
Notch and EGFR pathway interaction regulates neural stem cell 
number and self-renewal

Adan Aguirre1,3, Maria E. Rubio2, and Vittorio Gallo1,*

1 Center for Neuroscience Research, Children’s National Medical Center, Washington, DC 20010

2 University of Pittsburgh Medical School, Department Otolaryngology, Pittsburgh, PA 15261

Abstract

Specialized cellular microenvironments, or “niches,” modulate stem cell properties, including cell 

number, self-renewal and fate decisions1,2. In the adult brain, niches that maintain a source of 

neural stem cells (NSCs) and neural progenitor cells (NPCs) are the subventricular zone (SVZ) of 

the lateral ventricle and the dentate gyrus of the hippocampus3–5. The size of the NSC population 

of the SVZ at any time is the result of several ongoing processes, including self-renewal, cell 

differentiation, and cell death. Maintaining the balance between NSC and NPCs in the SVZ niche 

is critical to supply the brain with specific neural populations, both under normal conditions or 

after injury. A fundamental question relevant to both normal development and to cell-based repair 

strategies in the central nervous system is how the balance of different NSC and NPC populations 

is maintained in the niche. EGFR and Notch signaling pathways play fundamental roles during 

development of multicellular organisms6. In Drosophila and in C. elegans these pathways may 

have either cooperative or antagonistic functions7–9. In the SVZ, Notch regulates NSC identity 

and self-renewal, whereas EGFR specifically affects NPC proliferation and migration10–13. This 

suggests that interplay of these two pathways may maintain the balance between NSC and NPC 

numbers. Here we show that functional cell-cell interaction between NPCs and NSCs through 

epidermal growth factor receptor (EGFR) and Notch signaling plays a crucial role in maintaining 

the balance between these cell populations in the SVZ. Enhanced EGFR signaling in vivo results 

in the expansion of the NPC pool, and reduces NSC number and self-renewal. This occurs through 

a non-cell-autonomous mechanism involving EGFR-mediated regulation of Notch signaling. Our 

findings define a novel interaction between EGFR and Notch pathways in the adult SVZ, and thus 

provide a mechanism for NSC and NPC pool maintenance.

We examined whether changes in SVZ NPC number affect NSC properties. In the CNP-

hEGFR mouse, the hEGFR is expressed in CNP-expressing NPCs and in NG2+ 

progenitors14–15, but not in GFAP-expressing NSCs or in neuroblasts (Sup.Fig. 1a,b). 
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EGFR overexpression enhances EGFR signaling in the adult SVZ (data not shown) and 

expands the NPC pool14–15 (Sup.Fig. 1a,b). The SVZ of CNP-hEGFR mouse contains 

more NG2+ progenitors than WT, but a reduced number of GFAP+ NSCs (Fig. 1a; 

Supplementary Fig. 2). In WT, GFAP+ cells exhibit a radial glia-like morphology (Sup.Fig. 

1c1), whereas in CNP-hEGFR mice GFAP+ cells display a morphology of protoplasmatic 

astrocytes (Sup.Fig. 1d1)16. GFAP and Nestin were co-expressed in the WT SVZ, while the 

percentage of GFAP+Nestin+ cells was reduced in CNP-hEGFR mice (Fig. 1a,b).

In SVZ cells from CNP-hEGFR mice, Lex+Nestin+GFAP+ NSCs were reduced, compared 

to WT (Fig. 1a,b). This was not due to cell death (0.6+/−0.02 and 0.5+/−0.06% of 

Caspase3+ cells/106 um3, WT and CNP-hEGFR, respectively). Ultrastructural analysis17 

confirmed fewer NSCs and more neuroblasts in CNP-hEGFR mice compared to WT 

(Sup.Fig. 3).

We used LeX antibodies18,19 to FACS-purify LeX+CNP-EGFPneg SVZ NSCs from CNP-

EGFP and CNP-EGFP/CNP-hEGFR mice (Sup.Fig. 4). LeX+CNP-EGFPneg cells were 

GFAP+ (data not shown). The number of LeX+CNP-EGFPneg NSCs was reduced in the 

CNP-hEGFR mouse, whereas LeX+CNP-EGFP+ NPCs were increased (Sup.Fig. 4). 

LeX+CNP-EGFPneg NSCs from CNP-hEGFR mice displayed a reduction in LeX+ 

neurosphere19,20 number and size, compared to WT cells (Fig. 1c,d). Conversely, CNP-

EGFP+LeX+ NPC proliferation was increased (not shown).

In GFAP-GFP/CNP-hEGFR mice, GFAP-GFP+ cells with radial glia-like morphology were 

almost absent in the SVZ (Sup.Fig. 5b). Conversely, in GFAP-GFP mice, GFP+ cells 

displayed radial glia-like cell morphology throughout the SVZ (Sup.Fig. 5a). In FACS-

purified cells from GFAP-GFP and GFAP-GFP/CNP-hEGFR mice, enhanced EGFR 

signaling reduced the number of LeX+GFAP-GFP+ NSCs, whereas the number of 

LeX+GFAP-GFPneg NPCs was increased (Sup.Fig. 5c,d). NSCs from GFAP-GFP/CNP-

hEGFR mice displayed reduced neurosphere number and size compared to cells from 

GFAP-GFP mice (Sup.Fig. 5c,d), however proliferation of LeX+GFAP-GFPneg NPCs was 

increased (not shown). These results show that enhanced EGFR signaling and expansion of 

SVZ CNP-expressing progenitors14,15 reduces the number, proliferation, and self-renewal 

of GFAP-expressing NSCs.

