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Abstract

Background: Network inference is an important aim of systems biology. It enables the transformation of OMICs
datasets into biological knowledge. It consists of reverse engineering gene regulatory networks from OMICs data,
such as RNAseq or mass spectrometry-based proteomics data, through computational methods. This approach allows
to identify signalling pathways involved in specific biological functions. The ability to infer causality in gene regulatory
networks, in addition to correlation, is crucial for several modelling approaches and allows targeted control in
biotechnology applications.

Methods: We performed simulations according to the approximate Bayesian computation method, where the core
model consisted of a steady-state simulation algorithm used to study gene regulatory networks in systems for which a
limited level of details is available. The simulations outcome was compared to experimentally measured
transcriptomics and proteomics data through approximate Bayesian computation.

Results: The structure of small gene regulatory networks responsible for the regulation of biological functions
involved in biomining were inferred from multi OMICs data of mixed bacterial cultures. Several causal inter- and
intraspecies interactions were inferred between genes coding for proteins involved in the biomining process, such as
heavy metal transport, DNA damage, replication and repair, and membrane biogenesis. The method also provided
indications for the role of several uncharacterized proteins by the inferred connection in their network context.

Conclusions: The combination of fast algorithms with high-performance computing allowed the simulation of a
multitude of gene regulatory networks and their comparison to experimentally measured OMICs data through
approximate Bayesian computation, enabling the probabilistic inference of causality in gene regulatory networks of a
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multispecies bacterial system involved in biomining without need of single-cell or multiple perturbation experiments.
This information can be used to influence biological functions and control specific processes in biotechnology
applications.

Keywords: Biological signalling simulations, Gene regulatory networks, Approximate Bayesian computation,
Machine learning, Biomining, Acidophiles, Multispecies bacterial community interactions

Background
Biomining
“Biomining” is the industrial process of exploiting aci-
dophilic microorganisms for the recovery of valuable met-
als from sulfide mineral ores such as chalcopyrite [1, 2].
The process is catalyzed by microbial oxidation of ferrous
iron that provides ferric ions for the chemical oxida-
tion of metal sulfides and establishes a cycle between the
ferric iron oxidative attack and biological oxidation of fer-
rous ions. Sulfur-oxidizing acidophiles also contribute to
the process of mineral degradation by producing sulfu-
ric acid from inorganic sulfur compounds. Compared to
conventional metal recovery operations, biomining is less
harmful to the environment [3]. It is therefore important
to further optimize this process.

Bacterial communities involved in biomining
Acidophilic microbes have different capabilities to gen-
erate energy from the conversion of mineral compo-
nents under moderately thermophilic temperatures and
are employed in commercial heap biomining operations
[1, 4, 5]. Cooperative bioleaching occurs when the
metabolic products of acidophilic microbes are utilized
by other species and can occur by cell-cell direct contact
or long-distance chemical gradients [4, 6]. Multispecies
microbial communities are currently employed in bio-
mining operations [4, 5]. However, the molecular details
of the interactions between microbial cells are poorly
characterized.
Typical acidophile species utilized during “bioleach-

ing”, a term for the biomining process used when the
metal of interest is part of the mineral matrix, include
Acidithiobacillus caldus that is an obligate chemolithoau-
totrophic sulfur oxidizer that thrives at pH 2.5 [7, 8]; Lep-
tospirillum ferriphilum, a ferrous iron oxidizing autotroph
that is often the dominant iron-oxidizer in biomining
environments at extremely low pH (1.3-1.6) and high
redox potential conditions [9]; and Sulfobacillus thermo-
sulfidooxidans that is a mixotroph primarily oxidizing
iron but is also capable of oxidizing sulfur compounds at
higher pH conditions compared to other acidophiles [10,
11]. The interplay between species in mixed acidophile
communities at least partly determines the biomining
efficiency and is therefore important to understand and
optimize. In particular, the identification of biomolecular

components involved in the process, both within a sin-
gle species (intraspecies interactions) and between species
(interspecies interactions), allows to unravel key bio-
chemical processes for controlling microbial communities
and metal dissolution. However, detailed analysis of the
molecular interactions responsible for cross-talk between
biomining species has not been carried out.

Network modelling: reverse engineering OMICs data into
GRNs
Next-generation sequencing (NGS) enables massive par-
allel sequencing that generates high-throughput data,
for example, of an organism’s genome or transcriptome.
Similarly, proteomics enable the large-scale analysis of
an organism’s proteome. These OMICs data (named
after their respective disciplines, i.e., genomics, tran-
scriptomics, or proteomics) allow to quantify biological
molecules of an organism in a holistic and comprehen-
sive way. However, it remains challenging to understand
relevant biological information from the vast amount of
data generated by OMICs technologies and this is typi-
cally achieved by the quantification of features through
computational pipelines and results in data tables con-
taining information on gene expression [12–14]. These
data are required to be further processed for identify-
ing the underlyingmolecular interactions, especially when
biological processes are distributed over multiple interact-
ing cellular components. Network analysis is a powerful
approach that identifies statistically significant interac-
tions and represents molecular components such as genes
or proteins as network nodes, interconnected by network
edges, or links. Several modelling methods for network
reconstruction exist [12, 15–21] and the outcome is a gene
regulatory network (GRN) that is a synthetic representa-
tion of biological processes. The GRN can then be used for
network interrogation, i.e., to predict biological functions
in relation to the state of its network components [12].
The ability to infer not only GRNs nodes’ connectivity
but also causality, represented by arrows (directed links)
in network diagrams, is fundamental for network interro-
gation via forward simulations. Causality informs on the
effect, direct or mediated by intermediates, of one node
onto another. It also determines if a node is upstream or
downstream in the cascade of events following a perturba-
tion [15]. Forward simulations based on directed network
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diagrams allow to quantitatively determine the state of
GRNs, and its associated biological function, as well as
to predict its behaviour following perturbations of the
network nodes [22–28].

