SMS also exhibited a higher degree of sensitivity and accuracy
in diagnosing septic joints as compared to other diagnostic biomarkers
(ESR, WBC and CRP) that do not help to provide information about bac-
terial induced or non-bacterial inflammation of the joints.
• Similarly, serum Procalcitonin levels (PCT) also represent a sensitive
marker for differentiating between septic arthritis and non-septic arthritis
[186]. A recent meta-analysis that consisted of 10 studies including 838
patients was aimed to study the usefulness of serum procalcitonin (PCT)
as a potential diagnostic marker for correct detection of early septic
arthritis (SA) Zhao et al. [187]. Study results indicated and advocated that
serum PCT levels represent a sensitive and specific marker with higher
diagnostic value than the classical CRP based test and was also to distin-
guish between SA from non-SA.
• Recently, Sultana and Bishayi [188] highlighted the potential use of a
drug i.e etoposide that kills the monocyte/macrophage population as a
useful adjunct therapy as tested in the mouse model of S. aureus
induced SA. Mice were treated with etoposide given subcutaneously
post bacterial inoculation. Results showed that the severity of arthritis
was lower in the etoposide treated mice as monitored by the overall
arthritis index, histopathological picture and decreased levels of pro-
inflammatory cytokines, lower levels of reactive oxygen species and re-
duced levels of MMP-2.

Conclusion
S. aureus represents one of the problem pathogens
frequently isolated from cases of septic arthritis and
being associated with the highest treatment failure rates.
To further worsen, there has been increased
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involvement of MRSA in cases of septic arthritis with
higher rates of mortality than MSSA cases. Despite
aggressive surgical procedure and long term antibiotic
therapy, complete eradication of the pathogen may not
occur leading to a chronic condition worsened with
prolonged inflammation and subsequent irreversible
joint issue damage. Moreover, depending upon the poor
antibiotic susceptibility in case of treating resistant
strains, clinical picture may turn towards need for
amputation or may lead to life threatening situations
such as sepsis. This calls for novel treatment modalities
for acute and chronic SA effective even against the drug-
resistant strains and capable of down-regulating the de-
ranged immune responses to decrease the tissue damage.
The suggested non-antibiotic approaches against SA
have shown promise in various in vitro and non-human
model based studies. However, what is learned from la-
boratory or animal models cannot be applied to humans
without undergoing sufficient randomised controlled tri-
als after ethical approval. Nonetheless, the intervention
strategies discussed in the review hold string potential to
augment the standard antimicrobial protocols leading to
decrease in the associated morbidity and mortality rates
thus enabling to advance the treatment options for sep-
tic arthritis in near future.
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