Notch10,21,22, BMP23,24 and Shh25 regulate NSC properties in the SVZ. Enhanced EGFR 

signaling upregulated genes involved in neurogenesis [Sup. Table 1 (GEO access number 

GSE21913) and Fig. 2a], whereas Notch signaling elements were downregulated. Shh and 

BMP pathways were not modified (data not shown). In WT and CNP-hEGFR SVZ Notch1 

was mainly detected in NSCs22,26, whereas Dll1 and Jagged1 were detected in NPCs and in 

neuroblasts (Sup.Fig. 6a–f; see also Fig. 4a–d). Dll-EGFP electroporation demonstrated 

expression in EGFR+NG2+ and in Dcx+ cells, but not in GFAP+ cells (Sup.Fig. 6g–j). 

Conversely, Hes1 activity was mainly observed in GFAP+ cells (Sup.Fig. 6k–m; see also 

Fig. 4a–d). Notch1, NICD, Dll1, RBPJK and Hes1 proteins were decreased by 60 ± 3, 63 ± 

4, 20 ± 2, 30 ± 2.5 and 40 ± 3% upon enhanced EGFR function, respectively (n= 3–4 each; 

Fig. 2a). Conversely, Numb was increased by 45 ± 3% (n=3). In the SVZ of the Wa2 
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mouse14, NPC number and proliferation were reduced27, and Notch1, NICD, RBPJK and 

Hes1 were upregulated, as compared to WT (Fig. 2b).

EGF infusion into the lateral ventricle of GFAP-GFP mice increased the number of BrdU+ 

cells in the SVZ, downregulated Notch signaling and expanded EGFR-expressing NPCs 

(Sup.Fig. 7a-e). Proliferation and self-renewal of NSCs from EGF-infused SVZ were 

reduced compared to controls (Sup.Fig. 7f,g).

To rescue the NSC phenotype in the postnatal CNP-hEGFR mice, we overexpressed the 

constitutively active form of Notch1 (Notch1 intracellular domain; NICD) in CNP-hEGFR 

SVZ cells (Sup.Fig. 8a). Neurosphere numbers and size were greater in NICD- than in 

mock-transfected cells (Sup.Fig. 8b). NICD electroporation in SVZ cells of CNP-hEGFR/

GFAP-GFP mice partially rescued the radial glia-like morphology of GFAP-expressing cells 

(Fig. 2c,d; see also Fig. 4a1–a3 and b1–b3), and increased neurosphere number and size 

(Fig. 2e,f). After adenovirus-mediated transduction of NICD (Fig. 2g) in adult WT and 

CNP-hEGFR mice, NICD levels were higher (30 ± 3%) in NICD-LacZ- (ad-NICD) than in 

LacZ adenovirus (Ad-LacZ)-infected SVZs, whereas Numb levels were reduced (55 ± 4%) 

(Fig. 2h). NICD transduction rescued NSC properties in the SVZ of CNP-hEGFR/GFAP-

GFP mice (Fig. 2h,i).

We infused cytosine-β-D-arabinofuranoside (Ara-C) into the LV to deplete dividing NPCs9. 

In saline-perfused adult mice, BrdU+ cell number was significantly higher in CNP-hEGFR 

mice (24.1+/−2.1 cells/106 μm3) compared to WT (12.4 +/−0.5 cells/106 μm3) (Sup.Fig. 

9a,b; t-test p<0.008), whereas NSC number was reduced (Sup.Fig. 9a,b, and Fig. 3a; t-test 

p<0.005). Ara-C increased GFAP+ cell number in the SVZ of adult CNP-hEGFR mice 

(Sup.Fig. 9c,d and Fig. 3a). We observed higher levels of Notch1 in GFAP+ NSCs of Ara-C-

treated CNP-hEGFR and WT mice, compared with saline-infused mice (not shown). In 

CNP-hEGFR mice, Hes1 and RBPjk mRNAs and Notch1 protein levels were higher in Ara-

C-treated SVZ tissues than in saline controls (Fig. 3b), whereas Numb mRNA and protein 

were reduced (Fig. 3b). Cell proliferation and self-renewal were enhanced in neurospheres 

from Ara-C-treated tissue, compared with saline (Fig. 3c). Altogether, these data indicate 

that NPCs regulate NSC proliferation and self-renewal in vivo.

To demonstrate that contact with NPCs regulates NSC proliferation and self-renewal 

through Notch, we co-cultured confluent SVZ NPCs from WT or CNP-hEGFR mice with 

NSCs FACS-purified from GFAP-GFP mice (Sup.Fig. 10). GFAP-GFP+ NSCs were then 

FACS-purified from these co-cultures. Notch signaling was downregulated in NSCs co-

cultured with CNP-hEGFR NPCs, and cell proliferation and self-renewal were reduced (Fig. 

3d and Sup.Fig. 10c). NICD transduction partially rescued this phenotype (Fig. 3d). In NSCs 

FACS-purified from Wa2 NPC/WT NSC co-cultures Notch signaling and neurosphere 

formation were enhanced, as compared to WT NPC/WT NSC in NSCs (Fig. 3e and Sup.Fig. 

