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Abstract

Aseptic loosening of a joint prosthesis is associated with
remodelling of bone tissue in the vicinity of the prosthesis. In the
present study, we investigated the effects of synovial fluid (SF)
from patients with a loose prosthetic component and
periprosthetic osteolysis on osteoclast and osteoblast activities
in vitro and made comparisons with the effects of SF from
patients with osteoarthritis (OA). Bone resorption was assessed
by the release of calcium 45 (45Ca) from cultured calvariae. The
mRNA expression in calvarial bones of molecules known to be
involved in osteoclast and osteoblast differentiation was
assessed using semi-quantitative reverse transcription-
polymerase chain reaction (PCR) and real-time PCR. SFs from
patients with a loose joint prosthesis and patients with OA, but
not SFs from healthy subjects, significantly enhanced 4°Ca
release, effects associated with increased mRNA expression of
calcitonin receptor and tartrate-resistant acid phosphatase. The
mRNA expression of receptor activator of nuclear factor-kappa-
B ligand (rankl) and osteoprotegerin (opg) was enhanced by
SFs from both patient categories. The mRNA expressions of
nfat2 (nuclear factor of activated T cells 2) and oscar
(osteoclast-associated receptor) were enhanced only by SFs
from patients with OA, whereas the mRNA expressions of
dap12 (DNAX-activating protein 12) and fcry (Fc receptor

common gamma subunit) were not affected by either of the two
SF types. Bone resorption induced by SFs was inhibited by
addition of OPG. Antibodies neutralising interleukin (IL)-1c, IL-
1P, soluble IL-6 receptor, IL-17, or tumour necrosis factor-a,
when added to individual SFs, only occasionally decreased the
bone-resorbing activity. The mRNA expression of alkaline
phosphatase and osteocalcin was increased by SFs from
patients with OA, whereas only osteocalcin mRNA was
increased by SFs from patients with a loose prosthesis. Our
findings demonstrate the presence of a factor (or factors)
stimulating both osteoclast and osteoblast activities in SFs from
patients with a loose joint prosthesis and periprosthetic
osteolysis as well as in SFs from patients with OA. SF-induced
bone resorption was dependent on activation of the RANKL/
RANK/OPG pathway. The bone-resorbing activity could not be
attributed solely to any of the known pro-inflammatory cytokines,
well known to stimulate bone resorption, or to RANKL or
prostaglandin E, in SFs. The data indicate that SFs from patients
with a loose prosthesis or with OA stimulate bone resorption
and that SFs from patients with OA are more prone to enhance
bone formation.

o-MEM = alpha-modification of minimum essential medium; 45Ca = calcium 45; Ct = threshold cycle; CTR = calcitonin receptor; D3 = 1,25(0OH),-
vitamin D3; DAP12 = DNAX-activating protein 12; ELISA = enzyme-linked immunosorbent assay; FcRy = Fc receptor common gamma subunit;
GAPDH = glyceraldehyde-3-phosphate dehydrogenase; I|g = immunoglobulin; IL = interleukin; NFAT2 = nuclear factor of activated T cells 2; OA =
osteoarthritis; OPG = osteoprotegerin; OSCAR = osteoclast-associated receptor; PCR = polymerase chain reaction; PGE, = prostaglandin E,; PTH
= parathyroid hormone; RANK = receptor activator of nuclear factor-kappa-B; RANKL = receptor activator of nuclear factor-kappa-B ligand; RIA =
radio-immunoassay; RT-PCR = reverse transcription-polymerase chain reaction; SEM = standard error of the mean; SF = synovial fluid; TNF-o. =
tumour necrosis factor-alpha; TRAP = tartrate-resistant acid phosphatase.
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Introduction

Aseptic loosening of a joint prosthesis is associated with
remodelling of bone tissue in the vicinity of the prosthesis. His-
topathological and morphometric analyses of bone tissues
from patients reoperated on due to aseptic loosening have
demonstrated enhanced osteoclast formation and bone
resorption as well as new bone formation [1-3]. The relative
importance of excessive resorption and/or inadequate new
bone formation for the periprosthetic loss of bone is not
known. The fact that degradation peptides of type | collagen
(N-telopeptide cross-links) and increased levels of deoxypyrid-
inoline and pyridinoline crosslinks can be measured in serum
and urine from patients with a loosened total hip arthroplasty
indicates that bone resorption is an important part of the
pathogenesis of aseptic loosening [4,5]. This view is further
supported by the notion that synovial fluid (SF) from patients
with a failed hip prosthesis can stimulate bone-resorbing activ-
ity of isolated mouse osteoclasts [6] and osteoclast formation
in mouse bone marrow cultures [7] and in cultures of human
peripheral blood monocytes [8]. The finding that serum levels
of osteocalcin are increased in patients with a loosened hip
prosthesis [4] is compatible with the morphological observa-
tion that suggests an increase in bone turnover [1,3] similar to
bone remodelling in postmenopausal osteoporosis. Interest-
ingly, SFs from patients with a loosened hip arthroplasty
decrease proliferation of human osteoblasts in contrast to the
stimulatory effect by SFs from osteoarthritic patients without
any prosthesis [9]. These observations suggest that factors
present in SF act on osteoblasts to inhibit proliferation and to
enhance differentiation. Such a view is also compatible with
the notion that positive bone scans are a common finding in
the vicinity of loosened hip prosthesis (MK Andersson, P Lun-
dberg, A Ohlin, MJ Perry, A Lie, A Stark, UH Lerner, unpub-
lished observations).

Much effort has been devoted to studies of the presence of
cytokines with bone-resorbing activity in periprosthetic tis-
sues, mainly in pseudosynovial membrane surrounding the
prosthesis and in SFs. Thus, interleukin (IL)-1¢, IL-1j, IL-6, IL-
8, IL-11, tumour necrosis factor-alpha (TNF-o), transforming
growth factor-f, and platelet-derived growth factor have been
found either in the membranes or in supernatants obtained by
culturing of such membranes [10-14]. In an attempt to com-
pare the formation of bone-resorbing activity in different
periprosthetic tissues, we incubated pseudosynovial mem-
branes and joint capsules from patients with a loosened hip
prosthesis and found (stimulating bone resorption of signifi-
cantly higher activity in cultured neonatal mouse calvariae in
supernatants from joint capsules) that supernatants from joint
capsules stimulated bone resorption in cultured mouse calvar-
iae significantly more than supernatants from pseudosynovial
membranes [15]. This activity was produced mainly by the
inner parts of the capsules containing an abundance of mac-
rophage-phagocytosed wear debris [16]. Based upon these
findings, we hypothesised that bone-resorbing activity is pro-
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duced mainly by macrophages in the capsule and that this
activity is released to the SF and then penetrates into the
periprosthetic tissues. The presence of several cytokines
known to stimulate bone resorption in SFs from patients with
a loosened hip prosthesis, including IL-1¢, IL-1, IL-6, IL-8, IL-
11, oncostatin M, TNF-0,, and macrophage colony-stimulating
factor [17-21], supports such a view.

