
Journal of Genetic Engineering and Biotechnology 22 (2024) 100378
Contents lists available at ScienceDirect

Journal of Genetic Engineering and Biotechnology

journal homepage: www.elsevier .com/locate / jgeb
Identification and analysis of oncogenic non-synonymous single nucleotide
polymorphisms in the human NRAS gene: An exclusive in silico study
https://doi.org/10.1016/j.jgeb.2024.100378
Received 2 December 2023; Accepted 19 April 2024

1687-157X/© 2024 The Authors. Published by Elsevier Inc. on behalf of Academy of Scientific Research and Technology.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Abbreviations: nsSNPs, nonsynonymous Single Nucleotide Polymorphism; FATHMM, Functional Analysis Through Hidden Markov Models; PolyPhen‐2, Polym
Phenotyping v2; SIFT, Sorting Tolerant From Intolerant; PROVEAN, Protein Variation Effect Analyzer; M‐CAP, Mendelian Clinically Applicable Pathogenicity; VEST‐4, Vari
Scoring Tool v4; PDB, Protein Data Bank; GEPIA, Gene Expression Profiling Interactive Analysis; LUAD, Lung adenocarcinoma; PAAD, Prostate adenocarcinoma; SARC, Sa
⇑ Corresponding author at: Department of Biochemistry and Molecular Biology, Primeasia University, Star Tower, 12 Kamal Ataturk Avenue, Banani, Dhaka 1213, Bang

E-mail address: naeem40thju@gmail.com (M. Solayman).
Md. Mozibullah a, Hadieh Eslampanah Seyedi b, Marina Khatun a, Md Solayman c,⇑
aDepartment of Biochemistry and Molecular Biology, Mawlana Bhashani Science and Technology University, Santosh, Tangail 1902, Bangladesh
b Institute for Glycomics, Griffith University, Parklands Dr. Southport, QLD 4222, Australia
cDepartment of Biochemistry and Molecular Biology, Primeasia University, Bangladesh
A R T I C L E I N F O

Keywords:
Cancer
In silico
nsSNPs
NRAS gene
Oncogenic
Polymorphism
A B S T R A C T

Background: N‐ras protein is encoded by the NRAS gene and operates as GDP‐GTP‐controlled on/off switching.
N‐ras interacts with cellular signaling networks that regulate various cellular activities including cell prolifer-
ation and survival. The nonsynonymous single nucleotide polymorphism (nsSNPs)‐mediated alteration can
substantially disrupt the structure and activity of the corresponding protein. N‐ras has been reported to be asso-
ciated with numerous diseases including cancers due to the nsSNPs. A comprehensive study on the NRAS gene
to unveil the potentially damaging and oncogenic nsSNPs is yet to be accomplished. Hence, this extensive in
silico study is intended to identify the disease‐associated, specifically oncogenic nsSNPs of the NRAS gene.
Results: Out of 140 missense variants, 7 nsSNPs (I55R, G60E, G60R, Y64D, L79F, D119G, and V152F) were
identified to be damaging utilizing 10 computational tools that works based on different algorithms with high
accuracy. Among those, G60E, G60R, and D119G variants were further filtered considering their location in the
highly conserved region and later identified as oncogenic variants. Interestingly, G60E and G60R variants were
revealed to be particularly associated with lung adenocarcinoma, rhabdomyosarcoma, and prostate adenocar-
cinoma. Therefore, D119G could be subjected to detailed investigation for identifying its association with
specific cancer.
Conclusion: This in silico study identified the deleterious and oncogenic missense variants of the human NRAS
gene that could be utilized for designing further experimental investigation. The outcomes of this study would
be worthwhile in future research for developing personalized medicine.
1. Background

The most prevalent genetic variations that have been identified in
the human genome so far are single nucleotide polymorphisms (SNPs),
a polymorphism of two alternating alleles that appear in the popula-
tion at a frequency of greater than one percent.49 SNPs that alter the
amino acid in the corresponding protein are called non‐synonymous
SNPs (nsNSPs), which are reported to be correlated with the diverse
types of diseased‐state.50,52 Disease‐causing nsSNPs are accounted to
cause a drastic alteration in the physicochemical features of a protein,
which destabilize, weaken, and augment the flexibility of that encoded
protein. In spite of that, disease‐associated missense variants may
enhance the rigidity, and change the geometry, stability, and interac-
tions with other proteins.26

