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Ionic interactions are crucial to biological functions of DNA, RNA, and proteins. Experimental research on
how ions behave around biological macromolecules has lagged behind corresponding theoretical and
computational research. In the 21st century, quantitative experimental approaches for investigating ionic
interactions of biomolecules have become available and greatly facilitated examinations of theoretical
electrostatic models. These approaches utilize anomalous small-angle X-ray scattering, atomic emission
spectroscopy, mass spectrometry, or nuclear magnetic resonance (NMR) spectroscopy. We provide an
overview on the experimental methodologies that can quantify and characterize ions within the ion
atmospheres around nucleic acids, proteins, and their complexes.
� 2021 The Author(s). Published by Elsevier B.V. on behalf of Research Network of Computational and
Structural Biotechnology. This is an open access article under the CC BY-NC-ND license (http://creative-
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1. Introduction

Ions are essential for life. Cellular fluids contain various inor-
ganic and organic ions. These ions strongly influence thermody-
namics and kinetics of macromolecular interactions [1–4]. Such
influences on DNA, RNA, and proteins depend not only on ionic
strength, but also on ionic species, as well-known for Hofmeister
series of ions that affect solubility and stability of proteins [3,5].
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While ions are important as essential constituents of biological
systems, it is not well understood how these ions interact with bio-
logical macromolecules and impact their functions.

Largely due to their mobile nature, ions around nucleic acids
and proteins are difficult to directly observe. Protein Data Bank
(PDB) has collected > 170,000 structures of biological macro-
molecules and their complexes over the past five decades [6]. Mul-
tivalent ions tightly bound to particular sites are seen in many PDB
structures. However, the vast majority of monovalent cations and
anions undergo territorial binding (as opposed to site binding)
and are unresolved even in high-resolution crystal structures of
biological macromolecules. The spatial distribution of mobile ions
and their interactions with macromolecules remains elusive in
structural biology.

On the other hand, the ion atmosphere where counterions are
condensed around nucleic acids was proposed even prior to the
inception of PDB. In 1950–60 s, studies using electrophoresis, vol-
umetry, and dialysis equilibrium approaches had suggested that
nucleic acids are surrounded by counterions [7–10]. As three-
dimensional structures of DNA and RNA were revealed, researchers
developed theoretical models of ionic distribution around nucleic
acids and its relevance to the thermodynamics of nucleic acid-
protein interactions [11–13]. In 1970–90 s, the theoretical models
for the ion atmosphere were used to explain thermodynamic and
23Na nuclear magnetic resonance (NMR) data [14–16]. However,
the validity range of the theoretical models remained to be
addressed. The ion atmosphere can be convoluted with solvation
or conformational dynamics, which may limit the validity of sim-
ple models. It could be even more challenging to theoretically
describe the ion atmosphere around proteins because their overall
charges are smaller and the charge distribution on the molecular
Fig. 1. Concepts of the ion atmosphere and relevant theories. (A) Charge neutralization f
counterion condensation theory. kB is the Bjerrum length. For nucleic acids, DNcounterion =
used in the ion-excess numbers DNcation and DNanion are as follows: nA is Avogadro’s num
box with q = 1 for accessible regions and q = 0 for regions that are inaccessible due to ma
constant; T, the temperature; and v, the volume in m3. A factor of 1000 is for the convers
subtraction of the Boltzmann factor for the background with an electrostatic potential o
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surfaces is more uneven. Validations through experiments are
essential for any theoretical models. However, in the 20th century,
experimental research on the ion atmosphere lagged far behind
theoretical and computational research.

In the first two decades of the 21st century, there has been
remarkable progress in experimental research on the ion atmo-
sphere around DNA, RNA, and proteins. Some newly developed
approaches have greatly facilitated examination and validation of
theoretical models and yielded deeper insight into how ions
behave around biological macromolecules. In this mini-review,
we provide an overview on the recent progress in the experimental
approaches for investigating the ion atmosphere around nucleic
acids and proteins. Introducing some relevant fundamental con-
cepts, we explain the basic principles of these experimental
approaches and their applications.
2. Theoretical aspects of ion accumulation around biological
macromolecules