The formation of osteoclasts, as well as the activity of these
cells, is controlled by stromal cells/osteoblasts partly via cell-
to-cell contact. Receptor activator of nuclear factor-kappa-B
ligand (RANKL), a cell membrane-bound protein in the TNF lig-
and superfamily expressed on stromal cells/osteoblasts, inter-
acts with RANK; a cell surface receptor in the TNF receptor
superfamily expressed on preosteoclasts and mature osteo-
clasts [22-26]. This cell-to-cell contact can be inhibited by
osteoprotegerin (OPG), a soluble cytokine in the TNF receptor
superfamily which is expressed and released by stromal cells/
osteoblasts and which blocks the activation of RANK by
RANKL due to its affinity to RANKL. RANKL is also expressed
by lymphocytes, which may be an important activator of oste-
oclastogenesis in inflammatory conditions such as rheumatoid
arthritis [27]. Mice rendered null for the rank and rank/ genes
become osteopetrotic, whereas opg’ mice develop oste-
oporosis [22-26]. Downstream of RANK, activation of the tran-
scription factors nuclear factor-kappa-B, activator protein-1,
and nuclear factor of activated T cells 2 (NFAT2) has been
found to be important in pathways in osteoclast differentiation
[22-26], and NFAT2 has been considered the master regula-
tor of osteoclastogenesis [28]. Recently, it has been shown
that activation of ITAM (immunoreceptor tyrosine-based acti-
vation motifs) in DNAX-activating protein 12 (DAP12) and Fc
receptor common gamma subunit (FcRy) is also crucial for
induction of osteoclast formation and that mice rendered null
for both DAP12 and FcRy are unable to form osteoclasts and
therefore become osteopetrotic [28,29]. DAP12 and FcRyare
activated by ligand-recognising immunoglobulin  (Ig)-like
receptors. Besides the fact that osteoclast-associated recep-
tor (OSCAR) is an important receptor associated with FcRy
[28,29], it is not yet known which Ig-like receptors are impor-
tant in osteoclast progenitor cells, nor is it known what the lig-
ands for these receptors are.

The aims of the present investigation were (a) to study whether
any activity affecting bone resorption and osteoblast function
can be detected in SFs from patients with a loosened hip pros-
thesis and periprosthetic osteolysis and, if so, (b) to compare
this activity with that in SFs from osteoarthritic patients without
any prosthesis, (c) to analyse whether the bone-resorbing
activity was due to any cytokine known to stimulate bone
resorption, and (d) to investigate whether bone resorption
induced by SF was associated with any changes in the mRNA
expressions of rankl, rank, opg, nfat2, fcry, dap12, and oscar.
The results indicate that SFs from patients with a loose pros-
thesis and periprosthetic osteolysis or with OA stimulate bone



resorption by a process dependent on the RANKL/RANK/
OPG system and that SFs from patients with OA are more
prone to enhance bone formation.

Materials and methods
Materials

Synthetic bovine parathyroid hormone [PTH-(1-34)] was
obtained from Bachem AG (Bubendorf, Switzerland); recom-
binant human IL-1qa, recombinant human IL-18, recombinant
human IL-6, recombinant human soluble IL-6 receptor, recom-
binant human IL-17, recombinant human TNF-o,, mouse OPG
fused to human IgG, Fc (OPG/Fc chimera), antisera neutralis-
ing human IL-1c, human IL-1B, human soluble IL-6 receptor,
human IL-17, or human TNF-o. from R&D Systems Europe Ltd.
(Abingdon, Oxfordshire, UK); essentially fatty acid-free albu-
min from Sigma-Aldrich (St. Louis, MO, USA); a-modification
of minimum essential medium (o-MEM) from Flow Laborato-
ries (Irvine, Scotland, UK); [45Ca]CaCl, and Thermo Seque-
nase-TM Il DYEnamic ET™ terminator cycle sequencing kit
from Amersham Biosciences UK, Ltd., now part of GE Health-
care (Little Chalfont, Buckinghamshire, UK); HotStar Taq
polymerase kit and QlAquick PCR purification kit from Qiagen
Ltd. (Crawley, West Sussex, UK); culture dishes and multiwell
plates from Costar, now part of Corning Life Sciences (Acton,
MA, USA); radio-immunoassay (RIA) kit for prostaglandin E,
(PGE,) from Dupont-New England Nuclear Chemicals, now
part of PerkinElmer Life and Analytical Sciences, Inc.
(Waltham, MA, USA); enzyme-linked immunosorbent assay
(ELISA) kits for RANKL and OPG from Biomedica Medizin-
produkte GmbH & Co. KG (Vienna, Austria); TRIzol LS rea-
gent, deoxyribonuclease | (amplification grade), and
oligonucleotide primers from Invitrogen Ltd. (Paisley, Scot-
land, UK) or Applied Biosystems (Warrington, Cheshire, UK);
kits for real-time polymerase chain reaction (PCR) analysis of
FcRy, DAP12, and OSCAR mRNA expression, fluorescence-
labelled probes (reporter fluorescent dye VIC at the 5' end and
quencher fluorescent dye TAMRA at the 3' end), and TagMan
Universal PCR Master Mix from Applied Biosystems; and the
1st Strand cDNA Synthesis Kit and PCR Core Kit from Roche
Diagnostics GmbH (Mannheim, Germany). Synthetic salmon
calcitonin was generously provided by Novartis International
AG (Basel, Switzerland), 1,25(0OH),-vitamin D3 (D3) by F.
Hoffmann-La Roche Ltd. (Basel, Switzerland), and indometh-
acin by Merck Sharp & Dohme BV (Haarlem, The Nether-
lands). D3 and indomethacin were dissolved in ethanol; the
final concentration of ethanol never exceeded 0.1% and did
not by itself affect calcium 45 (45Ca) release in mouse calvar-
iae. All other compounds were dissolved in either phosphate-
buffered saline or culture medium.

SF samples

SF samples were obtained from 25 patients with osteoarthritis
(OA) (mean age 71 % 6 years, mean * standard error of the
mean [SEM]) of the hip or knee joint. The hip patients had radi-
ologically verified advanced OA with osteophytes and com-
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plete narrowing of the joint line. OA of the knee joint was
verified radiologically. SF also was obtained from 31 patients
(mean age 74 * 9 years) who underwent revision total hip
arthroplasty due to aseptic loosening and who had primary
surgery because of OA (duration of the prosthesis in situ was
8 * 4 years). These patients had radiological bone loss varying
between grades 1 (radiolucent lines around the cup and femur
component with clinical signs of loosening but no migration)
and 3 (severe osteolysis around the cup in three directions
and with widening of the medullar expansion of the upper
femur) according to the classification of the ENDO-Klinik Ham-
burg GmbH (Hamburg, Germany) [30]. Samples of SF from
patients having hip surgery were aspirated intraoperatively and
before incision of the joint capsule. In six cases, SF was col-
lected from healthy volunteers; the samples were aspirated
with a syringe during normal sterile conditions. All samples
were centrifuged for 10 minutes at 2,500 rpm to remove cells
and other debris and then aliquoted before storage at -70°C.
The ethical committees of the authors' institutions approved
this study, and the recommendations of the Helsinki Declara-
tion were followed.