10f). These results confirm that EGFR regulates Notch through a non-cell-autonomous 

mechanism.

We determined whether EGFR regulates the Notch pathway and investigated the molecular 

mechanism. In transfected SVZ cells, CBF-1 and Hes1 promoter activity was higher in WT 
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than in CNP-hEGFR cells, even after NICD co-transfection (Sup.Fig. 11a). In WT cells, 

Hes1 activity was enhanced by NICD and reduced after hEGFR co-transfection (Sup.Fig. 

11b). hEGFR co-transfected with different Notch constructs (Sup.Fig. 11c) reduced Hes1 

activation (Sup.Fig. 11d), and the EGFR inhibitor PD16839315 restored Hes1 activity 

(Sup.Fig. 11e). CNP-hEGFR cells plated on WT cells transfected with Hes1-luciferase 

suppressed basal Hes1 activity; this effect was reversed by PD168393 (Sup.Fig. 11f). 

Finally, Hes1 promoter activity was higher in Wa2 SVZ cells than in WT cells (Sup.Fig. 

11g).

We electroporated Notch target constructs (Sup.Fig. 12) to identify SVZ Notch-responsive 

cells and to elucidate the mechanism of Notch regulation. Hes1 activity was observed in 

NSCs (Fig. 4a-d and Sup.Fig. 12m,n), and was found in a larger percentage of GFAP-GFP+ 

cells (47.8+/−3.6 cells/μm3) than in GFAP-GFP+/CNP-hEGFR+ cells (23.6+/−4.6 cells/

μm3, p<0.01). Similar results were observed with CBFRE-GFP and Hes5-GFP (Sup.Fig. 

12a–l; o–r). Hes1 activity in NSCs of GFAP-GFP/CNP-hEGFR mice was rescued by NICD 

co-electroporation (66.5+/−71 cells/μm3, p<0.01; n=4). In Wa2 mice, a larger percentage of 

SVZ NSCs displayed Hes1 and CBFRE activity, compared to WT (Sup.Fig. 13a–c, and not 

shown). shRNA-mediated knockdown of hEGFR in CNP-hEGFR mice in vivo caused 

upregulation of Notch1 and Hes1 (Sup.Fig. 13d,e). Consistent with these results, Dll-EGFP 

electroporation revealed a larger percentage of Dll-EGFP+ cells in the SVZ of the WT 

mouse, compared to CNP-hEGFR mouse (Sup.Fig. 14). Altogether, our findings 

demonstrate that EGFR is an upstream regulator of Notch through a non-autonomous 

cellular mechanism.

Numb interacts with E3 ubiquitin ligases to regulate Notch receptor degradation28. Changes 

in Notch signaling levels directly regulate Numb expression29. Figure 4e shows that NICD 

overexpression reduced Numb in SVZ cells, whereas EGFR overexpression upregulated 

Numb, and reduced Notch1 and NICD levels. The Notch inhibitor DAPT upregulated Numb 

(Fig. 4f).

We determined the extent of Numb/Notch1 interaction in the SVZ by immunoprecpitation 

assays. Higher levels of Notch1 associated with Numb in CNP-hEGFR samples, compared 

to WT (Fig. 4g1). Anti-ubiquitin immunoprecipitation followed by anti-Notch1 

immunoblotting demonstrated higher levels of Notch ubiquitination in CNP-hEGFR mice 

(Fig. 4g2). Stereotaxic injection in WT and CNP-hEGFR mice with either Ad-LacZ or 

NICD-LacZ adenovirus showed that both Numb/Notch interaction and Notch1 

ubiquitination were reduced after NICD transduction (Fig. 4h).

To demonstrate that EGFR signaling promotes Notch ubiquitination via Numb, we 

performed gain- and loss-of-function experiments in SVZ cultures. After EGFR transfection, 

we observed increased Numb levels and reduced NICD expression, compared to the mock 

construct (Fig. 4i). PD168393 reversed this effect (Figure 4i). EGFR overexpression in WT 

cells promoted Numb and Notch association and enhanced Notch1 ubiquitination (Fig. 4j). 

siRNA-mediated EGFR knock down in CNP-hEGFR SVZ cultures reduced Numb and 

Notch1 interaction (Fig. 4k1), and decreased Notch1 ubiquitination (Fig. 4k2).
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To confirm the role of EGFR and Numb in inhibiting Notch, we analyzed Hes1 promoter 

activity by co-transfection in WT SVZ cells with a Hes1-luciferase reporter construct, along 

with hEGFR and Numb expression vectors. Hes1 activity was activated only by the NICD 

construct (Sup.Fig. 11h). However, Numb blocked NICD and reduced Hes1 activity 

(Supplementary Fig. 11h). Hes1 activity was further reduced by co-transfection with NICD, 

Numb, and hEGFR (Sup.Fig. 11h). Finally, siRNA mediated knockdown of Numb in vivo 

caused upregulation of Notch1 and Hes1 activity (Fig. 4l–o). Scrambled siRNA 

electroporation in vivo showed that Hes1 activity was present in a small percentage of 

GFAP+ and Nestin+ NSCs (Fig. 4n; 3.9+/−0.51 cells/μm3), however after Numb knock 

down Hes1 activity was present in a larger percentage NSCs (Fig. 4o; 7.1+/−0.56 cells/μm3, 

p<0.01; n=4). Together, these results demonstrate that EGFR signaling reduces Notch 

activation through Numb-dependent Notch1 ubiquitination.

