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Abstract: Arbuscular mycorrhizal (AM) fungi, as root symbionts of most terrestrial plants, improve
plant growth and fitness. In addition to the improved plant nutritional status, the physiological
changes that trigger metabolic changes in the root via AM fungi can also increase the host ability to
overcome biotic and abiotic stresses. Plant viruses are one of the important limiting factors for the
commercial cultivation of various crops. The effect of AM fungi on viral infection is variable, and
considerable attention is focused on shoot virus infection. This review provides an overview of the
potential of AM fungi as bioprotection agents against viral diseases and emphasizes the complex
nature of plant–fungus–virus interactions. Several mechanisms, including modulated plant tolerance,
manipulation of induced systemic resistance (ISR), and altered vector pressure are involved in such
interactions. We propose that using “omics” tools will provide detailed insights into the complex
mechanisms underlying mycorrhizal-mediated plant immunity.

Keywords: mycorrhiza; immune priming; virus-responsive genes; root colonization;
symptom severity

1. Introduction

Arbuscular mycorrhiza (AM), a mutualistic association between the roots of most land plants and
fungi from the phylum Glomeromycota [1], confers a series of benefits to host plants [2]. AM fungi
improve plant growth and fitness in exchange for carbohydrates from their host to complete their
life cycle [3,4]. The mycorrhizal extracellular hyphal spreads widely into the soil, thereby acquiring
water and nutrients, especially phosphate [5]; AM fungus also develops in roots where the AM fungus
colonizes the cortex and forms highly branched intracellular structures called arbuscules, which
facilitate the transfer of mineral nutrients to the root cells. In addition to the improved plant nutritional
status, the physiological changes that trigger metabolic changes in the root via AM fungi can also
increase the host ability to overcome biotic and abiotic stresses [6–10]. A mycorrhizal bioprotection
effect has been observed against soil-borne fungal pathogens that cause wilting or root rot [11,12], and
AM symbiosis induces host plant resistance against below-ground and shoot pathogens, nematodes,
or chewing insects [13–16]. In this review, we will focus on the contribution of AM fungi in plant and
virus interactions, which have been less investigated.

Viral diseases in plants are a major threat to food security worldwide, and this problem is
exacerbated by crop management practice and climate changes [17]. The control of plant viruses is
mainly based on prevention by using genetically resistant plants and through vector eradication [18].
However, resistance sources are lacking in many cases, and genetic resistance achieved by genetic
engineering can be overcome by viruses as it is usually based on a gene-for-gene interaction [19].
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Common strategies to control plant virus infection that target vectors via agrochemicals are unacceptable
because of their high cost and potential adverse environmental effects. The possibility of priming plant
immunity against viruses by using beneficial microorganisms, such as AM fungi, deserves considerable
interest. Therefore, this review aims to provide an overview of the impact of AM symbiosis on viral
pathogen infection and the mechanisms involved in such interactions.

2. Impact of AM Symbiosis on Viral Development

The studies related to the interactions between AM symbiosis and viral pathogens are summarized
in Table 1. The effect of AM fungi on viral infection is variable, and considerable attention is focused on
shoot virus infection. Focusing on disease severity, Shaul et al. [20] analyzed the interactions between
Rhizophagus intraradices and Tobacco mosaic virus (TMV) in tobacco leaves and observed that the disease
symptoms are more enhanced in mycorrhizal plants than in non-mycorrhizal plants. Similarly, Nemec
and Myhre [21] demonstrated that the leaf shock symptom development is severe in mycorrhizal
Citrus rootstocks. The increase in virus accumulation in leaves of Potato virus Y-infected mycorrhizal
strawberry and potato plants was observed [22,23]. Mycorrhizal plants could become increasingly
sensitive to viral presence over time as virus concentration continuously increases compared with
that in non-mycorrhizal controls [24]. During the early stages, decreased or no difference in symptom
severity or virus infection is observed in mycorrhizal plants compared with non-mycorrhizal plants [22].
A study demonstrates a clearly protective effect of AM fungi against viral infections in roots and
shoots and in disease symptoms [25]. Recently, Hao et al. [26] showed that mycorrhizal colonization
significantly decreases nematode vector Xiphinema index reproduction in soil and gall formation on
roots and protects grapevine against grapevine fanleaf virus (GFLV). These inconsistent findings related
to mycorrhizal plants and viral pathogens that vary with the plant–AM fungus–virus interactions
involved have been reported.