Bone organ culture

Parietal bones from 6- to 7-day-old CsA mice were dissected
and cut into either calvarial halves (gene expression experi-
ments) or four pieces (bone resorption experiments) [31]. The
bones were preincubated for 18 to 24 hours in o-MEM con-
taining 0.1% albumin, antibiotics, and 1 umol/l indomethacin.
After preincubation, the bones were thoroughly washed and
subsequently cultured for different time periods in multiwell
culture dishes to which were added 1.0 ml indomethacin-free
o-MEM containing 0.1% albumin, with or without SFs or test
substances. The bones were incubated in the presence of 5%
CO, in air at 37°C.

Animals

CsA mice from our own inbred colony were used in all experi-
ments. Animal care and experiments were approved and con-
ducted in accordance with accepted standards of humane
animal care and use as deemed appropriate by the Animal
Care and Use Committee of Umed University (Ume3,
Sweden).

Measurement of bone resorption

Bone resorption was assessed by analysing the release of
45Ca from bones prelabelled in vivo. Two- to three-day-old
mice were injected with 1.5 uCi 45Ca, and the amount of radi-
oactivity in bone and culture media was analysed at the end of
the culture period. Release of isotope was expressed as the
percentage release of the initial amount of isotope (calculated
as the sum of radioactivity in medium and bone after culture)
[32]. In some experiments, the data were recalculated and the
results expressed as percentage of control, which was set at
100%. This allowed for accumulation of data from several
experiments. When time course experiments were performed,
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the mice were prelabelled with 12.5 nCi 45Ca and the kinetics
of the release of 45Ca was analysed by withdrawal of small
amounts of medium at the stated time points.

Gene expression in mouse calvarial bone

Calvarial bones were dissected from 6- to 7-day-old mice
(CsA), divided into halves along the sagittal suture, and prein-
cubated with o-MEM with 0.1% albumin, antibiotics, and 1
umol/l indomethacin overnight. After the preculture period,
calvarial bones were incubated in control medium or medium
containing either SFs (10%) or D3 (10 nmol/l) for 48 hours.
For semi-quantitative reverse transcription-PCR (RT-PCR),
bones were homogenised and the RNA extracted from five
bones per treatment group was pooled for subsequent analy-
ses. When quantitative real-time RT-PCR was used, bones
were homogenised and RNA was extracted from individual
bones and subsequently used for analyses.

RNA extraction and cDNA synthesis

Total RNA was extracted from calvarial bones with TRIzol LS
reagent in accordance with the manufacturer's protocol. The
RNA was quantified spectrophotometrically and the integrity
of the RNA preparations was examined by agarose gel electro-
phoresis. Extracted total RNA was treated with deoxyribonu-
clease | to eliminate genomic DNA according to the
instructions supplied by the manufacturer. One microgram of
total RNA, after DNase treatment, was reverse-transcribed
into single-stranded cDNA with a 1st Strand cDNA Synthesis
Kit using random primers (for semi-quantitative RT-PCRs) or
oligo-p(dT)15 primers (for quantitative real-time PCRs). After
incubation at 25°C for 10 minutes and at 42°C for 60 minutes,
the avian myeloblastosis virus reverse transcriptase was dena-
turated at 99°C for 5 minutes, followed by cooling to +4°C for
5 minutes. The cDNA was kept at -20°C until used for PCR.

Semi-quantitative RT-PCR

First-strand cDNA mixture was amplified by PCR by means of
a PCR Core Kit and PC-960G Gradient Thermal Cycler (Cor-
bett Life Science, Sydney, Australia) or Mastercycler Gradient
(Eppendorf, Hamburg, Germany). The PCRs for RANK,
RANKL, OPG, calcitonin receptor (CTR), tartrate-resistant
acid phosphatase (TRAP), cathepsin K, and glyceraldehyde-3-
phosphate dehydrogenase (GAPDH) were performed using 1
ul of template, 0.2 uM of each primer, 2.5 U Taq DNA polymer-
ase, 1x PCR buffer, 0.2 mM dNTPs, and 1.5 mM MgCl, (100
ul total volume) (with the exception of those for CTR, which
were performed with 1.25 mM MgCl,). The conditions for
PCR were denaturing at 94°C for 2 minutes, annealing for 40
seconds at 65°C (RANKL, RANK, OPG), 64°C (CTR), 59°C
(cathepsin K), 58°C (TRAP), and 57°C (GAPDH) followed by
elongation at 72°C for 90 seconds; in subsequent cycles,
denaturing was performed at 94°C for 40 seconds. The PCRs
for RANKL, RANK, and OPG were initiated with hot start by
means of HotStar Taq polymerase. The PCRs of RANKL,
RANK, and OPG were performed with a step-down technol-
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ogy in which the primer annealing temperature was decreased
by 5°C every five cycles down to 45°C. The sequences of
primers, the GenBank accession numbers, the positions for
the 5' and 3' ends of the nucleotides for the predicted PCR
products, and the estimated size of the PCR products have
previously been given [33,34]. The expression of these factors
was compared at the logarithmic phase of the PCR. The PCR
products were electrophoretically size-fractionated in 1.5%
agarose gel and visualised using ethidium bromide. The iden-
tity of the PCR products was confirmed using a QlAquick puri-
fication kit and a Thermo Sequenase-TM Il DYEnamic ET™
terminator cycle sequencing kit with sequences analysed on
an ABI 377 XL DNA Sequencer (Applied Biosystems, War-
rington, Cheshire, UK). Control assays included PCRs on RNA
samples that were not reversed-transcribed and were always
negative, indicating that amplification of genomic DNA did not
contribute to the products obtained in the PCRs.

Quantitative real-time RT-PCR

Quantitative real-time RT-PCR analyses of RANKL, RANK,
OPG, TRAP, NFAT2, FcRy, DAP12, OSCAR, CTR, cathepsin
K, alkaline phosphase, osteocalcin, and B-actin mRNA were
performed using the TagMan Universal PCR Master Mix kit,
the ABI PRISM 7900 HT Sequence Detections System and
software (Applied Biosystems, Foster City, CA, USA), and flu-
orescence-labelled probes (reporter fluorescent dye VIC at
the 5' end and quencher fluorescent dye TAMRA at the 3' end)
as described previously [35]. The sequences and concentra-
tions of primers and probes, the GenBank accession numbers,
and the numbers for the 5' and 3' ends of the nucleotides for
the predicted PCR products for RANKL, RANK, OPG, TRAP,
NFAT2, CTR, cathepsin K, alkaline phosphatase, osteocalcin,
and B-actin have been given previously [33,34,36]. For FcRy,
DAP12, and OSCAR, commercially available kits were used.
The reaction conditions were an initial step of 2 minutes at
50°C and 10 minutes at 95°C for 15 seconds, followed by 40
cycles of denaturation at 95°C for 15 seconds and annealing/
extension at 60°C for 1 minute. No amplification was detected
in samples in which the RT reaction had been omitted (data
not shown). To control for variability in amplification due to dif-
ferences in starting mRNA concentrations, B-actin was used
as an internal standard. The relative expression of target
mRNA was computed from the target threshold cycle (Ct) val-
ues and B-actin Ct values by means of the standard curve
method (User Bulletin #2; Applied Biosystems).