N‐ras is a member of the Ras family (K‐ras, H‐ras, and N‐ras) of
small GTPases acting as a molecular switch during the cellular signal
transduction schemes to regulate proliferation, differentiation, and
survival of cells. The activated state is maintained by the association
of N‐ras with GTP, while the inactivated state, with GDP.7,24 The locus
of the human NRAS gene is mapped to the 1p13.2 chromosomal band,
which consists of seven exons encoding N‐ras protein containing 189
amino acids.30 The residues 1–166 constitute the catalytic domain,
which is divided into two lobes namely the effector lobe (residues
1–86) and the allosteric lobe (residues 87–166).24 The formation of
orphism
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the active site within the effector lobe for the interaction of regulators
and effectors as well as hydrolysis of GTP is mediated via three specific
regions like residues 10–17, 30–40, and 60–76 namely P‐loop, switch
I, and switch II, respectively.48,51

All mammalian cells express Ras proteins, and structurally, they are
closely related. Mutationally activated Ras proteins promote oncogen-
esis due to their proto‐oncogenic nature, and they are reported to be
often mutated in numerous cancers.14,35 To activate the Ras, guanine
nucleotide exchange factors (GEFs) restructure the protein mediating
the interchange of GDP to GTP. GTPase‐activating proteins (GAPs)‐
mediated and intrinsic GTPase downregulate the Ras signaling via
GTP hydrolysis. Oncogenic mutation of Ras can prolong the active
state of Ras through the structural alteration that favors the GTP bound
form and reduction in the Intrinsic and/or GAP‐stimulated GTPase
activity, leading to the constitutive activation of downstream signaling
pathways e.g., RAF/MEK/ERK (Fig. 1).44 In 1983, NRAS was identified
in neuroblastoma as a family member of the RAS gene with the trans-
forming potentiality.28 Since its identification, studies have reported
missense variants of N‐ras are associated with different categories of
diseases including autoimmune lymphoproliferative syndrome,32 col-
orectal cancer,21 and melanomas.33,36 A significant number of mis-
sense SNPs of NRAS have been enlisted in the NCBI dbSNP database.
As the experimental approaches are costly and arduous to classify
the deleterious missense SNPs, whilst the computational attempts
are reliable, rapid, user‐friendly, and inexpensive.6

Therefore, here we perform an extensive computational study to
determine the damaging missense SNPs in NRAS and assess their sub-
sequent structural and functional consequences. Moreover, we find out
oncogenic missense nsSNPs in N‐ras protein with their associated can-
cer types.

2. Method and materials

Schematical representation of the entire methodology procedure
mentioned in Fig. 2.

2.1. Data retrieval

The NCBI‐dbSNP database provides extensive information about
the SNPs that are reported for any kind of gene. SNPs‐associated infor-
mation, specifically nsSNPs of NRAS gene including rs IDs, and allelic
Fig. 1. The active and inactive state of N-ras with the mechanism of oncogenic
mediated structural alteration can result in the augmented GDP/GTP exchange or lo
GAP regulatory mechanisms.44
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variation, genomic coordinates, amino acid changes due to missense
variants were retrieved from the NCBI‐dbSNP database.39 Basic infor-
mation and protein sequence in FASTA format were obtained from the
UniProtKB database.

2.2. Classifying the most damaging nsSNPs

The combination of multiple algorithmic prediction tools augments
the performance, precision, and accuracy of assessing the functional
and structural consequences of nsSNPs. A combination of various com-
putational methodologies including sequence structure‐based,
sequence homology‐based, supervised learning‐based, and consensus‐
based prediction tools were used to discover the most damaging muta-
tions in the NRAS gene.2,53 All in silico tools were accessed during the
months of October to December in 2021.

