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Airway remodelling in asthma: role for mechanical 
forces
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Asthma is a chronic airway inflammatory disease with functional and structural changes, leading to bronchial hyperresponsiveness 
and airflow obstruction. Airway structural changes or airway remodelling consist of epithelial injury, goblet cell hyperplasia, 
subepithelial layer thickening, airway smooth muscle hyperplasia and angiogenesis. These changes were previously considered as 
a consequence of chronic airway inflammation. Even though inhaled corticosteroids can suppress airway inflammation, the natural 
history of asthma is still unaltered after inhaled corticosteroid treatment. As such there is increasing evidence for the role of mechanical 
forces within the asthmatic airway contributing to airway structural changes.
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INTRODUCTION

Asthma is a disease that defined by its typical clinical, 
physiological and pathological characteristics. The major 
feature of clinical history is episodic shortness of breath, cough 
and wheezing particularly at night or during exercise. The 
characteristic physiological feature of asthma is variable airway 
obstruction and its measure bronchial hyperresponsiveness. 
The main pathological findings are airway inflammation and 
structural airway changes namely airway remodelling.

Airway inflammation and asthma pathogenesis

The airway inflammation in asthma is typically eosinophilic 
and accompanied by elevation of Th2 cytokines. Eosinophils are 
a key feature of Th2 inflammation and are a useful biomarker 
in guiding treatment [1]. However, Th2 inflammation alone 
cannot explain all features of asthma. For example airway 
hyperresponsiveness and tissue remodelling are not entirely 
linked to this inflammation [2]. There are a number of asthmatic 
patients in whom anti-inflammatory therapy does not lead 
to symptom control and who are considered treatment 
resistant.  Furthermore whilst recognized to modify eosinophilic 
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inflammation, inhaled corticosteroids treatment in atopic children 
with recurrent wheezing has shown to have no effect on declining 
in lung function and the natural history of asthma [3-5]. This 
irreversible airf low obstruction has been shown to develop 
despite appropriate use of inhaled corticosteroids, as advocated by 
international disease management guidelines [6]. 

Airway remodelling in asthma
Pathological repair of the airways leads to structural changes 

that are called airway remodelling. Airway remodelling which has 
been proposed to result in lower lung function is characterised 
by subepithelial thickening from collagen deposition, epithelial 
denudation with goblet cell metaplasia, increased airway smooth 
muscle mass, angiogenesis and alterations in the extracellular 
matrix components (ECM) such as collagens, proteoglycans and 
glycoproteins throughout the airway wall [7] (Fig. 1). Structural 
remodelling of the airways has been found in children with 
recurrent wheezing regardless their atopic status [8]. It has also 
been reported that airway epithelial cells in asthmatic children 
express makers of injury, such as the epidermal growth factor 
receptor (EGFR), even in the absence of significant eosinophilic 
inflammation [9]. In paediatric severe therapy resistant asthma, it 
was shown the increased subepithelial layer thickness without the 
evidence of mucosal Th2 cytokine cell [10]. These studies suggest 
that remodelling can occur independently of Th2 inflammation.  
Furthermore, evidence of airway remodelling, such as epithelial 
layer damage, thickening of basement membrane, angiogenesis 
has been demonstrated in children as early as 4 years of age 
in asthmatic subjects [8, 11, 12]. It is thus an early feature of the 
disease and not only a marker of long standing chronic disease. 

However, the subepithelial thickening was not demonstrated in 
wheezer infants [13]. These indicate that airway thickening begins 
early in the development of asthma and may play role in the 
disease progression in some patients. 

Airway exposure to mechanical forces: what is the 
consequence?

Human airway development requires a mechanical environment 
to promote proliferation and airway elongation. The major 
structural cells of the airways (epithelial cells, fibroblasts, and 
smooth muscle cells) are responsible for these mechanical 
environments. During in utero development, mechanical stress 
results from epithelial fluid secretion to the airways, peristaltic 
movement of fluid and intermittent foetal breathing. At the time 
of birth, the mechanical environment alters suddenly as the air-
liquid interface is a novel factor contributing to the dynamic 
balance between muscle contraction, airway lumen patency 
and wall structure [14]. Airway smooth muscle contraction 
produces mechanical force from compressive stress on the airway 
epithelium, fibroblasts and smooth muscle itself. Therefore, 
abnormal mechanical loading conditions may result in altered 
cellular activations and modify the composition of ECM leading to 
fibrosis in the airways [15].