Analysis of RANKL and OPG protein in SFs

The concentrations of RANKL and OPG protein in SFs were
assessed using commercially available ELISA kits for RANKL
and OPG in accordance with the protocols of the manufac-
turer [20]. The sensitivity for the RANKL and OPG assays was
0.1 pmol/I.



Analysis of PGE, in SFs

The concentration of PGE, in SFs was assessed using a com-
mercially available RIA kit in accordance with the instructions
of the manufacturer.

Statistical analysis

Statistical analysis of multiple treatment groups was per-
formed using one-way analysis of variance with Levene's
homogenecity test and Bonferroni, Dunnett's two-sided, or
Dunnett's T3 post hoc test. Results are expressed as means +
SEMs. SEM is shown when the height of the error bar is larger
than the radius of the symbol. All experiments were repeated
at least twice with comparable results. The semi-quantitative
RT-PCR analyses from one individual experiment were
repeated at least once with comparable results.

Results

Effects of SFs on bone resorption in mouse calvarial
bones

SF-induced bone resorption was measured by adding SF at
various concentrations to mouse bone organ cultures. Initially,
SF samples from 25 patients with OA and 31 patients with a
loose hip prosthesis were added at a final concentration of
10% to bone culture medium. SFs from 28 of 31 patients with
a loose prosthesis were found to cause a statistically signifi-
cant (p < 0.05) stimulation of 45Ca release from the calvarial
bones (Figure 1a). In 3 of 31 cases, only marginal increase of
45Ca release was obtained. Using SF from patients with OA,
all samples (25/25) were found to cause a significant (p <
0.05) increase in 45Ca release. When the data from all patients
in the two groups were accumulated, it was found that SFs
from the patients with OA caused, on average, a 1.56-fold
stimulation of 45Ca release and that those from patients with a
loose prosthesis a 1.48-fold increase. The average increases
of bone resorption observed in the two groups were each sta-
tistically significant (p < 0.05) compared to untreated control
bones but were not statistically different from each other.

Because the potency of the bone-resorbing activity or activi-
ties in SF from the two patient groups cannot be reliably
assessed by comparing the effects at one concentration, SFs
from six patients with OA and six patients with a loose prosthe-
sis were analysed when added to the resorption assay at dif-
ferent concentrations (0.2% to 20%). All 12 samples caused
stimulation of 45Ca release that was linearly dependent on the
concentration of SF (0.2% to 6%) and with a biphasic
response at 20%. When the data from all patients in the two
groups were accumulated, it was apparent that no difference
in the amount of activity stimulating 45Ca release could be
revealed between patients with OA and patients with a loose
prosthesis (Figure 1b).

To assess whether the bone-resorbing activity present in SFs
from the two patient groups was a unique property of patho-
logical SF, we also obtained SFs from healthy volunteers. Due
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to the limited amount of fluids that can be obtained from
healthy joints, we had to compare the activity at a concentra-
tion of 1%. As can be seen in Figure 1c, significant (p <0.01)
stimulation of 45Ca release was seen when SFs from patients
with OA or with a loose prosthesis were added at 1%, which
is in agreement with the data in Figure 1b. In contrast, no stim-
ulation of 45Ca release from the calvarial bones was obtained
with SFs from healthy volunteers at a concentration of 1%
(Figure 1c). Stimulation of 45Ca release by SFs from patients
with OA and patients with a loose prosthesis was dependent
on incubation time (Figure 2). Stimulation of 45Ca release by
SFs (3%) from two out of two patients was significantly inhib-
ited by salmon calcitonin (1 nM; data not shown).

Effects of SFs on osteoclast differentiation in mouse
calvarial bones

The effect of the SFs on osteoclast differentiation in mouse
calvarial bones was assessed by analysing the mRNA expres-
sion of three genes known to be upregulated during osteoclas-
tic development. Semi-quantitative RT-PCR showed that SF
(10%) from a patient with a loose prosthesis increased the
mRNA expression of ctr and trap but did not cause any change
of cathepsin K mRNA (Figure 3a). D3 (10 nM) increased the
mRNA expression, not only of ctr and trap but also of cathep-
sin K (data not shown).

To compare the effects of different SFs on osteoclast gene
expression, the mRNA expression of the genes encoding ctr,
trap, and cathepsin K was also analysed with quantitative real-
time PCR by means of seven SFs (10%) from patients with
OA and seven SFs (10%) from patients with a loose prosthe-
sis. As appears in Figure 3b, SFs from five of seven patients
with OA and four of seven patients with a loose prosthesis
enhanced ctr mRNA. On average, at a concentration (108 M)
causing maximal stimulation of bone resorption, the degree of
stimulation for the two groups was indistinguishable and
slightly less than that caused by D3.

The mRNA expression of trap was enhanced by seven of
seven SFs from patients with OA and six of seven SFs from
patients with a loose prosthesis (Figure 3c). No significant dif-
ference between the two groups was found, and the degree of
stimulation was slightly decreased compared to that induced
by D3 (108 M).

Only 2 of 14 SFs stimulated cathepsin K mRNA, and those 2
were samples from patients with OA (Figure 3d). In contrast to
the SFs, D3 (108 M) caused a clear-cut enhanced cathepsin
K mRNA expression.

Concentrations of RANKL and OPG in SFs

Because RANKL is a potent stimulator of bone resorption, as
well as of the expression of ctr, trap, and cathepsin K, in the
mouse calvarial system used in the present studies [33,34],
we evaluated the possibility that the bone-resorbing activity in

Page 5 of 14

(page number not for citation purposes)



Arthritis Research & Therapy Vol 9 No 1 Andersson et al.
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Stimulation of calcium 45 (45Ca) release from neonatal mouse calvarial bones by synovial fluids (SFs) from patients with osteoarthritis (OA) and
patients with a loose prosthesis, but not by SFs from healthy individuals. (a) The effect of SFs from 25 patients with OA and 31 patients with a loose
prosthesis. SF from each individual was added to bone culture medium (10%), and each sample was added to five or six bone cultures and incu-
bated for 120 hours. The percentage release of 45Ca induced by the different SFs was compared to that observed in unstimulated control bones
(100%). Filled circles represent the mean of the effect on 45Ca release caused by SF from the individual samples. The effect was statistically differ-
ent (p <0.05) in 3 of 31 samples from patients with a loose prosthesis and in 25 of 25 samples from patients with OA. (b) The concentration-
dependent effect on 45Ca release by SFs from patients with OA and patients with a loose prosthesis. The data are based on 12 different experi-
ments (SFs from 6 patients with OA and 6 with a loose prosthesis) in which SFs from each patient in each category were incubated as described in
(a) for 120 hours with five or six calvarial bones and the degree of stimulation was compared to unstimulated bones (100%). Data shown are the
cumulative data for six patient samples in each category, and standard error of the mean (SEM) is shown as vertical bars. (c) The data from a com-
parison between SFs (1%) from patients with OA, patients with a loose prosthesis, and healthy subjects. Each sample was incubated for 120 hours
with six or seven bones, and 45Ca release was compared to unstimulated controls (100%). Values are expressed as mean + SEM. Asterisks denote

statistically significant stimulation (p < 0.01).