Steady-state signalling simulations
Different methods exist to perform simulations of GRNs
that require a differently detailed description of the sig-
nalling interaction between network components, from
highly detailed methods based on mass-action kinetics
[22, 23, 29–32] to qualitative Boolean models [33, 34].
A knowledge-based computational framework for sim-

ulating biological networks has been developed that uses
the assumption of steady-state between network com-
ponents [24, 25]. The method only requires information
on the nodes connectivity to make quantitative predic-
tions on the network state and sensitivity to perturbations
[26–28]. Steady-state simulations are commonly used
in systems biology to perform forward simulations of
directed networks in order to predict the behaviour of
a network and its associated biological functions. Typi-
cal applications involve simulation of cellular signalling
in complex diseases to study the effect of genetic dys-
functions such as gene mutations [26–28, 33], knock-
out/knockdown [24, 25], or the (combined) effect of ther-
apeutic inhibitors [22, 23, 26, 28, 31, 32].
The computational tools used for forward simulations

can also be employed for reverse simulations, i.e., to per-
form reverse engineering of experimental data [35] via
e.g., Monte Carlo or Bayesian methods, where different
combinations of model parameters are tested in their
ability to reproduce the data observed experimentally
[36]. However, this has not been applied to environmen-
tal microbiology data that often lack a detailed descrip-
tion of the underlying molecular interactions. In this
case, reverse engineering can be achieved using steady-
state forward simulations at the core of an inference
model because they allow to integrate data of limited
description details with standard parametrization and yet
to provide a semi-quantitative analysis. This is in con-
trast to detailed models (e.g., mass-action models) that
would require unavailable experimental information such
as microscopic kinetic constants of the biochemical reac-
tions; and also to Boolean models that provide a qual-
itative analysis and consequently cannot be compared
to OMICs data in order to reverse engineer them into
network diagrams.

Approximate Bayesian computation
Approximate Bayesian computation (ABC) applies
Bayesian inference without requiring an analytic expres-
sion of a likelihood function (as, for example, in Markov
Chain Monte Carlo (MCMC) methods), which is typically
limiting in complex systems. Instead, ABC approximates

the likelihood function by using a model to simulate
data in-silico by sampling model parameter values from
a prior distribution. Simulated data are compared to
experimentally measured data, also called observed data,
through the Bayesian theorem and summary statistics,
which represent the data with the maximum amount of
information in the simplest possible form [36]. Based on a
rejection algorithm, simulated data that are within a dis-
tance similarity range to observed data (e.g., by Euclidean
distance) are retained to calculate the posterior proba-
bility distribution. The posterior probability distribution
provides an estimate of the model parameters that best
represent the observed data. This method could be
applied to undirected networks and used to infer network
causality, i.e., estimating the direction of network links,
and therefore, obtaining directed networks that can be
used for several modelling approaches in order to per-
form forward simulations of specific biological functions
relevant in biotechnology applications.
In this study, we performed transcriptomics and pro-

teomics experiments to identify genes and proteins
involved in the formation of multispecies bacterial com-
munity interactions involved in bioleaching. We further
used a steady-state forward simulation framework that
relies on Hill-type interactions between molecular com-
ponents using a standard parametrization that does not
require the measurement of dynamic quantities under-
lying biochemical interactions, and use it as the core
algorithm in ABC in order to infer causality in the GRNs
of the bioleaching bacterial community.

Methods
Experimental methods
Microbial species cultivation
Three bacterial acidophile species were used in this
study, L. ferriphilum DSM 14647T, S. thermosulfidooxi-
dans DSM 9293T, and A. caldus DSM 8584T. Prior to
the bioleaching experiments, cells were maintained at
38°C in three separate axenic continuous cultures, main-
taining the cells in the exponential growth state until
inoculation. The continuous culture vessels (1 L working
volume) contained Mackintosh basal salt (MAC) medium
[37] and electron donor added in the form of 100 mM
ferrous sulfate (L. ferriphilum, pH 1.4) or 5 mM potas-
sium tetrathionate (S. thermosulfidooxidans, pH 2.3 and
A. caldus, pH 2.0) adjusted to the designated pH values by
addition of sulfuric acid. The continuous culture vessels,
all tubing and MAC medium were autoclaved while the
ferrous sulfate and potassium tetrathionate were sterile
filtered (0.2 μm pore size, cellulose acetate filter, PALL).
Chalcopyrite mineral concentrate was provided by Boli-
den AB (Sweden) and originated from the Aitik copper
mine (N 67°4’ 24”, E 20°57’ 51”). Prior to the experiment,
chalcopyrite was sterilized as described in reference [38].
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Bioleaching experiments were also conducted and ana-
lyzed as previously described [38]. In brief, quadruplets
of 100 mL MAC medium (adjusted to pH 1.8 by addi-
tion of sulfuric acid) were supplemented with 2% (wt/vol)
chalcopyrite concentrate and inoculated with combina-
tions of the three bacterial species (107 cells per mL per
species), obtained by centrifugation from the continuous
cultures (12,500 x g, 20 min) followed by cell counting
using a Neubauer improved counting chamber. Cultures
were incubated at 38 ±2°C under slow shaking (120 rpm).
Bioleaching experiments were terminated 14 days after
the first onset of microbial oxidation of ferrous iron as
indicated by a redox potential >400 mV vs. Ag/AgCl,
resulting in total incubation times ranging from 14 to 20
days, after which the RNA and proteins were extracted.

RNA and protein extraction
For biomolecular extractions, the flasks were left to set-
tle for 5 min. 75 mL supernatant was then mixed with
an equal volume of sterile, ice-cold MAC medium. The
sample was centrifuged at 12,500 x g for 20 min at 4°C.
The resulting cell pellet was washed twice by resuspend-
ing in sterile, ice-cold MAC, and then flash frozen in
liquid nitrogen. Cell pellets were used for biomolecular
extractions according to a previously published method
[39], skipping the metabolite extraction step. A total of 30
RNA samples were then shipped on dry ice to the Science
for Life Laboratory (Stockholm, Sweden) for sequencing,
while the precipitated protein fraction of 44 samples was
analyzed by mass spectrometry (data are available from
the Fairdomhub repository at https://doi.org/10.15490/
fairdomhub.1.investigation.286.1).