2.2.1. Functional effect analysis
We employed eight tools from the aforementioned methodologies

to investigate the functional consequences of nsSNPs. Two tools from
each methodology such as FATHMM40 and PolyPhen‐21 (Sequence
structure‐based), SIFT41 and PROVEAN16 (Sequence homology‐
based), M‐CAP23 and VEST‐411 (Supervised learning‐based), Meta‐
SNP10 and PredictSNP5 (Consensus‐based) were utilized in this com-
prehensive study.

2.2.2. Protein stability analysis
The nsSNPs‐mediated alteration in the corresponding protein

causes variation in the structure. The difference in the free energy of
a mutated protein compared to a wild‐type is a fundamental parameter
for assessing the protein stability.27,54 We utilized I‐Mutant3.012 using
physiological parameters (temperature 37̊ C and pH 7.4) and MU‐pro15

for the prediction of structural impacts in terms of protein stability.
Both tools rely on the algorithm of Support Vector Machines for assess-
ing the stability of a protein due to the missense variants, where we
used the FASTA sequence of N‐ras protein as an input.

2.3. Conservation analysis

ConSurf server has long been a widely accepted tool for analyzing
the evolutionary conservation scenario of each residue of macro-
molecules like protein, DNA, and RNA.4,3 ConSurf can reveal the vital
mutation leads to constitutive active GTP bound state.Oncogenic mutation-
ss of intrinsic GTPase activity. Oncogenic mutation can also alter the GEF and



Fig. 2. The diagram presents the overall methodology. Missense SNPs retrieved from the dbSNP database were subjected to functional and stability analysis to
classify the most damaging SNPs. ConSurf server was employed to determine the conservation nature of human N-ras protein which identified the highly
conserved residues. Further downstream analysis including their potentiality to be oncogenic, gene expression, and molecular docking was accomplished.
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region of the macromolecules relating to the structure and/or function.
ConSurf employs the Bayesian computation technique to assign an
evolutionary conservation score based on the multiple sequence align-
ment and a phylogenetic tree. The conservation scores of 1 to 4, 5 and
6, and 7 to 9 are considered as variable, intermediate, and conserved,
respectively. This web‐server was deployed to assess the evolutionary
conservation profile of N‐ras protein using PDB ID: 5UHV as input
structure. 5UHV was selected due to no mutation, no interim missing
amino acids, higher resolution (1.67 Å), and 166 amino acids solved
coverage compared to other available X‐ray crystallography
structures.24

2.4. Allele frequency (AF) analysis

AF data was retrieved by utilizing the genome aggregation data-
base (gnomAD v2.1.1) for the mutants residing in the highly conserved
region of human N‐ras protein. The gnomAD database is developed
from a plethora of sequencing projects to harmonize and aggregate
data of both genome and exome sequencing for the availability to
the scientific community. The gnomAD v2.1.1 is based on the popula-
tion genetic and disease‐associated investigation of unrelated individ-
uals spanning whole‐genome (15,708) and exome sequencing
(125,748).25
3

2.5. Protein-protein interaction analysis

The functions of protein largely rely on the interactions with other
proteins. Hence, the STRING database was utilized to unveil the func-
tional interaction of N‐ras protein with other proteins. The STRING
collects the interaction data from both the experimental and predicted
information.42–43

2.6. Prediction of cancer-associated SNPs

CScape utilizes a statistical approach to predict the missense muta-
tion as a cancer driver with 91 % accuracy.37 FATHMM‐cancer is a
species‐independent approach, which has different classifiers to pre-
dict the disease‐causing, cancer driver, and disease‐specific muta-
tions.40 Here, we selected the cancer option for the prediction of
cancer‐causing variants. The cBioPortal database13was utilized to
identify the specific types of cancer‐related to our oncogenic missense
SNPs.