the SFs was due to the presence of RANKL by determining
the concentrations of RANKL and OPG in the different SFs by
means of commercially available ELISAs. As is demonstrated
in Figure 4a, RANKL was undetectable (<0.5 pmol/l) in all SFs
from patients with OA (n = 16) and in 7 of 18 SFs from
patients with a loose prosthesis. In 11 of 18 SFs from patients
with a loose prosthesis, the concentration of RANKL was 1 to
8 pmol/l (1 to 320 pg/ml) (Figure 4a). The concentrations of
OPG were 6 to 30 pmol/l (360 to 1,800 pg/ml) in SFs from
patients with OA (n=15) and 1 to 21 pmol/| (60 to 1,260 pg/
ml) in SFs from patients with a loose prosthesis (n = 22) (Fig-
ure 4b). The threshold for action on 45Ca release in mouse cal-
variae by RANKL (in the absence of OPG) is 3 ng/ml, and
inhibition by OPG (in the absence of RANKL) is observed at
and above 30 ng/ml [34]. Thus, the concentration of RANKL
in undiluted SFs (in the resorption assay, the SFs were diluted
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at least 10 times) is far below that required for stimulation of
45Ca release in the mouse calvarial system used.

Concentration of PGE, in SFs

Prostaglandins have been suggested to be important media-
tors of bone resorption in the vicinity of loosened joint prosthe-
sis [37]. Because PGE, is the most potent stimulator of bone
resorption [37], we evaluated the possibility that the bone-
resorbing activity in the SFs was due to PGE, by determining
the concentration of PGE, in SF by means of a commercially
available RIA. As can be seen in Figure 4c, the concentrations
of PGE, varied between 36 and 187 pg/ml in SFs from
patients with OA (n = 7) and between 46 and 179 pg/ml in
SFs from patients with a loose prosthesis (n = 7). Because the
threshold for action on 45Ca release in the mouse calvarial sys-
tem is 4 ng/ml [38], the concentration of PGE, in the diluted
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Synovial fluids cause time-dependent stimulation of calcium 45 (45Ca)
release from neonatal mouse calvarial bones. Synovial fluids from one
patient with osteoarthritis (OA) and one patient with a loose prosthesis,
at concentrations of 10%, were added to six or seven cultured mouse
calvarial bones, and the release of 45Ca was compared to that from
unstimulated (control) bones. Small amounts of media were withdrawn
at the stated time points, and 45Ca release was analysed as described
in Materials and methods. The data shown represent the absolute per-
centage of 45Ca release. Standard error of the mean is shown as verti-
cal bars when the height of the error bar is larger than the radius of the
symbol.

SFs used to stimulate 45Ca release was far too low to be
responsible for the bone-resorbing activity.

Expression and importance of RANKL/RANK/OPG in SF-
induced bone resorption

Semi-quantitative RT-PCR assessments of the mRNA expres-
sions of rankl and opg in mouse calvariae stimulated by SF
from a patient with a loose prosthesis indicated that both
these molecules were affected. As appears in Figure 5a, bone
resorption stimulated by the SF was associated with
increased rank/ and opg mRNA. These observations prompted
further studies using quantitative real-time PCR and SFs from
several patients with OA or with a loose prosthesis.

SFs from all 14 patients, both those with OA and those with a
loose prosthesis, caused a robust enhancement of rank/
mRNA (Figure 5b), which is in agreement with the data
obtained by semi-quantitative RT-PCR analysis (Figure 5a).
The difference of average stimulation obtained by SFs from
patients with OA (20-fold stimulation) from that obtained by
SFs from patients with a loose prosthesis (nine-fold stimula-
tion) was statistically significant (p < 0.05). The degree of
stimulation was slightly larger (SF from patients with a loose
prosthesis) and clearly larger (SF from patients with OA) than

Available online http://arthritis-research.com/content/9/1/R18

that caused by D3 (108 M; six-fold stimulation). The mRNA
expression of rank was enhanced by SFs from 6 of 14
patients, but the average effect caused by the two groups of
SFs was not different from the control and was clearly less
than that obtained by D3 (Figure 5c).

In agreement with the semi-quantitative analysis, opg mRNA
was enhanced by all 14 SFs (Figure 5d). The average stimula-
tion caused by SFs from patients with OA (five-fold stimula-
tion) was significantly (p < 0.05) larger than that caused by
SFs from patients with a loose prosthesis (2.7-fold stimula-
tion). In contrast, D3 decreased opg mRNA expression, as
expected. Stimulation of 45Ca release from mouse calvariae by
SFs from the two patient groups was significantly (p < 0.05)
inhibited by OPG in 12 of 14 SFs (Figure 5e,f).

Expression and importance of NFAT2, OSCAR, FcRy, and
DAP12 in SF-induced bone resorption

The expression of nfat2 mRNA in mouse calvarial bones stim-
ulated by SFs from patients with OA was increased in 5 of 6
cases, and the average stimulation was 3.6-fold, which was
slightly larger than the 2.2-fold stimulation induced by D3 (Fig-
ure 5g). Stimulation of resorption by SFs from patients with a
loose prosthesis was not associated with any increase of nfat2
mRNA. The difference between SFs from patients with OA
and SFs from patients with a loose prosthesis was significantly
different (p < 0.05). The mRNA expressions of fcryand dap712
were not regulated by SFs from the different patients (data not
shown). The mRNA expression of oscar was increased by 5 of
6 SFs from patients with OA, with an average 4.2-fold
enhancement, whereas SF from patients with a loose prosthe-
sis did not affect oscar mRNA (Figure 5h).

Effects of neutralising antisera on bone-resorbing
activity in SFs

The role of different cytokines in SF-induced bone resorption
was investigated by incubating mouse bone organ cultures
with SFs from patients either with OA or with a loose prosthe-
sis, together with antisera neutralising IL-1¢, IL-13, TNF-c, sol-
uble IL-6 receptor, or IL-17. The specificity and capacity of
these antisera were analysed by incubating the antisera with
recombinant human IL-1¢, IL-1B, TNF-o, and IL-6 in the pres-
ence of soluble IL-6 receptor and IL-17. The antisera were
found to abolish the stimulatory effect on 45Ca release induced
by the cytokine assigned to be recognised by the antiserum
but were unable to affect stimulation by the other cytokines
(data not shown).