Effect of mechanical forces on the airway epithelium 
and airway remodelling  

Recent studies have shown that mechanical forces activates 
epithelial cells causing release of factors that are involved in airway 
remodelling. Savla and Waters [16] have shown that mechanical 
forces from cyclical mechanical strain and compressive stress 

Fig. 1. Airway structural changes in asthma. Panels A and B demonstrate epithelial injuries (white arrows) and increased thickness of airway smooth 
muscle (grey arrows). Panel C demonstrates subepithelial collagen deposition (red stain; black arrow). Reprinted from Al-Muhsen et al. [7], with 
permission of Elsevier.
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to human and cat airway epithelium cells inhibited epithelial 
layer repair after wounded by scraping. A model of compressive 
stress  on  differentiated normal human bronchial epithelial cells 
cultured at air-liquid interface has been shown to promote airway 
remodelling by increasing the gene expression of transforming 
growth factor (TGF)-β, endothelin-1, and plasminogen activator 
gene [17, 18], enhancing the release of profibrotic cytokines: 
TGF-β2 and endothelin [17], increasing intracellular mucin-5AC 
(MUC5AC) levels [19], increasing expression of EGFR and EGFR 
ligand [20], enhancing the production of matrix metalloproteinase 
(MMP)-2 and MMP-9 [18], YKL-40 [21], a chitinase like protein which 
was recently shown to be associated with airway remodelling 
in children as well as tissue factor, a coagulation factor that was 
shown to enhance angiogenesis [22]. Cyclical mechanical strain 
of airway epithelium cells has also been shown to increase the 
production of reactive oxygen species (ROS) [23], and to down-
regulate prostaglandin E2 synthesis (PGE2) [24]. PGE2 was found 
to inhibit fibroblast proliferation and collagen production in vitro 
[25, 26]. Comparative studies have shown that mechanical strain 
enhances DNA synthesis in rat foetal epithelial cells and fibroblasts 
when cultured in three-dimensional (3D) organotypic cultures and 
in this respect has greater influence than monolayer mechanical 
strain [27]. Mechanical injury to guinea-pig epithelial cells, co-
cultured with fibroblasts in the human amnion chamber, results 
in fibroblast differentiation to myofibroblast and the expression 
of procollagen I and III [28]. Compressive mechanical stress of 
human epithelial cell with fibroblasts has been shown to have 
a greater effect on increasing the MMP-9/tissue inhibitors of 
metalloproteinase (TIMP)-1 ratio than when epithelial cells or 
fibroblasts are cultured alone [29]. Similar effects have been seen 
on collagen production, where mechanical stress applied to 3D 
epithelial cells co-cultured with fibroblasts causes enhanced 
collagen expression more than if fibroblasts are cultured alone [30]. 
Application of 3D dynamic lateral compressive stress to foetal rat 
lungs cells in organotypic cultures has also been shown to increase 
the production of fibronectin in the culture supernatants [31]. 
These studies highlight the importance of epithelial-mesenchymal 
cross talk in airway remodelling

Effect of mechanical for forces on the airway fibroblasts 
and airway remodelling

Fibroblasts are the major cell that responds to mechanical 
signals, translating them into biological events especially in 
expression of ECM genes. As a result, fibroblasts play a pivotal role 