RNA sequencing and transcript analysis
RNA sequencing and analysis of the resulting reads
was performed analogously to reference [38]. In short,
rRNA depletion and libraries were prepared with the
Illumina TruSeq Stranded mRNA kit before reads with
an average length of 126 bases were generated on an
Illumina HiSeq 2500 instrument. Raw reads were fil-
tered with Trimmomatic v0.32 [40] and aligned to a
concatenation of the three reference genomes (A. caldus
DSM8584: GCF_000175575.2; S. thermosulfidooxidans
DSM9293: GCF_900176145.1; L. ferriphilumDSM14647:
GCF_900198525.1) with Bowtie-2 v2.3.2 [41]. Reads map-
ping to protein coding sequences were then counted with
the FeatureCounts program of the subread package v1.5.1
[42]. The resulting read counts were converted to tran-
scripts per million (TPM) separately for each of the three
reference genomes to reflect relative gene expression per
organism. A similar approach was pursued for intersam-
ple comparisons where read counts were normalized per
reference genome [43] with DESeq2 v1.16.1 [44] and com-
pared accordingly to obtain log 2-fold changes (Log2FC).

Proteomics and protein identification
Five different protein extracts from continuous and three
from batch cultures were precipitated in acetone, then
dried and dissolved by vortexing in 20 μL of 6 M urea –
2 M thiourea. Cysteines were reduced by incubation with
1 μL 1 M dithiothreitol for 30 min at room temperature,
and then alkylated with 1 μL 550 mM iodoacetamide for
20 min in the dark. Afterwards, proteins were digested
with lysyl endopeptidase (Wako) at a protease/protein
ratio of 1:100 at room temperature for 3 h. Urea was
diluted to 2 M with 50 mM ammonium bicarbonate for
further trypsin digestion (sequencing grade; Promega) at
a protease/protein ratio of 1:100 at room temperature for
12 h. Peptides were loaded onto stop-and-go extraction
(STAGE) tips for storage, eluted from the tips, and shortly
after analyzed by mass spectrometry [45].
Mass spectrometry for continuous-culture samples was

performed by using an EASY-nLC 1000 liquid chromatog-
raphy (LC) system (Thermo Scientific) and a Q-Exactive
HF mass spectrometer (Thermo Scientific), as previously
reported [46]. Mass spectra were recorded with Xcalibur
software 3.1.66.10 (Thermo Scientific). Mass spectrome-
try for mineral culture samples was performed by using
a nanoACQUITY gradient ultraperformance liquid chro-
matography (UPLC) pump system (Waters, Milford, MA,
USA) coupled to an LTQ Orbitrap Elite mass spectrome-
ter (Thermo Fisher Scientific Inc., Waltham, MA, USA).
An UPLC HSS T3 M-class column (1.8 μm, 75 μm by
150 mm; Waters, Milford, MA, USA) and an UPLC Sym-
metry C 18 trapping column (5 μm, 180 μm by 20 mm;
Waters, Milford, MA, USA) were used in combination
with a PicoTip emitter (SilicaTip, 10 μm internal diameter
[i.d.]; New Objective, Woburn, MA, USA) for LC. Pep-
tide elution was performed by using a linear gradient with
increasing concentrations of buffer B (0.1% formic acid
in acetonitrile [ULC/MS grade]; Biosolve, Netherlands)
from 1% to 95% over 166.5 min, followed by a linear gra-
dient from 1% acetonitrile within 13.5 min (1% buffer B
from 0 to 10 min, 5% buffer B from 10 to 161 min, 40%
buffer B from 161 to 161.5 min, 85% buffer B from 161.5
to 166.5 min, 95% buffer B from 166.5 to 167.1 min, and
1% buffer B from 167.1 to 180 min) using a flow rate of
400 nL min−1 and a spray voltage of 1.5 to 1.8 kV. 2%
buffer B was used to re-equilibrate the column for 15 min.
The analytical column oven was heated to 55°C and the
desolvation capillary to 275°C. The LTQ Orbitrap Elite
instrument was operated according to instrument method
files of Xcalibur (Rev.2.1.0) in the positive-ion mode. Lin-
ear ion trap and Orbitrap instruments were operated in
parallel such that during a full MS scan on the Orbi-
trap instrument (in the range of 150 to 2000 m/z at a
resolution of 60,000), tandem MS (MS/MS) spectra of
the ten most intense precursors were detected in the ion
trap from the most intense to the least intense using a

https://doi.org/10.15490/fairdomhub.1.investigation.286.1
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relative collision energy for rapid collision-induced disso-
ciation (rCID) of 35%. Mass spectra were recorded using a
dynamic exclusion threshold with a repeat count of 1 and
a 45-s exclusion duration window, such that ions with sin-
gle or unknown charge were discarded for MS/MS, and
subsequently processed with Xcalibur software 2.2 SP1.48
(Thermo Scientific).
Proteins from both continuous and mineral cultures

were identified with Andromeda [47] and quantified with
the label-free protein quantifications (LFQ) algorithm [48]
included in the MaxQuant version 1.5.3.175 [46]. The
FASTA protein database for identification was taken from
the three reference genomes (see above). Perseus (v1.5.8.5)
[49] was used for filtering and comparing of the normal-
ized LFQ intensities. Rows with fewer than two values
in either mineral or continuous cultures conditions were
removed. The two conditions were then compared with
two-sample Welch’s t test.