When antiserum neutralising human IL-1o. was added to cul-
ture medium containing SFs, it was found that in 3 of 14
patients the stimulation of 45Ca release caused by the SFs
was inhibited significantly (p < 0.05) (Figure 6a,b). For the
other SFs, either no or only marginal effect was obtained by
anti IL-1o. Similarly, antiserum neutralising human IL-1
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Effects of synovial fluids (SFs) from patients with osteoarthritis (OA) or with a loose prosthesis on the mRNA expressions of the calcitonin receptor
(CTR), tartrate-resistant acid phosphatase (TRAP), and cathepsin K (Cath.K) in neonatal mouse calvarial bones. (a) Semi-quantitative reverse tran-
scription-polymerase chain reaction (RT-PCR) analysis on samples obtained by incubating five bones in control medium and five in medium contain-
ing SF (10%) from a patient with a loose prosthesis. RNA from the five different bones in each group was pooled and used for RT-PCR analysis. (b)
Quantitative real-time PCR analysis of calcitonin receptor (CTR) mRNA in mouse calvarial bones stimulated by SFs from either patients with OA OK
or patients with a loose prosthesis. (c) Quantitative real-time PCR analysis of tartrate-resistant acid phosphatase (TRAP) mRNA in mouse calvarial
bones stimulated by SFs from either patients with OA OK or patients with a loose prosthesis. (d) Quantitative real-time PCR analysis of cathepsin K
(Cath.K) mRNA in mouse calvarial bones stimulated by SFs from either patients with OA OK or patients with a loose prosthesis. In (b-d), data were
obtained by incubating one calvarial bone for 48 hours with SF (10%) from an OA patient or with SF (10%) from a patient with a loose prosthesis
and the effects were compared to those obtained in unstimulated bones (controls = 100%) or in bones stimulated by D3 (10-8 M). Data shown rep-
resent the effects by SFs from seven patients with OA and seven with a loose prosthesis. Effects were compared to the means of two unstimulated
bones and two bones treated with D3. At the end of the experiments, RNA was extracted and the mRNA expressions were analysed with quantita-
tive real-time PCR. The mRNA expression of the gene of interest was expressed in relation to that of B-actin, used as a housekeeping gene. D3,
1,25(OH),-vitamin D3.

caused a significant inhibition (p < 0.05) of 45Ca release
caused by SFs in 3 of 11 patients (Figure 6c,d).

Addition of antiserum neutralising human TNF-o. had no effect
on the stimulation of 45Ca release caused by SFs from 18 of
19 patients. In only one patient, anti-TNF-o significantly (p <
0.05) inhibited SF-induced 45Ca release (Figure 6¢,f).

The bone resorption bioassay used in the present study is not
sensitive to human IL-6 unless added together with the soluble
IL-6 receptor [34]. To investigate whether stimulation of 45Ca
release by SFs was dependent on the presence in SFs of both
IL-6 and the soluble IL-6 receptor, we added antiserum neu-
tralising human soluble IL-6 receptor. This antiserum signifi-
cantly (p < 0.05) reduced 45Ca release induced by 3 of 14
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SFs (Figure 6g,h). Antiserum neutralising IL-17 significantly (p
< 0.05) decreased 4°Ca release induced by 3 of 13 SFs (Fig-
ure 6i,j).

Effects of SFs on osteoblast differentiation in mouse
calvarial bones

By means of quantitative real-time PCR, osteoblastic differen-
tiation was assessed by analysing the mRNA expressions of
the enzyme alkaline phosphatase and the bone-specific extra-
cellular matrix protein osteocalcin, both suggested to be asso-
ciated with mineralisation of bone osteoid and used as clinical
parameters of anabolic events in bone.

The mRNA expression of alkaline phosphatase was enhanced
by 6 of 7 SFs from patients with OA but was unaffected by
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Concentrations of receptor activator of nuclear factor-kappa-B ligand (RANKL), osteoprotegerin (OPG), and prostaglandin E, (PGE,) in synovial flu-
ids (SFs) from patients with a loose prosthesis or with osteoarthritis (OA). RANKL (a) and OPG (b) in SFs were analysed with commercially availa-
ble enzyme-linked immunosorbent assays. (c) PGE, in SFs was analysed with a commercially available radio-immunoassay.

SFs from patients with a loose prosthesis (Figure 7a). The
average difference between the two groups of patients was
statistically significant (p < 0.01).

SFs from 7 of 7 patients with OA and 6 of 7 patients with a
loose prosthesis caused an enhancement of osteocalcin
mRNA (Figure 7b). The average degree of stimulation by OA
samples was numerically larger than that obtained with sam-
ples from patients with a loose prosthesis, but the difference
was of borderline significance (p = 0.05).

Discussion

In the present study, we show that SFs from 28 of 31 patients
with a loose joint prosthesis and periprosthetic osteolysis sig-
nificantly stimulate bone resorption in mouse calvariae. In con-
trast, SF from healthy joints did not cause increased 45Ca
release. Adding as little as 1% SF was sufficient to cause
enhanced resorption. The data provide strong support for the
hypothesis that bone-resorbing activity produced in inflamma-
tory processes in periarticular tissues in patients with a loose
prosthesis leaks out in the SF, but the data do not provide
information on the source of such activity. Based upon our pre-
vious observation that bone-resorbing activity, to a large
extent, is produced by the synovial capsula [15], we speculate
that the bone-resorbing factor or factors present in SF
originate mainly from the pseudo-synovial capsules. Our data
are in agreement with previous findings showing that SFs from
patients with a loose prosthesis can enhance either activation
[6] or formation of osteoclasts in cell cultures [7,8] but are the
first to show that SFs can stimulate bone resorption in intact
bone ex vivo. Interestingly, we have recently found that the
inflammatory exudate that leaks out into the gingival pocket

present in patients with periodontal disease also contains a
factor (or factors) stimulating bone resorption in mouse calvar-
ial bones [39,40].

Bone resorption in the mouse calvarial model used in the
present study is dependent on initiation of osteoclast forma-
tion. Although multinucleated osteoclasts are present in the
bones at the time of dissection, these cells disappear during
the preculture period and we have reported that subsequent
PTH-stimulated resorption is associated with formation of new
multinucleated osteoclasts [41]. The finding that the mRNA
expression of ctr and trap was enhanced by the SFs from
patients with a loose prosthesis indicates that the bone-
resorbing effect is associated with enhanced osteoclastic dif-
ferentiation. The fact that cathepsin K mRNA was not
enhanced does not mean that this enzyme is not important but
that osteoclast progenitor cells in the calvarial periosteum are
at a late stage and already express several osteoclastic genes.