2.1. The concept of ion atmosphere

The ion atmosphere of a macromolecule is a zone near the
macromolecular surface where the probability distribution of
mobile ions differs from the background due to their electrostatic
interactions with the macromolecule. For nucleic acids, cations act-
ing as counterions are accumulated in the ion atmosphere and
anions acting as coions are excluded from the ion atmosphere. It
is important to note that the charge neutralization of a macro-
molecule occurs not only via accumulation of counterions in the
ion atmosphere but also via exclusion of coions from the ion
or the space comprising of a macromolecule and its ion atmosphere. (B) View of the
DNcation and DNcoion = DNanion. (C) View of the Poisson-Boltzmann theory. Symbols
ber; c is the bulk ion concentration in mol/L units; q defines ion accessibility in the
cromolecular atoms; q, the ionic charge; e, the elementary charge; kB, the Boltzmann
ion of the volume unit from L to m3. Subtraction of 1 in the integral corresponds to
f zero. The shown equations for ion excess are for monovalent ions.
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atmosphere (Fig. 1A). The space comprising of the macromolecule
and its ion atmosphere should satisfy Z – DNanion + DNcation = 0,
where Z is the overall charge valence of the macromolecule; DN
is a parameter referred to as ‘ion excess’ and represents the num-
ber of ions accumulated in (DN > 0) or excluded from (DN < 0) the
ion atmosphere per macromolecule. An ion excess DN represents
the difference between the number of ions in the ion atmosphere
and the number of ions in the same volume outside the ion atmo-
sphere (i.e., the background).
2.2. Counterion condensation theory

The counterion condensation theory is a relatively simple the-
ory about condensation around linear polyelectrolytes such as
nucleic acids. It was developed by Manning in 1969 [12,17,18],
and applied to the thermodynamics of nucleic acid-protein interac-
tions by Record in late 1970 s [13,19,20]. According to this theory,
counterion condensation around a linear polyelectrolyte occurs
when its effective mean charge spacing b is smaller than the Bjer-
rum length kB (=7.14 Å for water at 25 �C). The so-called Manning
parameter n = kB / b is of key importance in this theory. n > 1 is the
criterion for the counterion condensation. B-form DNA is predicted
to condense counterions because b = 1.7 Å (i.e., two phosphates per
3.4 Å along the double-helical axis) and n = 4.2. The ion-excess
numbers DNcation and DNanion can be estimated from n and the
overall macromolecular charge valance Z. The total number of
counterions in the condensation region is |Z|[1 � n-1], whereas
the total number of excluded coions is |Z|(2n)-1 [12]. Manning’s
theory separately considers ‘condensed counterions’ and ‘uncon-
densed counterions’ for the charge neutralization, but this distinc-
tion has been criticized as a nonphysical treatment [11,21]. When
screening over the entire atmosphere is considered for monovalent
ions, the ion-excess numbers are DNcounterion = |Z|[1 � (2n)-1] and
DNcoion = �|Z|(2n)-1 (Fig. 1B) [13]. For example, this theory predicts
that a chemically synthesized 24-bp B-form DNA (Z = -46) accumu-
lates 40.5 cations in the ion atmosphere and excludes 5.5 anions
(i.e., DNcation = 40.5 and DNanion = -5.5).

The counterion condensation theory has been successful in
explaining various experimental data. In particular, for DNA, this
theory explained the salt concentration dependence of thermody-
namics for many DNA-protein association processes [22,23]. How-
ever, due to the assumption of linear charge distribution, the
counterion condensation theory is not applicable for globular pro-
teins and folded RNAs. Another limitation is that this theory does
not predict the dependence of DN on ionic strength. Recent studies
by ion-counting methods clearly showed that DNcation and DNanion

significantly depend on ionic strength, especially when ionic
strength is >100 mM [24,25].
2.3. Poisson-Boltzmann theory

If the three-dimensional structure is known for a macro-
molecule, the spatial probability distribution of mobile ions around
the macromolecular surface at a particular ionic strength can be
predicted by the Poisson-Boltzmann theory [26,27]. In this theory,
the Poisson equation for electrostatics is combined with the
assumption that the probability distribution of mobile ions is given
by a Boltzmann factor with respect to the electrostatic potential.
The Poisson-Boltzmann equation is a second-order differential
equation and can be numerically solved using atomic coordinates
of biomolecules. Software for this purpose such as APBS [28] and
DelPhi [29,30] has gained popularity in a wide variety of research
areas. Using the calculated electrostatic potentials, the spatial dis-
tribution of mobile ions can be predicted from the Boltzmann fac-
tors. Based on the probability distribution of mobile ions, the ion-
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excess numbers DNcation and DNanion can also be predicted using
the equations shown in Fig. 1C.