Data analysis
Inference of undirected networks from transcriptomics and
proteomics data
Correlation analysis was applied to the normalized tran-
scriptomics and proteomics datasets, after filtering for
genes that were differentially regulated with an associ-
ated P-value ≤ 0.05, using the R function cor() and the
Pearson method in order to identify the links between
nodes of the network. Unthresholded TPM and LFQ were
used instead of Log2FC values in order to also allow
links to be inferred between nodes representing genes
in different bacterial species (interspecies links), in addi-
tion to intraspecies links. Partial correlation using the
cor2pcor() R function from the corpcor package [50] was
further used to discriminate between direct and indi-
rect links identified by correlation analysis according to
a described procedure [12, 16]. A stringent Pearson cor-
relation threshold of R ≥ 0.99 was used for attribut-
ing a link between two nodes, for both correlation and
partial correlation. A more loose threshold increased
the size of an undirected network by introducing more
intermediates between interacting nodes, but conserved
the connections between them (see Additional file 1:
Figure S1).

Inference of directed networks from transcriptomics and
proteomics undirected networks
For each of the GRNs analyzed in this study, an undirected
network was used as reference for the nodes’ connectivity
to create a set of directed networks that exhaustively cov-
ered all possible link directions. The number of directed
networks is 2L, where L is the number of links. A computer
simulation of each directed network was performed and
in-silico generated data were compared to transcriptomics
and proteomics data obtained experimentally. Computer

simulations were performed by sampling each directed
network accounting for an exhaustive combination of per-
turbations in the nodes activities. Each network simulated
under a perturbation scheme was represented as a vec-
tor of normalized sensitivity values for each node, used
as ABC’s summary statistics, and compared by Euclidean
distance to a vector of normalized, scale-free Log2FC val-
ues determined experimentally from transcriptomics and
proteomics for the genes corresponding to the simulated
network nodes.
Simulations were compared to different experimental

datasets differing in the composition of the bacterial cul-
tures. Experimental perturbations were caused by the
presence of other bacterial strains (mixed cultures) with
respect to cultures grown with individual species (axenic
growth of either L. ferriphilum or S. thermosulfidooxi-
dans cultivated alone). Mixed cultures were composed of
(i) L. ferriphilum and S. thermosulfidooxidans and (ii) L.
ferriphilum, S. thermosulfidooxidans, and A. caldus.

Steady-state computer simulations
The simulations used in this study rely on the com-
putational method developed previously [24, 25] (the
simulation program source code implemented in C++
and supported for Unix/Linux systems is available
from the Fairdomhub repository at https://doi.org/
10.15490/fairdomhub.1.investigation.286.1). GRNs were
constructed as interaction diagrams composed of nodes
and links. The nodes represent genes as a set of ordinary
differential equations (ODEs) whose activity is modulated
by the interaction of other genes in the network. Net-
work links represent positive (Eq. 1) and negative (Eq. 2)
interactions between the nodes, modelled according to an
empirical Hill-type transfer function:

Act(X −→ Y ;α, γ , η) = α
Xη

Xη + γ η
(1)

Inh(X ��� Y ;α, γ , η) = α
γ η

Xη + γ η
(2)

where the Hill-exponent η is an empirical parameter
widely used to quantify nonlinear signal processing [51–
54]. Parameters γ and α determine a threshold of activa-
tion along the abscissa and a multiplicative scaling factor,
respectively. Eq. 1 indicates the positive effect (activation)
exerted by a source nodeX onto a target node Y (indicated
by the arrow −→), while negative interactions (inhibition)
are represented by Eq. 2 (indicated by the arrow ���) as
in Figs. 1, 2, and 3. The ODEs system that describes the
GRNs evolves in time according to Eq. 3.

⎧
⎨

⎩

dX/dt = −δXX + (βX + ∑
i Acti) · �jInhj

dY/dt = −δYY + (βY + ∑
i Acti) · �jInhj

· · ·
(3)

https://doi.org/10.15490/fairdomhub.1.investigation.286.1
https://doi.org/10.15490/fairdomhub.1.investigation.286.1
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Fig. 1 RNA cluster 1’s directed GRN estimated by ABC of computer simulations compared to different observed datasets. a Axenic cultures of L.
ferriphilum or S. thermosulfidooxidans compared to their mixed culture, b axenic cultures of L. ferriphilum or S. thermosulfidooxidans compared to
their mixed culture also containing A. caldus. Green and purple nodes represent genes belonging to L. ferriphilum and S. thermosulfidooxidans,
respectively. Links with continuous (−→) and dashed (���) lines represent activation and inhibition interactions, respectively

where every node (X,Y , ...) in the model is parametrized
by the parameters β and δ and every link by α, γ, and
η. The parameter β accounts for the independent activ-
ity as a zero-order term added to each ODE, and δ for the
decay of the biological species as a first-order decay term
subtracted to the ODEs. When multiple links point to a
single node, activation functions are added to each other
while inhibition functions are multiplied by the current
level of activity (see references [55, 56]). The simulation
of a directed network yields the steady-state activity lev-
els of the different nodes. The steady-state of the ODEs

system corresponding to the simulated network was cal-
culated numerically using the GSL library [57] (by use of
gsl_odeiv2_step_rk4, which employs the explicit 4th order
Runge-Kutta algorithm), although this does not exclude
that multiple steady-states might be present under certain
parameter combinations.
The simulations used to reverse engineer the OMICs

data were performed according to the coarse-grained
method described in references [26–28]. For each directed
network in the set derived from an undirected net-
work, a simulation was performed that accounted for a

Fig. 2 RNA cluster 2’s directed GRN estimated by ABC of computer simulations compared to different observed datasets. a Axenic cultures of L.
ferriphilum or S. thermosulfidooxidans compared to their mixed culture, b axenic cultures of L. ferriphilum or S. thermosulfidooxidans compared to
their mixed culture also containing A. caldus. Green and purple nodes represent genes belonging to L. ferriphilum and S. thermosulfidooxidans,
respectively. Links with continuous (−→) and dashed (���) lines represent activation and inhibition interactions, respectively
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Fig. 3 Protein cluster’s directed GRN estimated by ABC of computer simulations compared to the dataset obtained from axenic cellular cultures.
Axenic cultures of L. ferriphilum compared to mixed cultures also containing S. thermosulfidooxidans. Links with continuous (−→) lines represent
activating interactions

perturbation in the activity of its nodes by increasing
the nodes’ independent activity by a factor of 10 (β =
0.01 → 0.1). This value is in the order of magnitude
of the gene expression variation observed in our RNAseq
and proteomics data, and roughly corresponds to the
effect of genetic perturbations observed in other contexts
[58, 59]. The other parameters of the model were set
to unity.
This variation scheme was calculated for all combina-

tions of the nodes in a directed network, in order to
simulate the response to external perturbations, which
may alter the activity of any combination of the genes.
This was further applied to every directed network in
the set derived from the undirected network of interest.
In order to compare the in-silico generated data by the
directed networks with the experimental dataset, sensitiv-
ity analysis was used as summary statistics for simulated
data and compared to Log2FC values determined by tran-
scriptomics or proteomics.