2.7. Expression pattern and overall survival analysis

Gene Expression Profiling Interactive Analysis (GEPIA) works
based on the Cancer Genome Atlas (TCGA) and the Genotype‐Tissue
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Expression (GTEx) to provide interactive functions of gene expression,
analysis of patient's survival, correlation, and profiling plotting.46 The
expression profile of NRAS gene as well as overall survival pattern
were studied with specific type of cancers such as Lung adenocarci-
noma (LUAD), Sarcoma (SARC), and Prostate adenocarcinoma (PAAD)
due to their association with our studied oncogenic mutants.
2.8. Molecular docking study

Analysis of wild‐type and mutant (D119G) proteins‐ligand (GDP
and GTP) binding was executed by molecular docking. The 3D struc-
ture of human N‐ras protein was retrieved from the Protein Data Bank
(PDB)9in PDB format (5UHV). Initially, the 3D structure was prepared
by Discovery Studio 2020 to remove the attached ligand, ions, and
(a) 

(b) 

Fig. 3. SNP related data of human NRAS gene. (a) The pie chart displays variant ty
database. (b) The stacked bar chart describes the comprehensive outcome of utiliz
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water. The Swiss‐PDB Viewer (SPDV)9was used to eliminate and add
bad contacts and missing atoms, respectively. The wild‐type protein
was then subjected to energy minimization with the integrated GRO-
MOS96 force field. The SVDB was also employed to generate the
mutant structure by replacing the wild‐type residue with the mutant
residue and energy minimization.

The 3D structure of ligand guanosine diphosphate (GDP) and gua-
nosine triphosphate (GTP) was downloaded in a mole file from the
ChemSpider database and converted to sdf format by Discovery Studio
2020. The ligand was then energy minimized using mmff94 force field
and steepest descent option.

Binding affinity (kJ/mol) of best poses between protein and ligand
(GDP and GTP) was generated by the Autodock Vina tool,47 a widely
used and accepted utilized tool for analysis of docking. The protein
pes with their percentage frequency distribution deposited in the NCBI-dbSNP
ed algorithmic tools for studied missense variants.



Table 1
The most damaging missense variants predicted in the human NRAS gene.

No SNP IDs AA Change Sequence
homology-based
tools

Sequence-structure-based tools Supervised
learning-based tools

Consensus-based tools Stability analysis tools

SIFT PROVEAN PolyPhen-2 FATHMM M−CAP VEST-4
(p-value*)

Meta-SNP PredictSNP I-Mutant3.0 MU-pro

HumDiv HumVar

1 rs1246727247 I55R D D PD PD D PP D D D D D
2 rs267606920 G60E D D PD PD D PP D D D D D
3 rs1557982817 G60R D D PD PD D PP D D D D D
4 rs752508313 Y64D D D PD PD D PP D D D D D
5 rs1659097188 L79F D D PD PD D PP D D D D D
6 rs754428086 D119G D D PD PD D PP D D D D D
7 rs757968407 V152F D D PD PD D PP D D D D D

D: Deleterious/Damaging/Disease/Decrease; PD: Probably damaging; PP: Possibly pathogenic.
* p-value range: 0.00162 – 0.02287.

Y64 
G60 

D119 

V152 

L79 
I55 

Fig. 4. Evolutionary conservation profile of human N-ras protein. Residue
color is based on the conservation scale.

Table 2
Evolutionary conservation profile of native residues at the position of high-risk
missense variants.

AA position Native residue Mutant residue Conservation Score

55 I R 8
60 G E 9 (Highly conserved)
60 G R 9 (Highly conserved)
64 Y D 8
79 L F 5
119 D G 9 (Highly conserved)
152 V F 8
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region that will be used for docking is determined by the size of the
grid box. During docking, no location outside of the box will be inves-
tigated.18 In our study, molecular docking was done by keeping the
grid box size at X: 42.2867 Å, Y: 36.0680 Å, Z: 41.4736 Å to enclose
the specified area of N‐ras allowing GDP and GTP binding with the
best possible conformation.

3. Results

3.1. Extraction of SNPs data

As reported by the NCBI‐dbSNP database in December 2021, a total
of 5252 SNPs existed related to the NRAS gene. Among them, intron
variants were the most abundant (53.66 %), which was followed by
30 UTR variants (25.10 %), upstream variants (12.49 %), downstream
variants (3.58 %), missense variants (2.17 %), 50 UTR variants
(1.43 %), synonymous variants (1.16 %), and other variants
(0.42 %) such as frameshift, initiator codon, splice donor, and splice
acceptor variants. (Fig. 3a). Out of all SNPs, missense nsSNPs (due
to their association with diverse types of diseases) were considered
to analyze their consequences on human N‐ras protein.