The Poisson-Boltzmann theory is approximate under assump-
tions that simplifies calculations [31]. The lack of consideration
of correlations between ions can diminish accuracy in calculations
of electrostatic potentials for systems at high ionic strength [32].
Solvation of ions and macromolecules is neglected and ions are
treated as point charges. Due to the assumption of a dielectric con-
tinuum, the electrostatic potentials predicted with the Poisson-
Boltzmann theory may be inaccurate for zones near the first hydra-
tion layer. Many Poisson-Boltzmann models assume a uniform
dielectric constant for the interior or exterior of the macro-
molecule, creating a sharp dielectric jump at the boundary that
could cause problems. Modified Poisson-Boltzmann models have
been proposed for improvement, for example, by including correc-
tions for finite ion sizes or solvent dielectric saturation effects [33–
36]. There are needs of examinations for the theoretical models
through experiments.
3. Experimental methods for investigating ion atmosphere
around biological macromolecules

Since Hofmeister discovered a series of ions that affect the sol-
ubility and stability of proteins in the late 19th century, there have
been numerous investigations into ionic interactions of proteins
and nucleic acids [2–4]. Here, we focus on recently developed
methods that are truly quantitative in determining the ion-
excess numbers or/and are incisive in characterizing ions in the
ion atmosphere. These methods are summarized in Table 1.
3.1. ASAXS methods

Small-angle X-ray scattering (SAXS) is a powerful technique
that can provide global structural information of biological macro-
molecules in solution. Anomalous SAXS (ASAXS) occurs at wave-
lengths near the X-ray absorption edge of an element [50]. When
SAXS data are recorded using a wavelength close to the absorption
edge of an element (resonant) and another wavelength slightly far
from the absorption edge, only the resonant element exhibits dif-
ferences between the two datasets. Subtraction of resonant from
non-resonant scattering profile yields ASAXS data, which provide
information about the resonant element (e.g., ions) correlated with
a non-resonant structure (e.g., DNA). Although ASAXS for Na+, K+,
and Mg2+ ions are difficult to detect due to interference by water
[51], ASAXS can readily be measured for heavier ions such as
Rb+, Sr2+ and Co3+.

In 2003, using ASAXS, Pollack and coworkers achieved the first
direct confirmation of the physical presence of the ion atmosphere
around DNA [47]. They measured ASAXS for Rb+ and Sr2+ ions in
solutions of a 25-bp DNA duplex. Ionic competition between Co3+

and Rb+ ions for DNA phosphates was also studied by ASAXS
[44]. In the charge neutralization of DNA, multivalent ions were
found to occupy the ion atmosphere more favorably than monova-
lent ions. It was also demonstrated that the ASAXS-based method-
ology can quantify the number of ions around DNA [40]. ASAXS
was used to study ion atmosphere around RNA as well. The anoma-
lous profiles of Rb+ and Sr2+ ions around 25-bp DNA and RNA
duplexes of the same sequence were compared [52]. The data show
that the RNA duplex attracts both monovalent and divalent ions
closer to its surface and hence have more effective charge screen-
ing as compared to the corresponding DNA duplex. The discrep-
ancy was attributed to the topological difference between the A-
form RNA and the B-form DNA.

ASAXS data agreed well with the predictions from the Poisson-
Boltzmann theory with finite ion sizes taken into account [53–55].



Table 1
Quantitative experimental methods suited for investigations of the ion atmosphere.

Methods

Investigations AES ICP-MS ASAXS NMR

Quantification of ions in the ion atmosphere Yes [24,37] Yes [25,38,39] Yes [40] Yes [41]
Competition between ions for macromolecules Yes [24] Yes [42] Yes [43,44] Yes [41,45,46]
Spatial distribution of ions around macromolecules n.a. n.a. Yes [43,47] Yes [41,48,66]
Diffusional properties of ions interacting with macromolecules n.a. n.a. n.a. Yes [41,46]
Ion release upon macromolecular association p.a. p.a. p.a. Yes [41,46]

Yes: The feasibility demonstrated in the cited references.
n.a.: Not applicable.
p.a.: Potentially applicable.

Fig. 2. Ion-counting methods for quantifying ions in the ion atmosphere. The ion
excess per macromolecule (DNion) is determined from the ion concentrations in the
final solution (cion,sol) and in the reference buffer used for the equilibration (cion,ref)
as well as the macromolecular concentration in the final solution (cmac,sol).

Fig. 3. NMR-based quantification of anions accumulated around the Antp home-
odomain, BPTI, and ubiquitin. Note that the measured DNanion was smaller than the
overall charge valence Z. This means that the charge neutralization occurs not only
via accumulation of anions, but also via exclusion of cations from the ion
atmosphere. Adopted from Yu et al. [41]
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Excellent agreement was also found between ASAXS profile of
short double-stranded RNA and the results from explicit solvent
molecular dynamics (MD) simulations [56]. However, for a RNA
pseudoknot, both experimental ASAXS and atomistic MD results
were significantly different from the Poisson-Boltzmann-based
predictions from the crystal structure. These findings encourage
further improvement of theoretical models for dynamic structures.
Thus, ASAXS greatly facilitated the examination of theoretical
models on spatial distribution of mobile ions around DNA and RNA.