Our results point to an interaction between two signaling pathways -EGFR and Notch - that 

play fundamental and selective roles in the maintenance of NSCs and NPCs in the SVZ 

niche. This interplay occurs through the direct interaction between NPCs and NSCs, 

demonstrating the existence of a cellular homeostatic mechanism that involves two specific 

molecular pathways. Our study also proves that altering particular signaling mechanisms in 

selective cell types of the SVZ can cause profound changes in the overall cell composition 

of this neurogenic region of the adult brain. Defining interactions and homeostatic 

mechanisms that occur between different types of SVZ cells under normal conditions 

provides crucial information on possible alterations of specific signaling pathways that 

might occur under pathological conditions or after brain injury.

METHODS SUMMARY

Generation/genotyping of CNP-hEGFR, hGFAP-GFP and Wa2 mice was performed as 

described14,15. Wild-type C57/Bl6 and FVB/N mice were used as controls. Histology, 

immunohistochemistry and EM studies were performed on fresh floating or vibratome 

sections as described previously19,20. Immunohistochemestry and confocal imaging were 

used to characterize the SVZ cell composition of the postnatal and adult brain. Image 

analysis, three-dimensional rendering, and cell counting were done in Photoshop (Adobe) 

and ImageJ software. NSCs and NPCs were isolated and characterized by FACS sorting 

using CD15, GFAP, EGFR and NG2 antibodies. Cell proliferation, self-renewal and 

biochemical analysis were performed from FACS-purified cultured cells and SVZ tissue. To 

compare SVZ expression profiles of genes involved in NSC development/neurogenesis in 

CNP-hEGFR and WT mice, we performed gene array (SuperArray, Bethesda, MD) 

expression on spotted cDNA fragments encoding 250 mouse genes. To monitor Notch-

signaling pathway in the postnatal SVZ of the CNP- and WT mice, mouse brains were 

electroporated using the ECM 830 BTX electroporator (Harvard Apparatus, Holliston, MA). 

Each electroporation result was reproduced in multiple brains derived from at least three 

separate litters. SVZ NPC cell depletion using Ara-C (2%, Sigma) in vehicle (0.9% saline) 

or vehicle alone was performed as previously described3. EGF (100nm/ul, Upstate) in 

vehicle (0.9% saline), or vehicle alonewas infused into the LV of adult GFAP-GFP and WT 

mice (infusion coordinates: anterioposterior, 0; lateral, 1.1; dorsoventral, 1.5 mm medial to 

lateral relative to bregma) for 5 days using micro-osmotic pumps (Alzet, model 1007). 
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Brains were then processed for FACS-purification, cell culture or histology. At least 3 

different brains for each strain and each experimental condition were analyzed and counted. 

Cell counting was performed blindly and tissue sections were matched across samples. The 

analysis of the SVZ was performed at different anterior-posterior and dorso-ventral levels of 

the lateral ventricle. Statistical analysis was performed by unpaired t-test.

METHODS

Animals

Details on the generation and characterization of CNP-hEGFR transgenic mice have been 

previously reported30,15. Genotyping of the mice was performed by PCR15. Robust 

hEGFR expression was detected in total brain and spinal cord lysates from adult brain by 

using monoclonal anti-human EGFR antibody to probe Western blots after 

immunoprecipitation with a polyclonal anti-EGFR antibody14,15,30. Consistent with the 

idea that the CNP promoter drives expression in OLs, hEGFR expression was detected in 

OL lineage cells of the SVZ, white matter and cerebral cortex in P8-P90 CNP-hEGFR mice, 

and in NG2+ progenitor cells of the SVZ15. Transgenic mice were backcrossed >4 

generations onto C57BL/6. In the CNP-hEGFR mouse strain, the CNP promoter drives 

expression in NPCs and in the entire oligodendrocyte lineage; hEGFR expression was 

detected at both P8 and P90 in NG2+ progenitors of the SVZ, and in NG2+ progenitors and 

oligodendrocytes of the white and gray matter14,15. The mouse strain expressing the 

hGFAP-EGFP (kind gift of F. Kirchhoff, Max Planck Institute of Experimental Medicine, 

Goettingen, Germany) was previously characterized31. The EGFR-mutant mouse (waved-2 

mutation; Wa2)32 was obtained from Jackson Labs (Bar Harbor, ME). All animalprocedures 

were performed according to the Institutional Animal Care and Use Committee of 

Children’s National Medical Center and the National Institutes of Health “Guide for the 

Care and Use of Laboratory Animals.”

Immunohistochemistry and antibodies

Freshly cut, floating tissue sections (20–40μm) from P8 and P90 mice were prepared as 

previously described14,15. Primary antibody dilutions were: 0.5μg/ml for the specific anti-

hEGFR (Biofluids, Caramillo, CA); 1:500 for anti-BrdU (Accurate, Westbury, NY), anti-

NG2 antibody (Chemicon, Temecula, CA), monoclonal anti-GFAP (mouse monoclonal, 

Sigma Aldrich, St. Louis, MO), polyclonal anti-GFAP (rabbit polyclonal, Covance, 

Berkeley, CA), anti-S100β (DAKO, Denmark; rabbit anti-human clone A5110), and anti-

Nestin (Chemicon); 1:50 for anti-LeX (MMA clone, BD Biosciences, San Jose, CA), anti-

full length Notch-1, Jagged1, Delta like-1 (Dll) and anti-NICD (from Developmental Studies 

Hybridoma Bank, Iowa, IA).