3.2. Identification of the most damaging nsSNPs

Missense variants retrieved from the NCBI‐dbSNP database were
investigated to classify the most deleterious variants using 10 compu-
tational algorithmic tools (Supplementary Table S1). We filtered the
most damaging variants from 140 missense variants based on the clas-
sification of all employed tools as damaging/deleterious (Fig. 3b).

3.2.1. Functional analysis
Eight predicting algorithms were employed to investigate the func-

tional consequences of 140 missense variants in the N‐ras protein. Out
of eight tools, PROVEAN classified the utmost number of deleterious
missense nsSNPs (90 in number), while FATHMM predicted the fewest
number of missense nsSNPs as damaging (25 in number). The detailed
outcomes of predicting algorithms for functional analysis of missense
variants are depicted in Fig. 3b.

3.2.2. Stability analysis
According to I‐Mutant3.0 and MU‐pro, 108 and 132 missense vari-

ants were found to have decreasing effects on the stability of N‐ras pro-
tein, respectively as illustrated in Fig. 3b.

3.2.3. Selected most damaging variants
Seven variants as rs1246727247 (I55R), rs267606920 (G60E),

rs1557982817 (G60R), rs752508313 (Y64D), rs1659097188 (L79F),
rs754428086 (D119G), and rs757968407 (V152F) were classified as
5

deleterious/ damaging by all employed computational prediction tools
(Table 1 and Supplementary Table S2)). Hence, these were deter-
mined as the most damaging missense variants and considered for fur-
ther investigation.



Table 3
Allele frequency data according to gnomAD v2.1.1 database.

SNPs ID Amino acid change Protein consequence Allele count Allele number Allele frequency

rs267606920 G60E p.Gly60Glu 1 31,392 3.19e-5
rs1557982817 G60R − − − −

rs754428086 D119G p.Asp119Gly 1 251,488 3.98e-6

Fig. 5. The interactions of N-ras protein with other proteins determined by STRING database. (a) Colors of line indicate the type of evidence interaction. (b)
Thickness of line indicates the strength of data support.

Table 4
Prediction of cancer-associated missense SNPs.

No. SNPs ID Amino acid change CScape FATHMM-Cancer

Prediction Coding score Prediction Score

1 rs267606920 G60E Oncogenic (high confidence) 0.93197 Cancer −4.39
2 rs1557982817 G60R Oncogenic 0.884552 Cancer −4.39
3 rs754428086 D119G Oncogenic (high confidence) 0.920309 Cancer −4.55

Fig. 6. Expression profile of NRAS gene in Lung adenocarcinoma (LUAD), Prostate adenocarcinoma (PAAD), and Sarcoma (SARC) (P< 0.05). The signature score
is calculated by mean value of log2 (TPM + 1) of each gene in NRAS-like signature gene set. *P < 0.01.
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3.3. Conservation analysis of selected variants

Highly conserved residues of a protein throughout its evolution are
mainly crucial for the maintenance of structure, function, and interac-
tion with the effectors and regulators.17 The conservation profile of N‐
ras protein (Fig. 4) showed that the native positions of the selected
mostly damaging variants (I55, G60, Y64, L79, D119, and V152) were
highly conserved, and the conservation scores were varying from 5 to
9 (Table 2). More specifically, 2 native positions (G60 and D119) cre-
ating three mostly deleterious mutations (G60E, G60R, and D119G)
were located in the highest conserved area (conservation score of 9)
(a) LUAD 

(c) PAAD

Fig. 7. Overall survival analysis of Lung adenocarcinoma (LUAD), Sarcoma (SA
transcripts per million and hazard ratio, respectively.

7

and D119G was found to be a substrate binding residue. Therefore,
these three mutants were subjected to further downstream analysis.