2.1. AM Fungi

The reviewed experiments are limited to the single inoculation of one of the following species:
Funneliformis mosseae, Funneliformis geosporum, Rhizophagus intraradices, and Glomus sp. (Table 1).
These species can be easily propagated and are the most common symbionts which were geographically
distributed at a global scale [27]. Monospecies inoculum is used in all these studies. Berruti et al. [3]
used a meta-analysis to show that plant growth promotion effects are more successful in single-species
mycorrhizal inoculation experiments than in experiments with more than one AM fungi species.
This phenomenon can be explained by the fact that the functional redundancy in AM fungi resulted
in few fungal species that can alleviate stress and benefit a plant [28]. Furthermore, different isolates
within the same AM fungi species can increase the variations in plant response [29], suggesting that
functional heterogeneity exists in these species. Though the current general trend that uses single
species in these reviewed studies is reasonable, the selection of remarkably effective AM fungi strains
for AM fungus–virus interactions is also required.
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Table 1. Table summarizing the studies related to the interactions between arbuscular mycorrhizal (AM) symbiosis and viral pathogens.

Virus AM Fungus Plant
Mycorrhizal Effects on Virus
Development References

Code Group Family Genus Species

1 Group II:
ssDNA Geminiviridae Begomovirus Tomato yellow leaf curl

Sardinia virus
Funneliformis mosseae (Syn.
Glomus mosseae BEG12)

Tomato (Solanum lycopersicum L.
(‘Moneymaker’))

Both root and shoot concentrations of
viral DNA are lower in mycorrhizal
plants than in control plants.

[25]

2 Group IV:
ssRNA(+) Bromoviridae Ilarvirus Citrus leaf rugose virus

(CLRV-2)

Funneliformis geosporum
(Syn. Endogone macrocarpa
var. Geospora)

Citrus rootstocks (alemow (Citrus
macrophylla Wester); grapefruit (Citrus
paradisi Macf. ‘Duncan’); sour orange
(Citrus aurantium L.))

The leaf shock symptom development is
more severe in mycorrhizal plants than
in control plants.

[21]

3 Group IV:
ssRNA(+) Bromoviridae Cucumovirus Cucumber mosaic virus

(CMV-Y, yellow strain)
Funneliformis mosseae (Syn.
Glomus mosseae)

Cucumber (Cucumis sativus L. cv.
Tokiwa Jibai)

No significant difference is observed
between mycorrhizal and control
treatments.

[30]

4 Group IV:
ssRNA(+) Closteroviridae Closterovirus

Citrus tristeza virus (a
severe tristeza isolate,
T-3; a severe tristeza
isolate, T-3)

Claroideoglomus etunicatum
(Syn. Glomus etunicatum)

Citrus rootstocks (alemow (Citrus
macrophylla Wester); grapefruit (Citrus
paradisi Macf. ‘Duncan’); sour orange
(Citrus aurantium L.))

Virus-induced root degeneration is
observed in both control and
mycorrhizal plants.

[21]

5 Group IV:
ssRNA(+) Potyviridae Potyvirus Potato virus Y

Funneliformis geosporum
(Syn. Endogone macrocarpa
var. Geospora)

Strawberry (Fragaria × ananassa Duch.
var. Talisman)

Virus contents of the mycorrhizal plants
are higher than those of corresponding
control plants.

[22]

6 Group IV:
ssRNA(+) Potyviridae Potyvirus Potato virus Y

Rhizophagus intraradices
(Syn. Glomus intraradices
isolate no. OM/95)

Potato (Solanum tuberosum L. cv.
‘Marfona’)

Reproduction of the virus and disease
severity are significantly increased in
mycorrhizal plants than in control
plants.

[23]

7 Group IV:
ssRNA(+) Secoviridae Nepovirus Arabis mosaic virus

Funneliformis geosporum
(Syn. Endogone macrocarpa
var. Geospora)

Petunia (Petunia hybrida (J. D. Hooker)
Vilmorin, var. Rose of Heaven),

Both the leaves and roots of the
mycorrhizal plants contain more virus at
each harvest than those of control plants.

[22]

8 Group IV:
ssRNA(+) Secoviridae Nepovirus Grapevine fanleaf virus

Rhizophagus intraradices
(Syn. Glomus intraradices
isolate BEG141)

Grapevine rootstock (Vitis
berlandieri×Vitis riparia SO4)

The virus is present in both
non-mycorrhizal and mycorrhizal plants
at a high abundance of the nematode
vector, while, the virus is detected only
in non-mycorrhizal roots but absent
from mycorrhizal grapevine at a low
vector abundance.