3.2. BE-AES and BE-ICP-MS methods

The buffer equilibration-atomic emission spectroscopy (BE-
AES) method is an ion-counting method that allows for quantifying
ions within the ion atmosphere [24,37,57]. The first step in ion-
counting methods is buffer equilibration using centrifugal filters
(Fig. 2) or dialysis membrane [58]. Ions in the final macromolecular
solution and in the flow-through liquid are quantified using atomic
emission spectroscopy (AES). The quantification of ions can also be
performed by inductively coupled plasma mass spectroscopy (ICP-
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MS) [25,38,42] or NMR [41,46]. The BE-AES and BE-ICP-MS meth-
ods can quantify various elements and analyze biologically rele-
vant ions such as Na+, K+, and Mg2+ ions [57,58].

The BE-AES ion-counting method also allows for investigations
of competition between ions for nucleic acids [24]. Competition
experiments using this method showed that Mg2+ and Ca2+ ions
associate with DNA ~ 40-fold more strongly than Na+ and K+ ions.
The BE-AES method was also used to investigate anion exclusion.
The ion-excess numbers at high salt concentrations were found
to depend strongly on the mean activity coefficients of the salts.
The BE-AES or BE-ICP-MS methods have been used to study ion
atmosphere around RNA as well [38]. As anticipated from the
structural difference, the cation-excess number determined for a
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24-bp RNA duplex was larger than that for the corresponding DNA
duplex of the same sequence [38]. The BE-ICP-MS method has been
applied to study the ion atmosphere around a nucleosome core
particle [39]. Intriguingly, although the nucleosome formation
reduces the overall charge by half, the ion-counting data suggested
that a strong negative electrostatic field remains.

The BE-AES and BE-ICP-MS ion-counting data illuminated the
strengths and limitations of the theoretical models on the ion
atmosphere. The discrepancies between Poisson-Boltzmann pre-
dictions and experimental data were more significant for ions with
higher valence or larger size. Based on the experimental data, new
theoretical models that can better reproduce the experimental ion-
counting data were developed [59–61]. The ion-counting methods
helped advance knowledge about the ion atmosphere surrounding
nucleic acids.
3.3. NMR methods for quantifying and characterizing ions in the ion
atmosphere

NMR spectroscopy is a powerful technique for probing the
structural and dynamic properties of biomolecules [62]. In 1970–
80 s, 23Na NMR was used to study interactions between Na+ ions
and DNA [45,63,64]. Later on, magnetic field-dependence of 23Na
NMR relaxation was used to invetigate more details about the
behavior of Na+ ions interacting with DNA [49]. In 1990s, NMR
paramagnetic relaxation enhancement (PRE) arising from Mn2+

ions as well as nuclear Overhauser effects (NOEs) for NH4
+ ions were

also used to investigate ion-DNA interactions [48,65,66]. More
recently, NMR-based ion-counting methods have been developed
for more quantitative investigations of ions around nucleic acids
and proteins [41,46].

The NMR-based ion-counting method were applied to both
DNA and proteins. The ion-excess number DNanion was measured
for the Antp homeodomain, bovine pancreatic trypsin inhibitor
(BPTI) and ubiquitin (Fig. 3) [41]. The NMR experiments clearly
showed accumulation of anions around the positively charged pro-
teins. The measured DNanion was significantly smaller than the
overall charge valence (Z) of each protein, which suggest that the
charge neutralization occurs via both the accumulation of counte-
rions and the exclusion of coions [41]. The experimental results
Fig. 4. NMR paramagnetic relaxation enhancement (PRE)-based approach for investigatin
with 15-bp DNA. The data were adopted from Yu et al. [41] Comparison of PRE arising
information about ion accumulation or exclusion. The data shown on the left-hand side s
but excluded upon formation of the protein-DNA complex.
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were consistent with the predication from the Poisson-
Boltzmann theory (Fig. 3).

Unlike other ion-counting methods, the NMR-based method
can also provide information about the diffusional properties of
ions within and outside the ion atmosphere [41,46]. NMR-based
diffusion experiments showed that the acetate ions in the ion
atmosphere are only loosely constrained by the proteins. By com-
paring the apparent diffusion coefficients of ions in solutions of
free proteins, free nucleic acids, and the complex as well as those
in the sample buffer alone, the number of ions released upon the
formation of the protein-nucleic acid complex can also be deter-
mined. NMR-based diffusion data showed the release of 7 anions
from the ion atmosphere around Antp homeodomain and 11
cations from the ion atmosphere around a 15-bp DNA duplex upon
the formation of the protein-DNA complex [41,46].