3.4. Allele frequency data

Allele frequency (AF) related to the most damaging nsSNPs residing
in the highly conserved wild‐type residue was collected from the gno-
mAD database. Table 3 provided the data of allele frequency with pro-
tein consequences, allele number, and allele count. The allele
frequency for the G60E variant (3.19e‐5) was higher than D119G
(3.98e‐6).
(b) SARC 

 

RC), and Prostate adenocarcinoma (PAAD) patients. TPM and HR stand for
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3.5. Investigation of protein–protein interactions

Missense mutation may cause the alteration of the protein struc-
ture, consequently, functional interaction with other proteins may also
be changed. Hence, the STRING server was utilized to unveil the inter-
action of N‐Ras with other proteins (Fig. 5) employing minimum
required interaction scores of 0.400 (medium confidence). The
STRING server revealed that N‐ras functionally interacts with other
proteins with PPI enrichment p‐value and clustering coefficient as
3.43e‐09 and 1, respectively. According to the STRING server, N‐ras
interacted protein partners were GTPase H‐ras, GTPase K‐ras, B‐raf
(proto‐oncogene serine/threonine‐protein kinase), Phosphatidylinosi-
tol 4, 5‐bisphosphate 3‐kinase catalytic subunit alpha isoform
(a) GDP boun

(b) GTP bound D

Fig. 8. Schematic representation of protein–ligand docked complexes. (a) D119G
D119G mutant (right). (b) D119G variant-GTP docked complex (left) and the intera
indicates the hydrogen bond, and the rest of the colors indicate different hydropho
(For interpretation of the references to color in this figure legend, the reader is re

8

(PIK3CA), Epidermal growth factor receptor (EGFR), RAF (proto‐
oncogene serine/threonine‐protein kinase), Neurofibromin 1 (NF1),
Son of sevenless homolog 1 (SOS1), and Mitogen‐activated protein
kinase 3 (MAPK3). Therefore, deleterious variants in N‐ras protein
could hamper the functional interaction with these proteins leading
to alteration of the corresponding cellular activities.

3.6. Prediction of cancer-associated nsSNPs

Variants residing in the highly conserved residues were studied to
determine their cancer‐promoting role due to the oncogenic nature of
N‐ras protein by two online tools (FATHMM‐Cancer and CScape). A
variant, for which CScape coding score is close to one, is predicted
d D119G variant 

119G 

variant-GDP docked complex (left) and the interacted amino acid residues of
cted amino acid residues of D119G mutant (right). The green interacting color
bic interactions (ink color: pi-pi T shaped, yellow color: pi-alkyl interaction).
ferred to the web version of this article.)
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as a cancer driver with the highest confidence and accuracy. CScape
predicted all query variants (G60E, G60R, and D119G) as oncogenic,
while G60E and D119G variants predicted with the highest confidence
and accuracy (CScape coding scores: 0.93197 and 0.920309, respec-
tively). In the case of FATHMM‐Cancer, a score less than −0.75 indi-
cates the mutant is significantly related to cancer. The prediction
revealed that G60E, G60R, and D119G mutants are potentially associ-
ated with cancer having the score of −4.39, −4.39, and −4.55,
respectively (Table 4).
3.7. Determination of cancer types and expression profile

Predicted oncogenic nsSNPs were subjected to assess the associa-
tion with specific types of cancers. cBioPortal database revealed the
association of G60E with Lung Adenocarcinoma and Rhabdomyosar-
coma, whilst G60R with Prostate Adenocarcinoma. To elucidate the
N‐ras expression pattern in these cancers, the box plot analysis was
performed which demonstrated that the NRAS gene is overexpressed
in Lung adenocarcinoma, Sarcoma, and Prostate adenocarcinoma
(Fig. 6). Therefore, overexpression of these mutated NRAS variant
could result these types of cancers.
3.8. Overall survival analysis

The GEPIA database was employed to analyze the relationship
between NRAS gene expression and survival of patients with LUAD,
Table 6
Non-bond interaction analysis of D119G-GDP and D119G-GTP docked complexes.

Docked complex Binding affinity (kJ/mol) Interacting AA

D119G-GDP −9.6 GLY15
SER17
ALA18
LYS117
ALA146
LYS147
GLU31
ALA11
SER17
ASP30
LYS117
LYS117
LYS147

D119G-GTP −10.5 GLY13
VAL14
LYS16
SER17
SER17
GLY60
LYS117
ALA146
LYS147
GLU31
ASP33
THR58
LYS117
PHE28
LYS117
ALA146
LYS147

Table 5
Binding affinity of protein ligand complexes in Molecular docking.