[26]

9 Group IV:
ssRNA(+) Virgaviridae Tobamovirus Tomato (aucuba)

mosaic virus

Funneliformis geosporum
(Syn. Endogone macrocarpa
var. Geospora)

Tomato (Lycopersicon esculentum Mill.
F1 hybrid, var. Eurocross A)

Control leaves contain more virus at
early stage (4 and·7 days), while the rate
of virus multiplication was faster in the
leaves of mycorrhizal plants, which
leaded to more virus accumulation in
long-term (14 and 21 days).

[22]

10 Group IV:
ssRNA(+) Virgaviridae Tobamovirus Tobacco mosaic virus

(strain U1)

Rhizophagus intraradices
(Syn. Glomus intraradices
isolate no. OM/95)

Tobacco (Nicotiana tabacum cv.
Xanthi-nc)

Leaves of mycorrhizal plants show a
higher severity of symptoms than those
of control plants.

[20]

11 Group V:
ssRNA(-) Peribunyaviridae Tospovirus Tomato spotted wilt

virus (isolate T1012)

Funneliformis mosseae (Syn.
Glomus mosseae isolate
BEG12)

Tomato (Solanum lycopersicum L.
(‘Moneymaker’))

No differences in symptom severity or
virus concentration are observed
between mycorrhizal and
non-mycorrhizal plants in short time (14
days post-virus inoculation (dpi)), while
an increase in virus titer is detected in
mycorrhizal plants in a longer period (34
and 56 dpi).

[24]
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2.2. Viruses

Virus identity appears to play an important role in the impact of AM symbiosis on virus infections
given that viral infection of potato plants resulted in a variety of symptoms depending on the viral
strain. The interactions between AM fungi and ssRNA(+) viral plant pathogens, the single largest group
of RNA viruses, have been extensively studied. These studies cover 6 out of 30 families in this group
of RNA viruses. Among ssRNA(+) viruses, including Bromoviridae, Closteroviridae, Potyviridae,
Secoviridae, and Virgaviridae. Only one strain of the Bromoviridae family shows an insignificant
difference in cucumber mosaic virus (CMV-Y, yellow strain) accumulation in the cucumber leaves of
mycorrhizal and control cucumber plant determined using indirect enzyme-linked immunosorbent
assay (ELISA) at 1, 2 and 3 weeks after inoculation [30]. Once inside the plant, this virus can inhibit
the plant’s ability to signal for gene silencing in other tissues, thereby furthering CMV-Y infection.
Similar to other viruses, this kind of virus replicates in the cytoplasm, and moves through the
plasmodesmata via cell-to-cell transfers, but the phloem can be utilized for long-distance movement
in the plant. Other studies demonstrate a negative effect of AM fungi against ssRNA(+) virus in the
shoot and root, leading to an increased virus concentration or symptom severity in mycorrhizal plants.

No change in virus accumulation or symptom severity is observed between mycorrhizal and
non-mycorrhizal plants 14 days post-virus inoculation (dpi) of tomato spotted wilt virus (TSWV), an
RNA virus of ambisense polarity belonging to the family Peribunyaviridae. However, a prolonged
increase in virus titer is observed in mycorrhizal plants in a longer period [24]. “Recovery” is a
phenomenon defined by the reduction or disappearance of symptoms in virus-infected plants that
initially exhibit severe disease and by being protected from reinoculation with the same virus [31].
Results show that 25% of mycorrhizal plants and 65% of non-mycorrhizal plants recovered at 34 dpi,
and the decreased of recovery in mycorrhizal plants indicates that the plant’s response to TSWV
infection is attenuated by mycorrhizal colonization [24].

Mycorrhizal colonization has a beneficial effect in attenuating the disease caused by tomato yellow
leaf curl Sardinia virus (TYLCSV), an ssDNA virus belonging to the Geminiviridae family, and causes
one of the most serious viral diseases of tomatoes [25]. Considering that geminiviruses colonize the
nucleus of cells and are phloem-limited [32], these studies suggest that the different results observed
with virus is likely due to the particular nature of the viruses.