To get further insight into the mechanisms by which SF stimu-
lated osteoclast differentiation and activity, we analysed the
mRNA expressions of rankl, opg, and rank, three molecules of
crucial importance for osteoclastogenesis and osteoclast
activity [22-26]. It was found that SFs from patients with a
loose prosthesis caused an even more robust stimulation of
rankl mRNA expression than D3 when used at a maximally
effective concentration. This was surprising given that the
degree of bone resorption caused by the SFs was slightly less
than that obtained in bones stimulated by D3. This is most
likely explained by the finding that SFs also enhanced opg
mRNA expression, whereas D3, as expected, decreased opg
mRNA. In addition, D3 increased rank mRNA whereas SFs did
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The importance of the RANKL-RANK-OPG pathway in bone resorption induced by synovial fluids (SF) from patients with osteoarthritis (OA) or with
a loose prosthesis. (a) Semi-quantitative reverse transcription-polymerase chain reaction (RT-PCR) analysis on samples obtained by incubating five
bones in control medium and five in medium containing SF (109%) from a patient with a loose prosthesis. RNA from the five different bones in each
group was pooled and used for RT-PCR analysis. The expressions of the genes of interest were compared to that of GAPDH, and the values below
each gel show the number of cycles in the PCRs. (b) Quantitative real-time PCR analysis of rank/ mRNA in mouse calvarial bones stimulated by SFs
from either patients with OA OK or patients with a loose prosthesis. (c) Quantitative real-time PCR analysis of rank mRNA in mouse calvarial bones
stimulated by SFs from either patients with OA or patients with a loose prosthesis. (d) Quantitative real-time PCR analysis of opg mRNA in mouse
calvarial bones stimulated by SFs from either patients with OA OK or patients with a loose prosthessis. In (b-d), one calvarial bone was incubated for
48 hours with SF (10%) from an OA patient or with SF (10%) from a patient with a loose prosthesis and the effects were compared to those
obtained in unstimulated bones (controls = 100%) or in bones stimulated by D3 (10-8 M). Data shown represent the effects by SFs from seven
patients with OA and seven with a loose prosthesis. Effects were compared to the means of two unstimulated bones and two bones treated with
D3. The mRNA expression of the gene of interest was expressed in relation to that of S-actin, used as a housekeeping gene. Data shown in (b-d) for
the different SFs represent the values obtained in individual bones, and the asterisk denotes a statistically significant (p < 0.05) effect between aver-
ages of SFs from patients with OA and those from patients with a loose prosthesis. (e) Addition of OPG to culture medium inhibits calcium 45
(45Ca) release induced by SFs from patients with OA. (f) Addition of OPG to culture medium inhibits 45Ca release induced by SFs from patients with
a loose prosthesis. In (e,f), five or six calvarial bones were incubated with SF (10%) from one patient and five or six bones with the same SF and
OPG (300 ng/ml). In total, seven patients in each category were tested with and without OPG. At the end of the experiment (96 hours), 45Ca release
was analysed and compared to that in unstimulated control bones (100%). OPG significantly (p < 0.05) inhibited the effect of seven of seven SFs
from patients with OA and five of seven OKSFs from patients with a loose prosthesis. (g) Quantitative real-time PCR analysis of nfat2 mRNA in
mouse calvarial bones stimulated by SFs from either patients with OA or patients with a loose prosthesis. (h) Quantitative real-time PCR analysis of
oscar mRNA in mouse calvarial bones stimulated by SFs from either patients with OA or patients with a loose prosthesis. In (g,h), experiments and
analysis were performed as described for (b-d) above. Co, control; D3, 1,25(0OH),-vitamin D3; GAPDH, glyceraldehyde-3-phosphate dehydroge-
nase; NFAT2, nuclear factor of activated T cells 2; OPG, osteoprotegerin; OSCAR, osteoclast-associated receptor; PCR, polymerase chain reac-
tion; RANK, receptor activator of nuclear factor-kappa-B; RANKL, receptor activator of nuclear factor-kappa-B ligand.

not affect the expression of the receptor for RANKL in osteo- latory effect on 45Ca release was abolished by the decoy
clast progenitor cells. These findings might help to explain why receptor antagonist OPG.

D3 was a more effective stimulator of bone resorption. The

important role of RANKL activation of RANK in SF-induced Similar to SFs from patients with a loose joint prosthesis, SFs
bone resorption is also indicated by the finding that the stimu- from patients with OA were found to stimulate bone resorption
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Effects of antisera neutralising different cytokines on calcium 45 (45Ca) release from neonatal mouse calvarial bones stimulated by synovial fluids
(SFs) from patients with osteoarthritis (OA) or with a loose prosthesis. (a) Effect of antiserum neutralising IL-10. on 45Ca release induced by SFs
from patients with OA. (b) Effect of antiserum neutralising IL-1c. on 45Ca release induced by SFs from patients with a loose prosthesis. (¢) Effect of
antiserum neutralising IL-1p on 45Ca release induced by SFs from patients with OA. (d) Effect of antiserum neutralising IL-1f on 45Ca release
induced by SFs from patients with a loose prosthesis. (e) Effect of antiserum neutralising TNF-o. on 45Ca release induced by SFs from patients with
OA. (f) Effect of antiserum neutralising TNF-o. on 45Ca release induced by SFs from patients with a loose prosthesis. (g) Effect of antiserum neutral-
ising IL-6sR on 45Ca release induced by SFs from patients with OA. (h) Effect of antiserum neutralising IL-6sR on 45Ca release induced by SFs from
patients with a loose prosthesis. (i) Effect of antiserum neutralising IL-17 on 45Ca release induced by SFs from patients with OA. (j) Effect of antise-
rum neutralising IL-17 on 45Ca release induced by SFs from patients with a+ loose prosthesis. In each experiment, five or six calvarial bones were
incubated for 96 hours with SF (10%) from one patient and five or six bones with the same SF and different antisera. At the end of the experiment
(96 hours), 45Ca release was analysed and compared to that in unstimulated control bones (100%). IL, interleukin; TNF-c, tumour necrosis factor-
alpha.

and osteoclast differentiation. When the bone-resorbing activ-
ities of SFs from six patients with OA were compared at a wide
range of concentrations with those present in SFs from six
patients with a loose prosthesis, we could not observe any
quantitative differences. However, rankl mRNA was induced
to a significantly larger degree by SFs from patients with OA
compared to SFs from patients with a loose prosthesis and to
an even larger degree than D3. The finding that the two differ-
ent types of SFs were equipotent as stimulators of bone
resorption is most likely explained by the observation that SFs
from patients with OA also induced opg mRNA to a larger