Docked complexes Binding affinity (kJ/mol)

Wildtype-GDP −9.9
Wildtype-GTP −10
D119G-GDP −9.6
D119G-GTP −10.5

9

SARC, and PAAD. The subjects were categorized into two groups as
such high and low expression levels based on the median expression
of the NRAS gene. The patients with LUAD, PAAD, and SARC exhibited
poor overall survival with high expression levels of NRAS gene com-
pared to the patients with lower expression of NRAS gene (Fig. 7).
All results were statistically significant. More specifically, PAAD
patients showed substantially lower survival time with higher expres-
sion of the NRAS gene (Fig. 7c).

3.9. Molecular docking study

N‐ras with GTP bound state is active (GDP bound state is inactive)
and mediates downstream effector functions. Constitutively, pro-
longed active N‐ras leads to various cancers. Therefore, binding
strength and conformations of GDP and GTP with mutant (D119G)
N‐ras protein was determined to reveal the mechanism on how
D119G variants might be oncogenic by a molecular docking study
using Autodock Vina (v1.2.0) (Fig. 8). The results of the docking study
showed that binding affinity of D119G‐GTP (10.5 kJ/mol) docked
complex were higher than D119G‐GDP (9.6 kJ/mol) docked complex
and even higher than the wild‐type N‐ras‐GTP (Table 5). D119G‐GTP
docked complex manifested increased hydrogen bond and hydropho-
bic interaction compared to D119G‐GDP, indicating the rational for
higher binding affinity. Overall, D119G‐GTP formed 13 hydrogen
bonds and 4 hydrophobic interactions, while D119G‐GDP showed 11
hydrogen bonds and 2 hydrophobic interactions (Table 6).

4. Discussion

The abundance of nsSNPs has overflown the relevant databases due
to the advancement of sequencing techniques. Moreover, increasing
trend of inundated nsSNPs turns the situation in an impossible state
to characterize all nsSNPs employing experimental approaches. Con-
versely, computational approaches are a great way of differentiating
the most damaging and disease‐associated nsSNPs from a large num-
Distance (Å) Bond category Bond type

2.10606

Hydrogen Bond

Conventional Hydrogen Bond
1.94699
2.05301
2.86878
2.70073
2.15136
2.08537
2.89436
3.41768 Carbon Hydrogen Bond
3.78621
3.77153
4.02388 Hydrophobic Pi-Alkyl
4.74728
2.17502 Hydrogen Bond Conventional Hydrogen Bond
2.80057
2.497
2.39915
1.97616
2.64362
2.89321
2.68436
2.20948
2.72902
2.95475
2.21455
3.62153 Carbon Hydrogen Bond
4.57016 Hydrophobic Pi-Pi T-shaped
4.00211 Pi-Alkyl
5.45919
4.6959
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ber of nsSNPs.22 The presence of numerous deleterious nsSNPs in
oncogenes promoting cancer has increased the attention to a serious
concern.38 The NRAS gene encodes a small GTPase that acts as a
molecular regulator of various cellular activities (including cell prolif-
eration and survival) and has been reported to be associated with var-
ious types of cancer,7 ,8 ,24 .36

The computational approach to classify the disease‐associated
nsSNPs of human NRAS gene has yet to be performed. To predict
the most deleterious nsSNPs more accurately and reliably, a combina-
tion of algorithmic prediction tools with different methodologies
should be employed. In this study, 10 algorithmic tools (FATHMM,
PolyPhen‐2, SIFT, PROVEAN, M−CAP, VEST‐4, Meta‐SNP, Pre-
dictSNP, I‐Mutant3.0, and MU‐pro) were exploited to analyze the func-
tional consequences of nsSNPs in human NRAS gene. Generally, the
native function of a protein relies on the stability of the corresponding
protein.38 To assess the impact of the nsSNPs in N‐Ras protein stability,
I‐Mutant3.0, and MU‐pro tools were used. Rigorous assessment of
nsSNPs in the NRAS gene by all utilized tools has made identification
of 7 nsSNPs as the most deleterious.