BrdU administration

The BrdU labeling protocol was performed as previously described33,19. The number of 

proliferating progenitor cells in the subependyma of the lateral ventricle was determined 

following short-term (2h), or long-term (30d) retention. Mice were injected intraperitoneally 

with a single dose of BrdU (50 μg/g body weight) every 3h for five injections and were 

sacrificed either 1h or 30d after the final injection.
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Conventional transmission electron microscopy

Wild type and CNP-EGFR mice (P8, n=6 for each phenotype; adult, n=4 for each 

phenotype) were perfused through the heart with a mixture of 3% paraformaldehyde and 

1.25% glutaraldehyde in 0.1M phosphate buffer (PB). Brains were removed and postfixed 

overnight with the same fixative. Brains were sectioned with a vibratome and stored in 0.1M 

PB. Before postfixation for 1 hour with 1% osmium tetroxide, slices were washed in 0.1M 

cacodylate buffer pH7.2. After, brain slices were dehydrated through a series of ethanol 

solutions (50%, 70%, 85%, 95% and 100%), infiltrated with epoxy resins and flat 

embedded. Sections with the lateral ventricle and the SVZ were trimmed and mounted on 

blocks and cut with an ultramicrotome. Ultrathin sections (70–80 nm in thickness) were 

counterstained with uranyl acetate and lead citrate and analyzed with a TECNAI G2 Spirit 

Biotwin TEM (FEI, Hillsboro, OR, USA). The images were captured with an AMT XR40 4 

megapixel side mounted CCD camera (Danvers, MA, USA) using the electron micrograph 

montage option. Image processing was performed with Adobe Photoshop using only the 

brightness and contrast commands. The identification of cell types in the lateral wall of the 

lateral ventricle and SVZ was performed on electron micrographs following well-described 

ultrastructural criteria by Doetsch et al. (1997). Cells were false colored and were counted 

manually.

Microarray and PCR analysis

GEArray™ expression array systems (cat #OMM-404MM and #OMM-404MM, 

SuperArray, Bethesda, MD) consisting of spotted cDNA fragments encoding 250 mouse 

genes involved in NSC development/neurogenesis and in Nocth signaling, as well as control 

sequences (PUC18, glyceraldehyde-3-phosphate dehydrogenase (GAPDH), peptidylpropyl 

isomerase A (Ppia), and b-actin) were employed to compare gene expression between WT 

and CNP-hEGFR SVZ tissue. Total RNA was isolated with theTrizol method (Invitrogen) 

and further processed for microarray hybridization according to the manufacturer’s 

instructions. The arrays were visualized by autoradiography and hybridization signals were 

scanned and analyzed for density in GEArray Expression Analysis Suite 2.0. The 

normalized value for each gene was calculated by dividing the value of each gene by the 

average value of the housekeeping genes GAPDH, Ppia, and β-actin.

For RT-PCR, RNA was isolated from P8 and P90 SVZ tissue or from FACS-purified SVZ 

cells (WT and CNP-hEGFR mice), using Trizol (Invitrogen). RNA (1μg) from each sample 

was reverse-transcribed using the SuperScript™ First-Strand cDNA Synthesis kit 

(Invitrogen). The mouse gene-specific primers were obtained from Integrated DNA 

Technologies, Inc. (Coralville, IA). Primer sequences for PCR analysis are found in 

Supplementary Experimental Procedures. Genes were amplified by denaturation at 94°C for 

1 min, annealing at 60°C for 1 min, and extension at 72°C for 1 min for 28 cycles. PCR 

products were resolved by 1.2% agarose gel electrophoresis and visualized by ethidium 

bromide staining.

In vivo electroporation

For gene transfer into postnatal SVZ cells, GFAP-GFP and GFAP-GFP/CNP-hEGFR P2-P3 

pups were injected with 1–2μg of pFLAG-NICD (gift from Dr. Raphael Kopan), 
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shhumanEGFR (GeneCopoeia, Cat #HSH004605-LvH1, access number NM_005228.3; 

HSHH004605 actcactctccataaatgc; HSH004605-2 cgtcagcctgaacataaca; HSH004605-3 

gaccagacaactgtatcca; HSH004605-4 ccgtcgctatcaaggaatt), CAG-GFP and Hes1-dsRED and 

Hes1-GFP (gift from Dr. Cepko L. Constance)34 CBFRE-EGFP (gift from Dr. Nicholas 

Gaiano)22, Dll-GFP (gift from Richard Grosschedl)35 and Hes5-GFP (gift from R. 

Kageyama)36 DNA into the LV, followed by electroporation (100V/50ms, five times at 

950ms intervals; the angle of the paddles was adjusted to 20–40 degrees) using an ECM 830 

BTX electroporator (Harvard Apparatus, Holliston, MA).

In vivo viral labeling

SVZ cells were infected using a Notch Intracellular domain (Ad-NICD) or control (Ad-

LacZ) construct Adenovirus (gift of Dr. Igor Prudovsky) by direct injection into the LV. 

Adenovirus production and titer determination were previously described37. P90 WT and 

CNP-hEGFR mice were injected with the Adenovirus stock (2μl; titer of 2–4 × 106 cfu/ml). 