3.4. NMR methods for investigating spatial distribution of ions in the
ion atmosphere

NMR PRE arising from paramagnetic cosolutes, carboxy-
PROXYL (anionic) and carbamoyl-PROXYL (neutral), can be used
to investigate anion distribution around a protein. The PRE rate
for the transverse nuclear magnetizations, U2, is sensitive to spatial
distribution of paramagnetic cosolutes [67]. The difference (DU2)
between the PRE U2rates for the anionic and neutral PROXYL
derivatives at the same concentration reflect a bias in spatial distri-
bution of anions due to electrostatic interactions with the protein.
Fig. 4 shows examples of DU2 data for the Antp homeodomain in
the free state and those for the Antp homeodomain-DNA complex.
Many residues of the Antp homeodomain in the free state exhib-
ited large positive DU2 values, suggesting that anions are accumu-
lated around the positively charged surface of this protein. In
contrast, most residues in the complex with DNA exhibited nega-
tive DU2, suggesting that anions are excluded from the complex
surface. This is reasonable since the overall charge for the Antp
homeodomain-DNA complex is �16e. Moreover, the negative
DU2 is consistent with the NMR diffusion data indicating anion
release from the Antp homeodomain upon binding to DNA. The
NMR-based approaches for investigating the ion atmosphere can
readily be applied to many other systems of proteins, nucleic acids,
and their complexes.
g the spatial distribution of anions around the Antp homeodomain and its complex
from analogous anionic and neutral paramagnetic cosolutes provides site-specific
uggest that anions are accumulated around the Antp homeodomain in the free state



B. Yu and J. Iwahara Computational and Structural Biotechnology Journal 19 (2021) 2279–2285
4. Future perspectives

Many experimental data show that thermodynamics and kinet-
ics of protein-nucleic acid or protein–protein association are
strongly influenced by ions [16,22,68,69]. Such influences may
arise not only from the screening effect [70], but also from the
entropic effects of the ion release upon the macromolecular com-
plex formation [4,16,22]. Further research on the ion atmospheres
around macromolecules may explain why activities of some pro-
teins strongly depend on types of ions present in the same solu-
tions. For instance, when glutamate (Glu-) ions are used instead
of Cl- ions in biochemical experiments, some DNA-binding proteins
exhibit substantially stronger (>100-fold for some cases) affinity
for DNA [71,72]. This effect may be related to differences in the
behavior of Glu-and Cl- ions around positively charged proteins.
Future applications of the aforementioned methodologies will
likely provide mechanistic insight into how ions affect functions
of proteins and nucleic acids. Since NMR methods for charged moi-
eties of proteins are available [74,75], more detailed investigations
of interactions between ions and individual charged side chains of
proteins will be feasible.

Further methodological progress can be made through an
advancement in hardware. For instance, advances in synchrotron
radiation sources and corresponding detectors would improve
the precision of the ASAXS method and may extend its capability
toward more proximal ionic interactions [73]. Advances in NMR
instrumentation will facilitate diffusion coefficient measurements
for various ions. Typical NMR probes can generate magnetic field
gradients of up to ~55 gauss/cm. This magnitude of gradients is
sufficient for diffusion experiments on 1H, 13C, 15N, 19F and 31P
nuclei, but insufficient for diffusion experiments on 23Na and 35Cl
nuclei. Because quadrupole nuclei exhibit rapid longitudinal relax-
ation and relatively small gyromagnetic ratios, diffusion NMR
experiments for these nuclei require special broadband probe
hardware that can generate far stronger field gradients (e.g.,
>200 gauss/cm). Such hardware will enable investigations of the
diffusional properties of physiologically important Na+ and Cl- ions
in the vicinity of nucleic acids and proteins.
5. Concluding remarks

In the past two decades, there have been great advances in
experimental research on the ion atmospheres around biomole-
cules. ASAXS, BE-AE and BE-ICP-MS methods have provided signif-
icant insights into the ion atmosphere around DNA and RNA. More
recently, NMR-based methods that are capable of quantifying,
characterizing, and visualizing ions in the ion atmosphere have
provided unprecedented information about the ion atmosphere
around nucleic acids and proteins. These experimental approaches
can readily generate mutually beneficial feedback loops between
theoretical/computational and experimental studies. Further
research on weak interactions between ions and macromolecules
will likely advance our knowledge about how ions impact biologi-
cal macromolecules and their functions in living systems.
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