Sensitivity analysis used as summary statistics for ABC
In order to compare data generated in-silico with data
obtained experimentally, sensitivity values were used as
summary statistics in simulated data according to Eq. 4.

εYφ = ∂[ ln(Y )]
∂[ ln(φ)]

= φ

Y
· ∂Y

∂φ
≈ �[ ln(Y )]

�[ ln(φ)]
= ln(Yi/Yj)

ln(φi/φj)

(4)

where the sensitivity εYφ is represented as a function of the
input parameter set φ and of the output variable Y. Eq. 4
expresses the relative change of activity in the nodes as a
function of varying parameter sets. Two conditions (i and
j) are evaluated at each step of the computational proce-
dure according to the right-hand approximation. Applied
to GRNs, the conditions were represented by vectors of
steady-state values (Yi and Yj) that correspond to the
nodes’ activities and are determined by the parameter sets
(φi and φj).
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Sensitivity values were calculated combinatorially over
all possible network states, for each pair of conditions i
and j that account for a change in node’s independent
activity as described in Eq. 5.

ε
SS(Ni)β(Nj)=low → SS(Ni)β(Nj)=high

β(Nj)=low → β(Nj)=high =
ln

{SS(Ni)β(Nj)=high

SS(Ni)β(Nj)=low

}

ln
{

β(Nj) = high
β(Nj) = low

}

(5)

where SS(N) denotes the steady-state activity of a node N
and β(N) its independent activity state. The arrow (→)
indicates a change in condition.
A vector of sensitivity values (of size of the number of

network nodes n) is calculated according to Eq. 5, scaled
to a range of values ≤ 1, and compared by Euclidean dis-
tance to the vector of Log2FC measured experimentally
and similarly scaled to values ≤ 1 [60].

ABC sampling and rejection scheme
ABC is based on the Bayesian theorem of the conditional
probability of model parameters (Θ) by knowing observed
data (D) in relation to the probability of the data knowing
the parameters. This is summarized in Eq. 6.

P(Θ | D) = P(Θ ∩ D)

P(D)
= P(D | Θ) · P(Θ)

P(D)
(6)

where P(Θ | D) is the posterior probability of the model
parameters given the observed data, P(Θ) the prior prob-
ability for the parameters, P(D) the marginal likelihood
(i.e., evidence, acting as a normalizing constant for P(Θ)),
and P(D | Θ) is the likelihood.
ABC is carried out by sampling from the prior distribu-

tion of model parameters, which allows the calculation of
the posterior distribution through updates based on the
observed data. Knowledge of model parameters can be
included in the prior distribution, which represents the
beliefs about the model parameters before the data are
observed. If no information is available a priori for model
parameters, a uniform prior distribution is used [36, 61].
Uniform prior distributions were chosen to define the
directionality of the network links. Therefore, the causal-
ity of network links was fully determined by ABC based on
the steady-state simulation model and no bias was intro-
duced relying on previous knowledge of interacting genes.
The rejection scheme used for calculating the posterior
distribution of the link directionality was determined by
thresholding the Euclidean distance between observed
data and the data from simulated networks. A threshold
was set such that only the top simulated data (< 0.1%
of the whole simulated dataset, ranked by Euclidean dis-
tance) best matching with observed data was considered.

From the directed networks employed by the steady-state
simulation model to generate the top simulated data, the
proportion of links pointing in either directions was used
to calculate the posterior distribution.

Results and discussion
Validation on single-cell literature data
To our knowledge, no single-cell data on bioleaching
bacteria are currently available with such an accurate
description of the underlying molecular interactions as
in reference [15]. We therefore used this well-described
molecular interaction system to test our causal link
assignment method. The molecular system described
in the PKC-PKA-MAPK-AKT signalling cascade has
been studied extensively and therefore constitutes a solid
ground truth for the validation of computational meth-
ods. Briefly, the data were collected by multicolor flow
cytometry in order to observe multiple signalling proteins
labelled with fluorescent antibodies. This allowed the
simultaneous observation of the expression state of sig-
nalling pathway components in thousands of single cells.
Single-cell data were further analyzed with a machine
learning method based on Bayesian networks to elucidate
the causal links between the measured signalling pathway
components.
Our approach reverse engineered OMICs data from

averaged cell populations (e.g., RNA transcript sequenc-
ing (RNAseq) and mass spectrometry protein data). We
therefore condensed single-cell data of the published
study data set corresponding to the experiments carried
out without external perturbations (file “1.cd3cd28.csv”,
consisting of 11 measured signalling proteins, and 852
observations) into average values for each of the measured
signalling components, i.e., a vector of 11 elements cor-
responding to the signalling proteins, and challenged our
computational method to infer correct link directionality
from the undirected network of the published study. Our
method successfully reproduced most of the published
findings despite the information loss due to averaging
single-cell data (see Table 1 compared with Fig. 3 A in
article [15]).
The posterior probability of a link pointing in the indi-

cated direction in Table 1 is represented as a percentage
fraction calculated from the top simulated data (< 0.1%
of the whole simulated dataset) best matching with the
observed averaged data in reference [15]. A link point-
ing in a direction in 50% of the top directed networks
indicates that our method was unable to discern the
causality based on the data (the method predicts for-
ward and reverse link direction with equal probability).
The more the posterior probability deviates from 50%
the more robust is the prediction of the link pointing in
the indicated (> 50%) or opposite (< 50%) direction in
Table 1.
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Table 1 Comparison of the methodology applied to single-cell
data [15] and our method on averaged data