in tissue remodelling and wound healing [32]. Previous studies 
have highlighted the role of airway fibroblasts in the production 
of ECM in response to mechanical stress, including up-regulation 
of versican and decorin mRNA expression [33, 34], as well as up-
regulation of procollagen mRNA expression [35]. Airway fibroblasts 
from normal and asthmatic subject have been shown to respond 
to mechanical stimuli differently. Mechanical strain increased 
versican mRNA expression only asthmatic bronchial fibroblasts 
but not in normal bronchial fibroblasts [33]. In contrast, Ludwig et 
al. [34] found that mechanical strain up-regulated versican mRNA 
expression both in normal and asthmatic bronchial fibroblasts, 
but decorin was up-regulated only in asthmatic bronchial 
fibroblasts. However, these investigators reported the mRNA 
expression using northern blot analysis without showing the 
house keeping gene, so the difference in gene expression may 
have been due to the difference in RNA content [34]. Le Bellego et 
al. [33] have reported that asthmatic bronchial fibroblasts secrete 
more IL-6 than fibroblasts from normal controls after 24 hours of 
mechanical strain. A recent study has shown that mechanical strain 
promoted airway fibroblasts to secret more soluble collagen [36]. 
Furthermore, mechanical strain has been found to up-regulate IL-8 
mRNA expression and enhanced the secretion of IL-8 in culture 
supernatants in both normal and asthmatic fibroblasts [33, 36]. 
The impact of mechanical strain on fibroblast proliferation is 
controversial. Whilst Bishop et al. [37] reported an increase in foetal 
lung fibroblast cell numbers after mechanical strain, Sanchez-
Esteban et al. [38] found that mechanical strain led to both an 
increase in apoptosis and a decrease in cell proliferation. In a study 
of the effect of mechanical stress on foetal rat lung fibroblasts, it 
has been found that a 3D model promoted more DNA synthesis 
than a monolayer model [27]. Therefore, the mechanical 
conditions are essential to the cellular responses. 

Effect of mechanical forces on the airway smooth 
muscles

Mechanical strain has been reported to play a critical role 
in airway smooth muscle (ASM) proliferation and migration 
[39, 40], increase in stiffness and contractile function [41, 42], 
induction vascular endothelial growth factor (VEGF) expression 
and release [43] and ECM deposition [40]. These studies underline 
the possibility that mechanical stress to ASM participates in the 
pathogenesis of airway remodelling. 
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Mechanical forces to the airway and airway 
remodelling: is there any evidence in vivo?

Human airways are exposed to a range of mechanical forces that 
may potentially arise in several ways, such as during inspiration-
expiration, cough and bronchoconstriction from airway smooth 
muscle contraction during asthma exacerbation. The major 
structural cells of the airways (epithelial cells. fibroblasts, and smooth 
muscle cells) are responsible for these physical stimulations. Airway 
smooth muscle contraction in response to stimuli such as allergen 
produces a compressive stress on the airway epithelium, fibroblasts 
and smooth muscle itself. Previous reports have shown that tidal 
breathing produces a 4% strain of ASM and a deep inspiration causes 
a 25%–30% strain [44]. Therefore, abnormal mechanical loading to 
the airways may result in altered cellular activations and modify the 
composition of ECMs leading to airway structural changes or airway 
remodelling. Airway wall thickening as demonstrated by computed 
tomography (CT) [45] and bronchial biopsy [46] has been observed 
in patients with cough variant asthma and non-asthmatic chronic 
cough. A recent in vivo study which has shown increases in collagen 
deposition in the subepithelial layer, mucus secreting goblet cells 
and cell proliferation in both subepithelial layer and submucosal 
layer after bronchoconstriction using methacholine challenge, a 
stimulus that did not affect airway inflammation [47]. Formoterol-
budesonide, a treatment targeting both airway inflammation and 
bronchoconstriction, has been shown to decrease subepithelial 
layer thickness in asthmatic subjects as assessed by high resolution 
computed tomography (HRCT) [48] and airway biopsy [49]. 
However, bronchial hyperresponsiveness has been shown to be 
inversely related with the airway wall thickness [50, 51]. It was also 
shown that asthmatic patients who have highly variable airway 
obstruction showed less airway wall thickening, while those 
who had less variable or fixed airway obstruction exhibited more 
thickened airways [52]. Thus the thickening with deposition of the 
matrix proteins may be a protective mechanism by increasing the 
stiffness of the airways to attenuate the force from smooth muscle 
contraction [53]. 

CONCLUSIONS

Airway remodelling in asthma consists of changes in epithelial 
layer, subepithelial layer thickening from increased in deposition of 
extracellular matrix proteins such as collagen, increase in smooth 
muscle layer and angiogenesis. Several in vivo and in vitro studies 

demonstrate provide new important insights on the impact of 
mechanical forces on pathogenesis of airway remodelling in 
asthma. Apart from, anti-inflammatory treatment, drugs that 
alleviate the effect of mechanical forces on the airways such as 
anti-bronchoconstrictors may have a role in airway remodelling. 
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