2.3. Plants

A plant is another related aspect that should be considered. Nine plant species are reviewed,
while, four studies focus on tomato, including different varieties with a range of genetic differences
(Table 1). AM fungi protect the same variety of tomato (“Moneymaker”) against the TYLCSV, but
not from the TSWV [24,25]. Different plant species show a significantly different responsiveness to
mycorrhizal inoculation [5,33], and the effectiveness of mycorrhizal bioprotection depends on the plant
species involved. Though major crops, such as wheat and maize, have relatively high mycorrhizal
dependence on plant growth and nutrient uptake, negligible attention has been given to identifying
the bioprotection effects against viral disease on these plants.

2.4. Environment Conditions

Many factors also affect the success of bioprotection, including AM fungi species compatibility
with the target environment and degree of competition with other soil organisms in the timing of
inoculation. All experiments are conducted under controlled (greenhouses) conditions (Table 1), and
pots are usually filled with sterilized substrates with low mineral nutrients, leading to optimized
requirements for viruses and AM fungi to infect or colonize compared with that in open-field conditions.
Given that high nutrient levels in substrates can reduce AM fungi colonization [5], virus infection
is difficult in highly sophisticated management cultivation measures [18]. The positive or negative
impacts of AM fungi on plant–virus interactions can be eased or reversed via agricultural practices
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and in multiple stressed environmental conditions. Additional insights into the variability in tripartite
performance in a range of different environments can help increase the efficacy of AM fungi.

3. Mechanisms of Interactions between AM Fungi and Plant Viruses

The underlying mechanisms of the impact of AM symbiosis on infection by viral pathogens remain
poorly understood. Several mechanisms, including modulated plant tolerance, the manipulation
of induced systemic resistance (ISR), and altered vector pressure are involved in such interactions
(Figure 1). Mycorrhizal effects likely result from a combination of several mechanisms [13,34].
The mechanisms responsible for the specific plant–AM fungus–virus interaction highlight the need
to consider mycorrhizal symbiosis in the context of plant immunity to exploit potential benefits for
plant bioprotection.
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Figure 1. The underlying mechanisms of the impact of arbuscular mycorrhizal (AM) symbiosis
on infection by viral pathogens, including modulated plant tolerance, the manipulation of induced
systemic resistance, and altered vector pressure. SA, salicylic acid; JA, jasmonic acid.

3.1. Modulated Plant Tolerance

Mycorrhizal hyphae are considerably thinner than roots and can penetrate smaller pores; they
emerge from the root surface and acquire macro and micronutrients from soil volumes that are
inaccessible to roots [35]. The increased uptake of nutrients in the host plant may affect the susceptibility
of the plant to viral infection. Maffei et al. [25] showed that TYLCSV-infected mycorrhizal plants
exhibit less severe symptoms than infected non-mycorrhizal plants, but non-mycorrhizal plants do
not suffer from phosphate starvation when they are watered with a modified nutrient solution with
optimized phosphate content. This study indicates that the improved nutritional status of mycorrhizal
plant alone could not explain its bioprotection against viruses. Daft and Okusanya [22] demonstrated
that enhanced virus production can be achieved in non-mycorrhizal plants under higher phosphate
levels, and the amount of Arabis mosaic virus from strawberry plants is greater in mycorrhizal than
in non-mycorrhizal plants, thus, these results could be attributed to the high phosphate levels in
mycorrhizal plants. Borer et al. [36] also showed that increased phosphorous content is associated
with an increase in barley and cereal yellow dwarf virus infection. Thus, AM fungi can benefit virus
development rather than provide bioprotection. Given the high-affinity phosphate transporter in
an AM fungus [37], the nutritional aspects of AM symbiosis have been studied extensively from the
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molecular perspective [38]. The AM marker gene LePT4, a mycorrhiza-specific phosphate transporter,
is preferentially expressed in arbuscule-containing cells of mycorrhizal tomato roots [39,40]. However,
the expression profiles of LePT4 in mycorrhizal plants are not modified by TYLCSV infection [25].

Furthermore, the improved nutrient status of mycorrhizal plants, especially under nutrient
deficient conditions, leads to vigorous plant growth, which can compensate for viral damage. However,
improved plant growth may impact mycorrhizal plants as it increases potential virus multiplication [21].
Though TSWV infection significantly suppresses the AM-induced growth increase, mycorrhizal tomato
plants showed a growth increase compared with that of mock-inoculated ones under viral stress [24].
Therefore, enhanced growth in mycorrhizal plants could also compensate for damage caused by
viruses, and mycorrhizal symbiosis still benefits plants because they are able to tolerate increased viral
pressure under certain conditions.