extent than those from patients with a loose prosthesis. These
observations indicate that increased RANKL/OPG ratio is an
important mechanism causing increased osteoclast differenti-
ation and activity in bone stimulated by OA SFs, a view sup-
ported by the finding that OPG inhibited 45Ca release caused
by SFs from patients with OA. Two previous studies by Kim
and colleagues [6,7] reporting stimulation of osteoclast activ-
ity and formation by SFs from patients with a loose prosthesis
used SFs from patients with OA as controls and did not find
any osteoclast-stimulatory effect in the OA samples. In con-
trast, we used SFs from healthy individuals as negative con-
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Effects of synovial fluids (SFs) from patients with osteoarthritis (OA) or
with a loose prosthesis on the mRNA expressions of alkaline phos-
phatase (ALP) and osteocalcin in neonatal mouse calvarial bones. (a)
Quantitative real-time polymerase chain reaction (PCR) analysis of alka-
line phosphatase mRNA in mouse calvarial bones stimulated by SFs
from either patients with OA or patients with a loose prosthesis. (b)
Quantitative real-time PCR analysis of osteocalcin mRNA in mouse cal-
varial bones stimulated by SFs from either patients with OA or patients
with a loose prosthesis. Calvarial bones were incubated for 48 hours
with SFs (10%) from seven OA patients and with SFs (10%) from
seven patients with a loose prosthesis, and the effects were compared
to those in two unstimulated bones (controls = 100%). At the end of
the experiments, RNA was extracted and the mRNA expressions were
analysed with quantitative real-time PCR. The mRNA expression of the
gene of interest was expressed in relation to that of f-actin, used as a
housekeeping gene. Data shown for the SFs represent the values
obtained by the different SFs in individual bones. Asterisks denote a
statistically significant (p < 0.01) effect between the averages of SFs
from patients with OA and those from patients with a loose prosthesis.

trols because, as stimulators of bone resorption, SFs from
patients with OA were as effective as SFs from patients with a
loose prosthesis. We do not know why osteoclasts in intact
bones are more sensitive to SFs from OA than osteoclasts in
cell cultures. However, our data are in agreement with obser-
vations showing that bone resorption is also a feature in vivo
of patients with OA [42].

The nature of the osteoclast-stimulatory effect present in SFs
has not been assessed previously, but the importance of the
RANKL/RANK/OPG system was demonstrated in one study
showing that OPG could inhibit SF-stimulated osteoclast for-
mation [7]. Cytokines such as IL-1, TNF, IL-6, and IL-17 have
all been implicated in the pathogenesis of bone resorption in
patients with a loose prosthesis. For several reasons, special
attention has been paid to TNF-a.: TNF-a can stimulate osteo-
clast formation from macrophages isolated from pseudomem-
branes of loosened hip arthroplasties [43], implant particles
added to bone marrow macrophages stimulate the production
of TNF-co. [44], and (even more importantly) polymethymethacr-
ylate particles when implanted in the periosteum of calvariae
cause resorption of bone in wild-type animals but not in mice

Page 12 of 14

(page number not for citation purposes)

deficient of p55 TNF receptor [44]. In the first attempt to eval-
uate the importance of these cytokines for the bone-resorptive
effect of SFs from patients with a loose prosthesis or with OA,
we added antisera specifically neutralising one of these
cytokines. Only occasionally did the antisera influence the
effects of SFs, suggesting that (in most SFs) the bone-resorb-
ing activity cannot be attributed solely to any of these mole-
cules. However, these observations do not rule out that the
cytokines have important roles for the loosening process in
vivo.

The expressions of the transcription factor NFAT2 and the
orphan immunoreceptor OSCAR have been demonstrated to
be substantially upregulated in RANKL-stimulated osteoclast
progenitor cells, and these molecules have been shown to be
crucial for osteoclastogenesis [45,46]. Whether induction of
the nfat2 and oscar genes is important also for periosteal
resorption in mouse calvariae is not known. We found that
both D3 and SF from patients with OA increased nfat2 and
oscar mMRNA, which is in line with the observation that NFAT2
is an important transcription factor in the induction of oscar
during osteoclastogenesis [47]. However, oscar and nfat2
mRNA expressions were not affected in bones stimulated by
SF from patients with a loose prosthesis. These data indicate
that enhanced bone resorption in mouse calvariae is not nec-
essarily dependent on increased NFAT2 and OSCAR, most
likely due to the fact that periosteal osteoclast progenitor cells
are more highly differentiated than the progenitor cells in
hematopoetic tissues. The observations further indicate that
the factor or factors responsible for stimulation of bone resorp-
tion in mouse calvariae are different in SF from OA patients
and that from patients with a loose prosthesis.

Although increased bone resorption is an important pathoge-
netic mechanism in prosthetic loosening, enhanced bone for-
mation can also be observed in the vicinity of a loose joint
prosthesis, and this has been demonstrated by histopatholog-
ical analysis [1,3], enhanced serum osteocalcin [4], and posi-
tive bone scans (MK Andersson, P Lundberg, A Ohlin, MJ
Perry, A Lie, A Stark, UH Lerner, unpublished observations).
These findings suggest that the inflammatory process in the
periarticular tissues in patients with a loose prosthesis causes
enhanced bone remodelling, with increased resorption being
more dominant than increased bone formation. In the calvarial
bones, we observed that SFs from both patients with a loose
prosthesis and patients with OA increased the mRNA expres-
sion of osteocalcin. The effect of SF from patients with OA
was more evident, suggesting a higher degree of anabolic
stimulation, which was further indicated by the observation
that SFs from patients with OA also enhanced alkaline phos-
phatase mMRNA expression. These observations are in agree-
ment with the clinical experience that patients with OA exhibit
increased bone density in the subchondral bone [48] and
osteophyte formation and with the fact that the concentrations
of osteocalcin and alkaline phosphatase are significantly



higher in SF from patients with OA compared to those in SF
from patients with a loose prosthesis [18].

In summary, we have found that SFs from patients with a loose
joint prosthesis and periprosthetic osteolysis contain activity
that can stimulate bone resorption in intact bone, an observa-
tion in agreement with previous findings showing that such
SFs can stimulate osteoclast activity and formation in cell
cultures. For the first time, we demonstrate that SFs from
patients with OA also can stimulate bone resorption. The
amount of factor (or factors) stimulating osteoclasts seems to
be equal in SFs from the two patient categories, but the
amount of activity stimulating osteoblast activity seems to be
less in SFs from patients with a loose prosthesis. The latter
observation, together with our previous finding that SFs from
patients with OA contain more insulin-like growth factor-l com-
pared to SFs from patients with a loose prosthesis [49] and
increase proliferation of primary human osteoblast-like cells
whereas SFs from patients with a loose prosthesis inhibit pro-
liferation of these cells [9], might help to explain why osteoar-
thritic patients have increased periarticular bone mass and
those with a loose prosthesis have decreased bone mass.

Conclusion

SFs from patients with a loose prosthesis and periprosthetic
osteolysis or with OA contained factor (or factors) stimulating
bone resorption in mouse calvariae. This effect was associ-
ated with increased mRNA expression of molecules reflecting
osteoclast differentiation and with increased rank/ mRNA. The
bone-resorbing activity could not be explained solely by the
presence of any of the cytokines known to stimulate bone
resorption, including RANKL, PGE,, IL-1, TNF-o, IL-6, or IL-17.
The mRNA expression of alkaline phosphatase and
osteocalcin was more highly increased by SFs from patients
with OA than those from patients with a loose prosthesis. The
data indicate that SFs from patients with a loose prosthesis or
with OA stimulate bone resorption and that those from
patients with OA are more prone to enhance bone formation.
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