Signalling Posterior Correctness Agreement
interaction probability (%) with [15]

PLC → PIP2 25.5 n n

PLC → PIP3 28.1 y n

PIP3 → PIP2 58.7 y y

PIP3 → AKT 35.4 n y

ERK → AKT 70.8 y y *

PKC → JNK 100 y y

PKC → P38 100 y y

PKC → PKA 0 n n *

PKC → RAF 50.9 y y

PKC → MEK 89.9 y y

PKA → JNK 100 y y

PKA → P38 100 y y

PKA → RAF 100 y y

PKA → MEK 100 y y

PKA → ERK 100 y y

PKA → AKT 100 y y

RAF → MEK 48.3 n n

MEK → ERK 87.5 y y

PLC → PKC 95.6 y y

PIP2 → PKC 57.3 y n

Signalling interactions are represented by the molecular components of the
signaling cascades detailed in reference [15]
*Inferred as novel in reference [15]

For example, in agreement with the method of reference
[15], the PKC–P38 interaction was strongly predicted by
our method to point in the indicated direction (PKC →
P38). In fact, the top < 0.1% simulated data that best
matches with observed data, was generated by simulat-
ing directed networks which all had that link pointing as
PKC → P38. In other words, this single link set to point
in the opposite direction, would be sufficient to cause
disagreement between simulations and observed data. In
contrast, the PKC → PKA link has a posterior probability
evaluated at 0% indicating that our method strongly pre-
dicted the opposite directionality (PKC ← PKA), and is
in disagreement with the published method [15]. Of note,
the PKC–PKA link was identified as novel by the method-
ology presented in reference [15] and its inferred direction
could not be clearly established [62]. More recent work
also suggests complex interactions between PKA and PKC
supporting a causality that depends on the different condi-
tions the system is subject to [63]. These results prove that
our proposed method was capable of assigning causality
to undirected networks from averaged data with compa-
rable accuracy as when employing an established method

that use single-cell data.We therefore applied this method
to our bioleaching OMICs data.

Undirected network reconstruction from transcriptomics
and proteomics data
In order to identify interspecies connections between
genes involved in bioleaching, RNAseq gene transcript
data of mixed cultures of L. ferriphilum, S. thermosulfi-
dooxidans, and A. caldus were used to infer undirected
GRNs (Additional file 1: Figure S2). The same procedure
was applied to proteomics data to build undirected GRNs
based on protein levels (Additional file 1: Figure S1). Two
RNA (“RNA cluster” 1 and 2) and one proteomics (“protein
cluster”) standalone undirected subnetworks of interest
for biomining applications were selected based on their
components involved in bioleaching. These sub-networks
were composed of ≤16 nodes and ≤21 links, and were
used to estimate the link causality by ABC (see the encir-
cled undirected GRNs in Additional file 1: Figure S1A
and S2).

Reconstruction of directed networks from transcriptomics
and proteomics undirected networks
RNA- and proteomics-based small undirected GRNs
(RNA clusters 1 and 2 and the protein cluster) were used
to generate an exhaustive set of directed networks with
every possible link direction. Sampling this set by sim-
ulating each directed network allowed to select a subset
of networks whose simulation outcome was close to the
experimental data.

RNA cluster 1 RNA cluster 1 was chosen from the
set of undirected networks based on its computationally
tractable size (10 nodes, 12 links), and the genes involved
in bioleaching from both L. ferriphilum and S. ther-
mosulfidooxidans that suggested potential interspecies
cross-talk pathways. RNA cluster 1 comprised genes cod-
ing for transport of heavy metals in L. ferriphilum (e.g.,
LFTS_02048) plus S. thermosulfidooxidans genes involved
in energy production (e.g., Sulth_1964). It also included
genes involved in DNA repair and for membrane pro-
teins that represent potential interest for the control of the
bioleaching process.
The link directionality of RNA cluster 1 was estimated

by ABC by comparing simulations to the experimen-
tal datasets. Link directionality was predicted to be the
same independently of the experimental datasets used as
a reference for ABC. However, the posterior probabil-
ity for the network links was slightly different (Fig. 1).
The accuracy of the methodology was evaluated using the
Euclidean distance of simulated data to the observed ones,
although it scales proportionally to the network size, mak-
ing it difficult to compare the accuracy across different
GRNs.
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The simulations best matched the data obtained
from the cultures of L. ferriphilum or S. thermosulfi-
dooxidans cultivated alone compared to co-cultivation,
i.e., the experimentally applied perturbation consisted
of the presence of the other species in the culture
(Fig. 1a). The Euclidean distance range of simula-
tions to experimental data was [ 0.938912 − 2.46159]
and the threshold for including a directed network
in the posterior distribution set was a distance of
0.940989 that corresponded to a fraction of 0.0023%
of the whole set derived from the undirected network
model of RNA cluster 1 (488 simulated networks out
of 20,971,520).
Similar results were obtained when simulated data were

compared to axenic cultures of L. ferriphilum or S. ther-
mosulfidooxidanswith respect to theirmixed cultures that
also included A. caldus (Fig. 1b). Here, the simulation dis-
tance range was of [ 0.985189 − 2.36296] to experimental
data, the threshold for including a directed network in the
posterior distribution set was of 0.986991, corresponding
to 0.0039% of the whole set derived from the undirected
network model of RNA cluster 1 (812 simulated networks
out of 20,971,520).
The similar prediction of link directionality and pos-