3.2. Manipulation of Induced Systemic Resistance

The modulation of plant physiology and signal transduction pathways during mycorrhizal
symbiosis formation and function has received considerable attention [41–43]. A transient and weak
activation of plant immune system takes place in response to mycorrhizal colonization, with the
elicitation of specific defense reactions [44]. Microbe-associated molecular patterns (MAMPs) from AM
fungi are recognized by the innate immune system of a host plant, while MAMP-triggered immunity
(MTI) could prime the salicylic acid-dependent defense responses [45]. The enhanced production of
phytoalexins and phenolic compounds; accumulation of hydrolytic enzymes, such as chitinases and
β-1,3-glucanases; and activation of phenylpropanoid metabolism in plant roots are involved in MTI on
AM fungal colonization [34]. The pre-conditioning of the host plant elicited by AM fungi strengthens
and speeds up systemic defense responses against subsequent plant pathogens [12]. Phytoalexin
synthesis and cell wall fortification, which are effective against bacterial or fungal pathogens [46],
usually could not prevent virus spread or replication [47]. β-1,3-glucanases, which inhibit callose
deposition degradation in plasmodesmata, could be accumulated in mycorrhizal cucumber plants [48],
and delay cell-to-cell virus spread and loading into phloem [49]. Such priming of plant defense
conferred by mycorrhizal symbiosis may be involved in AM fungi-mediated bioprotection against
plant viruses.

Mycorrhiza-induced resistance (MIR) against many plant fungal and bacterial pathogens
shares common characteristics with the systemic acquired resistance (SAR) after pathogen attack
and is associated with the SAR-like priming of defense response, such as the accumulation of
pathogenesis-related (PR) proteins [34]. Gallou et al. [50] observed a strong induction of PR protein
genes (PR1 and PR2) in mycorrhizal plants challenged with Phytophthora infestans in vitro. However,
the accumulation and mRNA steady-state levels of PR proteins, PR-1 and PR-3, are low in the leaves of
mycorrhizal plants infected with the tobacco mosaic virus [20]. The expression of PR proteins is tightly
correlated with the SA signal transduction pathway during necrotic lesion formation in tobacco–virus
interactions [51]. SA levels are enhanced in TSWV-infected mycorrhizal and non-mycorrhizal plants [24],
while Shaul et al. [20] further indicated that the delayed PR-1 and PR-3 gene expression in mycorrhizal
plants infected by TMV is not involved in SA-dependent defense, because the exogenous application
of SA to the foliage does not abolish the mycorrhizal plant response.

The priming of jasmonic acid (JA)-dependent defense responses is demonstrated in mycorrhizal
plants under a pathogen infection unlike in the non-mycorrhizal control [52]. AM fungi reduce
the development of plant pathogens through ISR, a resistance phenomenon usually induced by
non-pathogenic microorganisms [10]. Reports of decreased pathogen development in shoot or
in non-mycorrhizal parts of mycorrhizal root systems using a split-root system is confirmed as a
mycorrhizal-mediated ISR [53–55].

ISR is predominantly regulated by the JA-mediated and ethylene-mediated signaling pathways [34].
Li et al. [56] showed that mycorrhizal plants have a higher JA content compared with that of
non-mycorrhizal plants during Phytophthora sojae infection, and Pozo et al. [57] demonstrated that
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the expression of marker genes for JA responses are significantly increased in mycorrhizal tomato
plants. JA has a limited effect in early local defenses of potatoes infected with potato virus Y-NTN [58],
and Moizzi et al. [24] indicated that increased levels of JA in mycorrhizal plants are detected with or
without TSWV infection. Considering that the SA and JA pathways are usually mutually antagonistic,
these signaling pathways may not act independently but influence each other through a complex
network in virus–AM fungus–plant interactions [59].