Injections were performed stereotaxically at the following coordinates (anterioposterior 

relative to bregma, mediolateral, and dorsoventral from surface of the brain) for epl-SVZ (0, 

1.8, 3.0mm). Brains were processed for histology at 2, 7, 14 and 28 days after infection, and 

sections were immunostained for NICD, GFAP, S100b, NG2 and BrdU antibodies.

FACS sorting and cell culture

FACS-purification of LeX+NG2−/EGFPneg (NSCs) in the CNP-EGFP mouse or GFAP-

GFP+LeX+NG2neg (NSCs) in the GFAP-GFP mouse has been previously described19. 

Tissue from P8 CNP-hEGFR, CNP-EGFP/CNP-hEGFR, GFAP-GFP or CNP-hEGFR/

GFAP-GFP mice was dissociated into single cell suspensions, followed by immunostaining 

for NG2 and LeX (MMA clone)19. SVZ neural stem cells and NPCs (after EGF or saline 

infusion, or 5–7days after focal demyelination of the corpus callosum) were FACS-purified 

using anti-LeX antibodies to purified LeX+/GFAP-GFP+ (NSCs) or GFAP-GFPnegLeX+ 

(NPCs) cells from the hGFAP-GFP mouse. Tissue was dissociated into single cell 

suspensions, followed by immunostaining for NG2 and LeX (MMA clone)19. To FACS-

purify NSCs, antibodies were used in combination with appropriate R-PE- and PE-Cy5.5-

conjugated secondary antibodies (Caltag, Burlingame, CA). Cell suspensions were analyzed 

for light forward and side scatter using a FACSAria instrument (BD, Biosciences, Franklin 

Lakes, NJ).

Cultures of FACS-purified cells have been previously described19. FACS-purified NSCs 

were seeded at a density of 10 viable cells/μl on uncoated 24-well plates (BD Falcon, 

Franklin Lakes, NJ), and grown in SCM for 6 days in vitro (DIV) with daily addition of 

20ng/ml EGF and 10ng/ml bFGF (Upstate, Charlottesville, VA)19,20. Primary neurosphere 

colonies were subcloned to assay NSC self-renewal by mechanical dissociation and replated 

at a density of 10cells/μl on uncoated 24-well plates. It is important to note that in 

Supplementary Figure 6 neurosphere analysis was performed starting with the 2nd passage. 

This was done to overcome the experimental limitations due to low number of cells 

recovered after FACS.
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SVZ micro-dissection

SVZ areas were micro-dissected from 300μm-thick brain coronal sections. Single cell were 

dissociated19,38 on coated coverslips in 24-well plates (BDFalcon, Franklin Lakes, NJ). 

Coverslips were processed for immunocytochemistry 2h after plating.

Western blots and immunoprecipitation

SVZ tissue (WT and CNP-hEGFR mice) was micro-dissected from 300μm-thick coronal 

sections of P8 and P90 brains, and used for protein extraction using lysis buffer (50mM 

Tris-HCl, pH7.5, 1mM EDTA, 1mM EGTA, 1mM sodium orthovanadate, 50 mM sodium 

fluoride, 0.1% 2-mercaptoethanol, 1% triton X-100, plus proteases inhibitor cocktail; 

SIGMA). Protein samples (20μg) were separated on GENE Mate express Gels 420% (ISC 

BioExpress, Kaysville, UT) and transferred to PVDF membranes (Millipore, Bedford MA). 

Numb, Notch1, NICD, Dll1, Hes1, RBPjk, ubiquitin, and actin proteins, were detected using 

an enhanced chemiluminescence substrate mixture (ECL Plus, Amersham, 

Buckinghamshire, UK). Selective primary antibodies from Santa Cruz Biotechnologies 

(Caramillo CA) were used at 1μg/ml. Antibodies were used in combination with a secondary 

horseradish peroxidase-conjugate (Santa Cruz Biotechnologies).

For immunoprecipitation, SVZ tissue extracts from WT and CNP-hEGFR mice were 

prepared in RIPA buffer containing. Aliquots (200μg protein) were incubated overnight with 

antibodies against ubiquitin (Santa Cruz Biotechnology), Numb or Notch1 and 15μl of 

Agarose A (Santa Cruz Biotechnology). Immunocomplexes bound to agarose A were 

collected by centrifugation and washed twice in 500μl RIPA buffer containing inhibitors. 

Precipitated proteins were analyzed by immunoblotting. Bands were detected using HRP 

and developed with a chemiluminescent substrate (ECL, Amersham).

Ara-C and EGF infusion

Ara-C (2%, Sigma) in vehicle (0.9% saline) or vehicle alonewere infused onto the surface of 

the brain of adult mice (coordinates: anterioposterior, 0, lateral, 1.1, dorsoventral, 1.5mm 

medial to lateral relative to bregma) for 6 days with micro-osmotic pumps (Alzet, model 

1007) as previously described by Doetsch et al. (1999). EGF (100nm/ul, Upstate) in vehicle 

(0.9% saline), or vehicle alone was infused into the LV in adult GFAP-GFP and WT mice 

(infusion coordinates: anterioposterior, 0; lateral, 1.1; dorsoventral, 1.5 mm medial to lateral 

relative to bregma) for 5 days using micro-osmotic pumps (Alzet, model 1007). Mice were 

then processed for FACS-purification, cell culture or histology.