terior probability estimated by ABC independent of the
experimental datasets used as reference, supported the
strength of the data and suggested that RNA clus-
ter 1 represented an invariant set of gene interactions,
constitutively active for bioleaching. While some causal
links were predicted with a posterior probability esti-
mate near 50%, indicating a weakly reliable estimate
of a link direction based on the observed data (e.g.,
LFTS_01305 – Sulth_0214), others were estimated with
stronger confidence (e.g., Sulth_3383 – LFTS_01608).
In all cases, the heptosyltransferase-1 LFTS_01305 of
L. ferriphilum involved in cell wall and membrane bio-
genesis was connected to the CusF copper and sil-
ver efflux protein LFTS_02048. This was potentially
due to cell membrane changes required for metal
efflux, via a S. thermosulfidooxidans hypothetical pro-
tein, therefore providing indications on uncharacter-
ized or poorly annotated genes based on the inferred
genes connectivity. Transcripts coding for the L. fer-
riphilum metal efflux protein (LFTS_02048) had a weak
positive correlation on transcripts for the RuvA repli-
cation/repair protein LFTS_00291. This was likely due
to copper inducing Fenton-like reactions that gener-
ate oxygen radicals that in turn cause DNA damage
(reviewed in reference [64]). In addition, transcripts for
the S. thermosulfidooxidans YeaL protein (Sulth_3383)
involved in membrane lipid metabolism were also pos-
itively correlated to the CusF efflux protein poten-
tially due to lipid peroxidation caused by the copper
ions [65].

RNA cluster 2 A second, larger cluster containing 11
nodes and 17 links was selected from the transcriptomics
dataset based on similar criteria as for RNA cluster 1.
Genes of potential relevance for multispecies bioleach-
ing that were included in RNA cluster 2 comprised
examples involved in energy production/conversion
(Sulth_2142), in transport and trafficking (Sulth_1714,
Sulth_1284, Sulth_0766), as well as in metabolic func-
tions potentially involved in proton consuming reac-
tions (LFTS_02429) and RNA interference mechanisms
(LFTS_01284).
In general, the agreement between simulated data of

RNA cluster 2 and the corresponding observed data
appeared weaker compared to RNA cluster 1. Although
the Euclidean distance scales with the network size, the
overall Euclidean distance range between simulations of
RNA cluster 1 and 2 compared to observed data of all
experimental conditions was of [ 0.938912− 2.36296] and
[ 4.48968 − 6.84644], respectively.
Unlike RNA cluster 1, reconstruction of RNA cluster 2

showed a different link directionality depending on the
experimental data it was compared to. Certain links were
predicted to have an opposite causality depending on the
experimental conditions. This was partly due that several
links had a predicted posterior probability close to 50%.
This indicated that based on the available data, the ABC
method was incapable of reliably attributing a link direc-
tion. It also suggested that those genes interconnected
by links with close to 50% predicted causality were part
of complexes that are co-regulated in concert by a com-
mon factor, as supported by the dense interconnections
that characterize the subclusters in the left and right side
of RNA cluster 2. Interestingly, few genes that were pre-
dicted to have a different causality depending on different
experimental conditions, were connected by links of a
posterior probability higher than 50% (e.g., LFTS_01284
– Sulth_0766, Sulth_2056 – Sulth_1284, LFTS_01584 –
LFTS_02429).
Simulations of RNA cluster 2 best matched experimen-

tal data from the axenic cellular cultures containing L.
ferriphilum or S. thermosulfidooxidans alone when com-
pared to their mixed cultures (Fig. 2a). The Euclidean
distance range to experimental data was of [ 5.20429 −
6.45444] with an inclusion threshold for calculating
the posterior distribution of 5.20431, corresponding to
0.00667% of the whole set derived from the undirected
network model of RNA cluster 2 (6692 simulated net-
works out of 100,302,120).
The comparison of simulations to data of axenic cul-

tures of L. ferriphilum or S. thermosulfidooxidans with
respect to their mixed cultures that also included A. cal-
dus was at a similar distance range of [ 5.53356− 6.84644]
(Fig. 2b). Here, a threshold of 5.53358 implied a set of best
matching networks of 0.0163% used for computing the
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posterior probability of link causality (16,384 simulated
networks out of 100,302,120).
The different link directions in RNA cluster 2 depended

on the experimental data the simulations were compared
to. This suggested a dynamic regulation of the GRN
depending on the presence of A. caldus in the mixed cul-
ture. For instance, RNA transcripts coding for the L. fer-
riphilum mazF mRNA interferase (LFTS_01284) strongly
negatively correlated to the S. thermosulfidooxidans fer-
ric uptake regulator (Fur; Sulth_0766) in axenic cultures
of L. ferriphilum and S. thermosulfidooxidans compared
to a mixed culture of the two species. In contrast, RNA
transcripts for the S. thermosulfidooxidans Fur protein
had a 100% negative correlation to L. ferriphilum MazF
when the two species were in mixed culture also contain-
ing A. caldus. MazF is part of the MazEF suicide module
involved in cell death due to e.g., DNA damage and oxida-
tive stress [66]. The negative correlations between the Fur
protein and a response to stress could be related to Fur
being required when the ferric iron concentration was low
and therefore, the stress response is not needed and vice
versa. A second example of differently correlated RNA
transcripts was for the L. ferriphilum TIGR00255 protein
(LFTS_01584) that was positively or negatively correlated
to RNA transcripts for several proteins dependent on the
growth conditions or species present. However, the bio-
logical relevance of this correlation could not be discerned
as the function of LFTS_01584 is unknown.

Protein cluster Due to a different efficiency between
RNA and protein purification or to the fact that RNA
transcript numbers do not always correlate to protein lev-
els [67], it was not possible to find a network composed
of the same differentially regulated genes and proteins in
the respective datasets. Therefore, a protein cluster (16
nodes, 21 links) was chosen from the undirected network
set reconstructed from the proteomics dataset. Differ-
ently from RNA clusters 1 and 2, it only included proteins
involved in bioleaching from L. ferriphilum. This was due
to the reduced number of proteins detected in the dataset
and consequent limited number of GRNs derived in the
undirected network set (Additional file 1: Figure S1). A
single experimental dataset was available to be compared
to simulated data. The protein cluster (Fig. 3) showed
many L. ferriphilum genes interacting when axenic cul-
tures of L. ferriphilum were compared to a mixed culture
of L. ferriphilum and S. thermosulfidooxidans. The genes
were coding for energy production (e.g., LFTS_00068),
stress (e.g., LFTS_00850), translation (e.g., LFTS_01666),
and cell attachment to the mineral (LFTS_02336) with
positive correlations to each other.
The simulation distance range was of [ 9.60636 −

10.7846] with an inclusion threshold for posterior distri-
bution calculation of 9.608 consisting of 0.0075%of the

whole simulation set (82,781,763 simulated networks out
of 1,099,511,627,776). The method could estimate causal-
ity of several network links with a posterior probability
close to 100% indicating the relationships between pro-
teins involved in bioleaching and intraspecies interactions
of L. ferriphilum when grown in the presence of S. ther-
mosulfidooxidans.