A high-throughput transcriptional profiling analysis via microarrays is conducted to monitor
transcriptional changes in the roots and shoots of mycorrhizal plant infection with TSWV, and this
transcriptome study may shed light on tripartite interaction [24]. The number of differentially expressed
(DE) genes in the roots of TSWV-infected mycorrhizal plants is higher compared with that measured in
the single-inoculation treatments. In shoots, the impact of combined TSWV and AM fungus appears
intermediate between that observed for the mycorrhizal (lowest) and the virus (highest) interaction
separately. A total of 215 genes modified the regulation in the shoots TSWV-infected mycorrhizal plants,
while 579 DE genes were found in the roots. This transcriptome data indicates that the expression levels
of several candidate virus-responsive upregulated genes related to sugar metabolism, defense, and
response to hormones are reduced in mycorrhizal plants compared with that in non-mycorrhizal plants
after TSWV infection. For example, the expression of PR protein 10, which has antimicrobial activity, is
downregulated in TSWV-infected mycorrhizal plants, but PR protein 10 could be linked to the reduction
of plum pox virus infection in Nicotiana tabacum [60]. On the basis of the suppression subtractive
hybridization study, Hao et al. [55] showed that glutathione S-transferase (GST) is upregulated during
MIR. GST is involved in the detoxification of reactive oxygen species and is upregulated in response
to TSWV [61] but is not activated in virus-infected mycorrhizal plants [24]. However, only a few
transcriptomes of AM fungi-associated changes are available, and future “omics” studies of viral
attackers might clarify whether the AM fungi priming of plant defenses is effective.

3.3. Altered Vector Pressure

The control of virus diseases could also be based on prevention by eradication of insect, nematode
and fungal vectors [18]. These mycorrhizal protective effects range from enhanced plant tolerance to a
reduction in pathogen infection [14,16,62]; therefore, the potential of AM symbiosis to restrict these
vectors may contribute to diminishing viral disease severity. The soil-borne GFLV spreads mainly via
the nematode vector X. index, which is suppressed by the AM fungus R. intraradices with induced
local and systemic protection [55]. Therefore, the bioprotection effects of AM symbiosis to restrict a
vector to biologically realistic thresholds may limit GFLV infection. The reduced viruliferous nematode
development after R. intraradices inoculation does not exclude GFLV infection at an extremely high
nematode pressure (100 nematodes per plant), but GFLV is absent from mycorrhizal grapevine roots 90
days after nematode inoculation at a low nematode pressure (10 nematodes per plant, approximately
the levels of nematode abundance observed in vineyards [63–65]) but detectable in non-mycorrhizal
roots [26]. Thus, management of the nematode vector by using AM fungi has a potential to diminish
GFLV disease severity.

However, the colonization of Plantago lanceolata by AM fungi improves the growth and reproduction
in the shoot of the sucking insect Myzus persicae [66,67], which acts as a vector for the transport of
various mosaic viruses, potato leafroll virus, potato virus Y, and Mikania micrantha wilt virus [68].
As a virus depends on a vector for its survival and transmission, the improved performance of this
aphid on mycorrhizal plants may lead to enhanced plant infection by the viruses.

For fungal vectors, root colonization by AM fungi is associated with symptomless root parasites,
Olpidium species [69,70], which are also known as the vectors of viruses on cereals, tobacco and
salad [71,72]. The potential of AM fungi to reduce fungal pathogen infections has been shown
frequently [16,34], but no information is available concerning mycorrhizal protection against fungal
vectors mediating virus transmission.
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4. Conclusions and Future Directions

We provide an overview of the potential of AM fungi as bioprotection agents against viral diseases
and emphasize the complex nature of plant–fungus–virus interactions. However, data are still limited
to certain stages of virus symptoms, and the actual long-term processes attained by inoculating plants
with AM fungi must be evaluated case-by-case in the field. These interactions depend on several
biotic and abiotic factors, and practices such as the use of pesticides or fertilization (especially that of
phosphorous), can be controversial for plant–fungus–virus interactions. The technological progress
unraveled the mechanisms proposed for mycorrhizal-mediated bioprotection, and relevant strategies,
such as next-generation sequencing, may further elucidate the mechanisms of induced resistance of
AM symbiosis. The complex relationship between the systemic priming of plant defenses and the
suppression of immunity, which are required for the establishment of AM symbiosis, must also be
further studied involving “omics” tools [73].

In addition, the bioprotection efficiency of AM fungi may be improved if they are used in
combination with other biological control agents. Elsharkawy et al. [30] showed that the co-inoculation
of cucumber plants with AM fungi and a plant growth-promoting fungus Fusarium equiseti results
in the effective control of CMV development, and the importance of microorganisms in rhizosphere
and phyllosphere will be confirmed with microbiome studies. Though most studies on plant–AM
fungus–virus interactions have been conducted under controlled conditions, the development of
mycorrhizal inocula for large-scale field application is growing quickly [14,74]. In view of sustainable
agriculture, unveiling the principles behind the functional interplay among the tripartite will be of
major interest to the effective application of AM fungi in an integrated viral management program.
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