Plasmids, siRNAs, cell transfection and luciferase assays

SVZ tissue was dissected from 300μm-thick brain sections prepared from P8 WT and CNP-

hEGFR brains and processed for cell culture19. After SVZ dissection and single cell 

dissociation, cells were plated in 12-well cell culture dishes at a density of 50 cells/μl for 24 

hours. At the time of transfection, cell cultures were approximately 60% confluent. Cell 

transfections were performed using the NeuroPORTER Transfection reagent (Genlantis, San 

Diego, CA) following manufacturer’s instructions. The cell permeable, irreversible EGFR 

blocker (PD168393, Calbiochem, La Jolla, CA), was used 24hrs after cell transfection. Cells 
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were pre-incubated with PD168393 (PD) for 4hrs at 37°C in 5% CO2 and then medium was 

changed to fresh SCM.

A commercially available siRNA directed toward the hEGFR was purchased from 

Dharmacon (SMARTpool Cat. No. L-003114-00, Locus NM_201283; sequence 

J-003114-10, CAAAGUGUGUAACGGAAUA; J-003114-11, 

CCAUAAAUGCUACGAAUAU, J-003114-12, GUAACAAGCUCACGCAGUU, 

J-003114-13, CAGAGGAUGUUCAAUAACU. and siRNA directed toward the mNumb 

(Santa Cruz Biotechnologies Inc. Cat. No. sc-42147; Locus NM_010949, 110 

GUAGCUUCCCAGUUAAGUAtt, 412 CGAUGGAUCUGUCAUUGUUtt, 884 

CCCUACGCAUCAAUGAGUUtt). siRNA transfection produced selective knockdown of 

the hEGFR and mNumb. Briefly, 2μl of 20pM of siRNA solution and 12μl of the 

transfection reagent were incubated in 100μl of SCM for 20 minutes, in order to facilitate 

complex formation. The siRNA transfection mix was added to the SVZ cells cultured in 

2.5% FBS. Controls consisted of non-specific siRNA. SVZ cells were transfected for 7 

hours at 37°C, washed with Hanks’ buffer and cultured in SCM 2.5% FBS for an additional 

24 hours. The medium was then changed to basal SCM (20 ng/ml EGF and 10 ng/ml FGF). 

After 24 or 48 hours, cells were collected and processed for RNA or protein extraction.

Transient transfections and Luciferase assays were performed in 60% confluent SVZ cell 

cultures (CNP-hEGFR and WT) using NeuroPORTER as described above, and 1.5μg of 

PGL3 basic, wt phEGFR (Millipore), pCBF1-Luciferase reporter plasmid (gift of Dr. 

Gabriel Corfas, Harvard Medical School) or Hes1 Luciferase reporter plasmid, and Dll 

expression plasmid (gift of Dr. Alanis Israel, Unite de Biologie Moleculaire de l’Expression 

Genique, Centre National de la Recherche Scientifique) reporter plasmids and 0.3μg of 

expression vectors. Notch expression vectors used were a kind gift of Dr. Raphael Kopan 

(Department of Molecular Biology and Pharmacology, Washington University). Luciferase 

assays were performed 48hr after transfection using the Dual Assay Luciferase kit 

(Promega). Cotransfected TK–renilla Luciferase was used to normalize samples for 

transfection efficiency and for sample handling. Cells were lysed, and luciferase activity was 

measured following the protocol recommended by the manufacturer.

Neural progenitor-neural stem cell co-cultures

NPCs were acutely dissociated from P8 CNP-hEGFR and WT SVZ mice and then processed 

for purification using anti-prominin-1 microbeads antibodies (Miltenyi Biotec, Auburn CA) 

following manufacturer recommendations. Purified NPCs were cultured at high density in a 

monolayer in the presence of EGF and bFGF, as described above. After 48 hrs, FACS-

purified WT GFAP-GFP+LeX+ cells were plated on top of NPCs for 5 days in EGF- and 

bFGF-containing medium. Finally, GFAP-GFP+ cells were purified from the co-culture by 

FACS and assayed in neurosphere cultures to determine proliferation and self-renewal. 

FACS-purified GFAP-GFP+ cells were seeded at a density of 5 viable cells/μl on uncoated 

12mm-well plates (BDFalcon, Franklin Lakes, NJ), and maintained in SCM for 6DIV with 

daily addition of EGF and bFGF. Primary neurosphere colonies were subcloned by 

mechanical dissociation in SCM with EGF and bFGF. Cells were re-plated at a density of 5 

cells/μl on uncoated 24-well plates. Stem cell self-renewal was assessed after further 6 DIV.
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Microscopy and cell counting

A Bio-Rad MRC 1024 confocal laser-scanning microscope (Hercules, CA) equipped with a 

krypton-argon laser and an Olympus IX-70 inverted microscope (Melville, NY) was used to 

image localization of FITC (488nm laser line excitation; 522/35 emission filter), texas red 

(568nm excitation; 605/32 emission filter) of Cy5 (647 excitation; 680/32 emission filter). 