The information related to evolutionary conservation is crucial for
the identification of disease‐associated nsSNPs.29 The missense vari-
ants at highly conserved residues have more tendency to be deleteri-
ous than variants in less conserved regions. As stated by the ConSurf
web server, wild‐type residues of three missense variants out of seven
studied varaints are located in the highly conserved region (G60E,
G60R, and D119G). Furthermore, G60E showed higher allele fre-
quency than D119G indicating that it (G60E) is very often noticed in
people. Protein‐protein interaction is crucial to execute the cellular
processes. The STRING database revealed that N‐ras interacts with dif-
ferent cellular proteins, most of which are involved in the signaling
process of cell proliferation, differentiation, and survival. STRING also
showed the association of N‐ras with NF1, which is a regulator of Ras
GTPase activity. Our identified deleterious missense variants of N‐ras
could alter the interaction with these proteins to promote the develop-
ment of diseases e.g., cancers.

Genomic instability due to mutations may cause numerous cancer
types. Various studies have demonstrated the association of Ras vari-
ants with different cancers.31 To predict cancer‐causing mutants,
FATHMM‐Cancer and CScape tools were used and predicted that all
three (G60E, G60R, and D119G) were oncogenic/cancer drivers. Fur-
thermore, the cBioPortal database showed that more than 75 types
of cancers are associated with the missense variants of the NRAS gene.
The G60E variant was revealed to be associated with Lung Adenocar-
cinoma, Rhabdomyosarcoma and G60R with Prostate Adenocarci-
noma. The D119G variant was not found to be associated with any
cancer types. This D119G mutant could be a subject of detailed study
to find out the association with specific cancer types. Approximately
25 % of cancers are due to gain‐of‐function mutation of RAS genes.20

The GEFs stimulated activation of Ras is maintained with GTP bound
state, which preferentially binds with its downstream signaling mole-
cules, and GAP stimulated inactivation is mediated by the GTPase
activity to form GDP bound inactive Ras. The mechanisms of the
gain‐of‐function variant of Ras in cancers are missense variant medi-
ated conformational change of protein that favors GTP binding and
loss of GTPase activity that also favors GTP bound activated state.20,31

To unveil the possible mechanism of D119G (residue in the ligand
binding site) oncogenic mutant of NRAS gene, molecular docking of
D119G variant with GDP and GTP using AutoDock Vina was accom-
plished. The higher binding affinity as well as greater hydrogen bonds
and hydrophobic interactions of D119G with GTP in comparison to
GDP indicated that D119G might alter the N‐ras protein structure in
a way that favored the GTP bound state. Therefore, cancer‐driven
property of D119G variant might be explained by the constitutive
GTP bound activated conformation.

Mutation can alter the expression of a gene such as mutated RUNX1
was demonstrated to be strongly expressed.19,34 Another study also
10
revealed that missense mutated TP53 and ZNF750 genes in patients
of esophageal squamous cell carcinoma (ESCC) were highly
expressed.45 Box plot analysis of expression of NRAS gene in LUAD,
SARC, and PAAD cancers by GEPIA web server unveiled that these can-
cers were caused by the higher expression of NRAS. Survival analysis
also showed that upregulated expression of NRAS gene in all LUAD,
SARC, and PAAD patients showed poorer survival time than the
patients with downregulated NRAS expression.

Although this comprehensive study predicts that G60E, G60R, and
D119G are potential oncogenic mutants, robust in vitro and in vivo
experiments are required to validate the present outcomes in the
future.

5. Conclusion

Based on in silico analysis, the current study reported 3 nsSNPs like
rs267606920 (G60E), rs1557982817 (G60R), and rs754428086
(D119G) as the potentially damaging considering their functional
and structural consequences in N‐ras protein and their presence in
the highly conserved region. Furthermore, three variants were pre-
dicted to be oncogenic and two (G60E and G60R) of them were found
to be associated with Lung adenocarcinoma, Rhabdomyosarcoma, and
Prostate adenocarcinoma. Therefore, it appears that other mutant
D119G might be involved in distinct types of cancers. The outcomes
of the present study will potentially create a guideline to filter cancer
driver nsSNPs. However, extensive studies on population and wet‐lab
investigation are crucial to characterize and decipher the conse-
quences of the three oncogenic mutants in N‐ras protein and develop-
ment of an effective personalized medicine.
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