Potential and limitations
Bayesian methods such as ABC with steady-state com-
puter simulations at its core can be used in combination
with correlations analysis to reverse engineer GRNs for
which poor knowledge is available on the individual com-
ponents. Steady-state models are well-suited because they
require minimal information to set up a model. They only
require information on the connections between the net-
work nodes as for Boolean models, although they assume
continuous regulation between the nodes [24, 27, 28].
Moreover, if experimental biological knowledge is avail-
able (e.g., kinetic parameters of interacting proteins), it
can easily be integrated in the steady-state model [26] and
the simulation procedure restricted to the relevant param-
eter ranges through the prior parameter distribution.
Importantly, the proposed approach only requires

data generated from standard OMICs methods such
as RNAseq and proteomics, as opposed to highly
multi-dimensional data including multiple perturbations
[17, 68, 69] or single-cell measurements [15, 70]. While
the limited information contained in the datasets used
in the present work typically allows only to reverse engi-
neer undirected GRNs, ABC combined with steady-state
model simulations allows to estimate causalities between
network components and obtain directed GRNs.
The computational requirements of the presented

method increase exponentially with the size of the pro-
cessed network. This is due to the fact that, as a proof
of principle in the current study, a set of directed net-
works was derived from an undirected network such that
exhaustive sampling in the link directionality space was
covered (2L, L being the number of links in the network),
i.e., 20,971,520, 100,302,120 and 1,099,511,627,776 simu-
lated networks for RNA clusters 1 and 2 and the protein
cluster, respectively. However, this can be addressed by
applying alternative random sampling schemes to explore
large solution spaces when dealing with larger systems,
such as Monte Carlo search [17], although the latter
approach does not guarantee to find the optimal solution,
as our exhaustive sampling did.
The proposed approach is limited to acyclic graphs,

that constitute only a fraction of the total exhaustive
space of possible directed networks [71]. This is a lim-
itation of static Bayesian models that rely on the data
used and the lack of information related to the vari-
ables evolving in time. In contrast, dynamic Bayesian
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models explicitly introduce time in experimental data
and model interpretation, combined with the inclusion
of perturbations (e.g., gene knockout), and allow to
learn causal relationships betweenmolecular components
including feedbacks, although remaining unable to resolve
all of the regulatory relationships [68, 69]. Moreover, the
effect of noise, and irregular/undersampling is difficult to
assess [72, 73].
ODE-based methods can be used as the core of machine

learning methods such as MCMC, for which an analytic
expression of a likelihood function is required, to infer
topology and kinetic parameters from dynamic OMICs
datasets [74]. However, this is sometimes limiting for
complex systems and can be replaced by a sampling
scheme using simulation models in ABC. On the other
hand, simpler Boolean models can inform on the quali-
tative behaviour of potential networks that are underly-
ing a specific biological function observed experimentally
[33, 75, 76]. However, the simplicity of Boolean models
might fail to capture complex regulatory effects.
The approach proposed in this work was able to infer

link causality without requiring dynamic data. At the same
time, the information required is comparable to the one
used to set up Boolean networks. Moreover, static mod-
els such as Bayesian network structure learning, require a
much larger number of observations than variables (n <<

p, as in single-cell experiments) in order to estimate net-
work causality [68, 69]. The strength of our method is that
it allows to infer causality on a restricted data set of aver-
aged values such as those typically obtained in OMICs
experiments like RNAseq and proteomics. Although the
undirected connectivity of the network remains to be
determined with methods such as correlation analysis
and can be inaccurate due to missing information mea-
sured [12, 16], the flux of the signal could be accurately
determined with the presented method. In addition, the
presence of intermediate components in the signalling
network, that are not detected by OMICs experiments,
does not affect the analysis dramatically as the steady-
state simulationmethod is able to cope withmissing infor-
mation on non-detected intermediates. Although hidden
confounders generally remain a potential problem in net-
work reverse engineering, it was previously shown that
consistent results could be obtained with an increase of
60% of the nodes in an analyzed network [25].
Therefore, the proposed method has the advantage

of being conceptually simple, and the drawback to be
highly computationally demanding. It is appropriate to
studying a system that lacks an in-depth description of
their molecular interactions. Unreliable gene annotation
in GRNs can mislead the interpretation based on the
causality estimated by the method. For example, in this
study, Sulth_1714 was annotated as a surface antigen pre-
sentation protein in RNA cluster 2, which is unlikely

to be correct in prokaryotic cells. This problem can be
addressed by including additional information, consider-
ing that network structure determination can improve
depending on the available information on the system
with methods such as meta-analysis, data integration,
etc. [12, 16].

Conclusions
ABC combined with steady-state simulations was used to
reverse engineer GRNs from OMICs data. The method
required averaged data typically obtained in OMICs
experiments such as RNAseq and proteomics. The
approach was first validated on data of a published study.
It was subsequently applied to RNAseq and proteomics
data of mixed bioleaching bacterial cultures. Data could
be reverse engineered into directed GRNs and causal
relationships estimated probabilistically between genes of
the same bacterial species (intraspecies interactions), as
well as between species (interspecies interactions). This
allowed to identify gene networks involved in bioleaching
and the components that mediate multispecies bacterial
community interactions. The method provides important
means to identify unknown genes of poorly described sys-
tems and their role in the context of their network of
interactions.
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