Optical sections (Z=0.5μm) of confocal epifluorescence images were acquire sequentially 

using a 40x oil objective (Number or aperture, NA=1.35), or a 60x oil objective (NA=1.40) 

with Bio-Rad LaserSharp v3.2 software. ImageJ NIH, software was subsequently used to 

merge images. Merge images were processed in Photoshop 7.0 with minimal manipulations 

of contrast. For cell counting, cells were counted in the SVZ the postnatal day 8 (P8) and 

adult mice P90. At least 3 different brains for each strain and each experimental condition 

were analyzed and counted. Cell counting was performed blindly and tissue sections were 

matched across samples. The analysis of the SVZ was performed at different anterior-

posterior and dorso-ventral levels of the lateral ventricle. An average of 15–20 sections was 

quantifiedusing unbiased stereological morphometric analysis for the SVZ to obtain an 

estimate of the total number of positive cells. Then, percentages of cells expressing different 

antigens were estimated by scoring the number of cells double-labeled with the marker in 

question. In acute SVZ dissociated cells, 3 coverslips and 8–10 microscopic fields/coverslip 

were counted from 3 separate cultures. Statistical analysis was performed by unpaired t-test.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. EGFR overexpression reduces NSC proliferation and self renewal in the adult mouse 
SVZ
(a) Decreased number of GFAP+BrdU+ and GFAP+Nestin+ NSCs, and increased number of 

NG2+ cells in the SVZ of the CNP-hEGFR mouse (*p<0.05). Means ± SEM. (b) Decreased 

percentage of GFAP+Nestin+LeX+ NSCs and increased percentage of GFAP+S100b+ 

astrocytes in the SVZ of the CNP-hEGFR mouse (**p<0.02). (c) Neurospheres from WT 

(c1) and CNP-hEGFR (c2) cells. (d) Reduced neurosphere numbers (d1) and size (d2) in 

cultures from CNP-hEGFR mice (*p<0.02; **p<0.001).
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Figure 2. EGFR overexpression downregulates Notch signaling in the SVZ, and NICD 
overexpression rescues proliferation and self-renewal of SVZ NSCs
(a) Notch signaling is downregulated, but Numb is upregulated in the SVZ of CNP-hEGFR 

mice. (b) NICD, RBPjk, Hes1 are upregulated in the Wa2 SVZ, and Numb is 

downregulated. (c-d) High NICD levels were detected after in vivo electroporation by 

immunostaining. (e–f) GFAP-GFP+ neurosphere number (f1) and size (f2) increased after 

NICD electroporation. Means (n=3) ± SEM (*p<0.01). Scale bars = 100μm. (g) High b-gal 

expression levels in the SVZ after viral infection in WT (g1) and CNP-hEGFR (g2) 

ventricles. (h) Ad-NICD transduction increased NICD, but reduced Numb expression. (i) 

Ad-NICD infection increased neurosphere formation in CNP-hEGFR mice, but not in WT. 

Means (n=3) ± SEM (*p<0.02). Scale bars = 200μm.
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Figure 3. EGFR-expressing NPCs regulate NSC properties through a non-autonomous cellular 
mechanism
(a) Increased BrdU+ cells and reduced GFAP+ cells in CNP-hEGFR mice (**p<0.002). 

AraC: Increased GFAP+ cells compared with NaCl in CNP-hEGFR mice (**p<0.002; 

*p<0.05). (b1) AraC upregulates Hes1 and RBPjk mRNAs and downregulates Numb. (b2) 

AraC upregulates NICD protein and downregulates Numb. (c) CNP-hEGFR mice: AraC 

increases NSC proliferation and self-renewal (*p<0.001). Means (n=3) ± SEM. (d) Reduced 

proliferation and self-renewal in WT NSCs cultured with CNP-hEGFR NPCs, as compared 

with WT cells. Ad-NICD overexpression rescued NSC proliferation. Means (n=3) ± SEM 

(*p<0.02). (e) Higher proliferation and self-renewal of NSCs cultured with NPCs of the 

Wa2 mouse, as compared with WT cells. Means (n=3) ± SEM (*p<0.05).
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Figure 4. EGFR signaling reduces Notch1 expression through Numb
(a–d) Hes1-dsRED-NICD co-electroporation in GFAP-GFP and GFAP-GFP/CNP-hEGFR 

mice. More Hes1-dsRED+GFAP-GFP+ cells are observed in GFAP-GFP mouse. NICD 

increases GFAP-GFP+Hes1-dsRED+ cell number. (e) WT cells infected with: i) LacZ or 

NICD, or ii) GFP retrovirus (CLE-GFP) or EGFR-GFP. NICD upregulates NICD and 

Notch1, but downregulates Numb. EGFR reduces Notch1 and NICD, but increases Numb. 

(f) DAPT upregulates Numb. (g) Increased Numb/Notch1 immunoprecipitation correlates 

with enhanced degradation. (h) Ad-NICD reduces Notch1/Numb interaction and Notch1 

degradation in CNP-hEGFR SVZ. (i) EGFR increases Numb and reduces NICD; PD168393 

prevents these effects. (j) EGFR increases Numb/Notch immunoprecipitation, and Notch1 

degradation. (k) hEGFR siRNAs decrease Numb/Notch1 interaction and Notch1 degradation 

in CNP-hEGFR cells. (l–o) Numb siRNA knockdown enhances Notch signaling in CNP-

hEGFR NSCs. Scrab=scrambled siRNA. (l) Numb siRNA downregulates Numb and 

upregulates Notch1. (m) Numb siRNA decreases Numb/Notch interaction and Notch1 

degradation. (n–o) Co-electroporation of Scrab or Numb siRNA, and Hes1-dsRED 

constructs. Numb siRNA increases the number of Hes1-dsRED+CAG-GFP+ cells. Scale bar 

= 50μm.
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