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A B S T R A C T   

Background and objective: Neoadjuvant chemotherapy is a standard treatment approach for locally advanced 
breast cancer. Conventional imaging modalities, such as magnetic resonance imaging (MRI), computed tomog-
raphy (CT), and ultrasound, have been used for axillary lymph node evaluation which is crucial for treatment 
planning and prognostication. This systematic review aims to comprehensively examine the current research on 
applying machine learning algorithms for predicting positive axillary lymph nodes following neoadjuvant 
chemotherapy utilizing imaging modalities, including MRI, CT, and ultrasound. 
Methods: A systematic search was conducted across databases, including PubMed, Scopus, and Web of Science, to 
identify relevant studies published up to December 2023. Articles employing machine learning algorithms to 
predict positive axillary lymph nodes using MRI, CT, or ultrasound data after neoadjuvant chemotherapy were 
included. The review follows the preferred reporting items for systematic reviews and meta-analyses (PRISMA) 
guidelines, encompassing data extraction and quality assessment. 
Results: Seven studies were included, comprising 1502 patients. Four studies used MRI, two used CT, and one 
applied ultrasound. Two studies developed deep-learning models, while five used classic machine-learning 
models mainly based on multiple regression. Across the studies, the models showed high predictive accuracy, 
with the best-performing models combining radiomics and clinical data. 
Conclusion: This systematic review demonstrated the potential of utilizing advanced data analysis techniques, 
such as deep learning radiomics, in improving the prediction of positive axillary lymph nodes in breast cancer 
patients following neoadjuvant chemotherapy.   

1. Introduction 

With the greatest incidence rate among women, breast cancer is the 
most frequent malignant tumor worldwide [1]. For patients with clini-
cally node-positive breast cancer, the usual course of treatment is 

neoadjuvant chemotherapy (NAC) prior to surgery. It can lessen the 
amount of tumor burden and downgrade the axilla, which increases the 
likelihood of breast conservation and limits the scope of axillary surgery 
[2–4]. 

Using neoadjuvant chemotherapy has several benefits. It gives a 
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unique possibility for evaluating remedial response with the entire 
pathologic response appearing as a surrogate marker of survival and for 
an extra rapid evaluation of the efficacy of recent healing agents and 
early cessation of useless remedies. Patients can avoid toxicity and side 
effects by adjusting the dose and switching to another drug in case of 
resistance to medication. Moreover, neoadjuvant chemotherapy pro-
vides an opportunity for individualized therapy and enables the 
collection of tumor samples before, during, and after treatment for 
translational studies. This evaluation of tumor behavior in situ 
throughout neoadjuvant chemotherapy and its correlation with scien-
tific final results is a top-notch model to determine the predictive role of 
tumor characteristics [5]. Additionally, the prognosis will be improved 
for patients who experienced axillary pathologic complete response 
(pCR) following NAC [6]. 

According to earlier research, between 21.9 % and 55.1 % of patients 
with clinically positive nodes attained axillary pCR following NAC [7]. 
Axillary lymph node dissection (ALND) is not required for these patients. 
It is crucial to correctly identify patients with axillary pCR following 
NAC [8]. The axillary lymph node status prognostic value is a valuable 
tool for precisely assessing the treatment response, which is crucial for 
the management of breast cancer. Confirming pCR without operation 
has never been simple. Currently, ultrasonography is used to evaluate 
axillary LN. 

Nevertheless, the axillary ultrasound examination is insufficiently 
good. Breast MRI performed less well than ultrasound in terms of pre-
dicting axillary pCR following NAC [9,10]. Contrast-enhanced chest CT 
can display the morphology of LNs and their relationship to surrounding 
structures, such as axillary vessels. Additionally, contrast enhancement 
could be used to assess LNs’ blood supply. Currently, however, axillary 
LN response to NAC is rarely assessed by CT [11]. Furthermore, the 
results of the SENTINA and ACOSOG 1071 studies indicated that 
sentinel lymph node biopsy (SLNB) after NAC had a false negative rate of 
greater than 10 % for patients with unselected breast cancer [9, 12–15]. 

To predict axillary pCR, axillary treatment response evaluation needs 
to be upgraded. Machine learning developments have made it easier to 
answer challenging clinical problems. This systematic review aimed to 
comprehensively examine the current research on applying machine 
learning algorithms for predicting positive axillary lymph nodes 
following NAC using imaging modalities, including MRI, CT, or 
ultrasound. 

2. Methods 

2.1. Search strategy 

This review followed the preferred reporting items for systematic 
review and meta-analysis (PRISMA) guidelines. The protocol of this 
systematic review is registered on PROSPERO (CRD42023422375). We 
searched databases, including PubMed, Scopus, web of Science, 
EMBASE, and Google Scholar. Only publicly available and reported data 
until 2023 were eligible for inclusion. We used a combination of syno-
nyms for NAC, MRI, CT, US, breast cancer, and machine learning as a 
search string. The search was limited to English language documents. 

2.2. Inclusion and exclusion criteria 

Data from the included studies were extracted and stored using Excel 
2020 spreadsheets. Reviewers applied selection criteria after screening 
the possibly included studies. In the following, the full text of the 
selected article was reviewed by two authors. Duplicated documentation 
was removed using end note X9 software or manually. 

2.3. Data extraction 

Two reviewers independently extracted the data from the included 
studies. The following details are presented in this review: first author 

name, date, country, sample size of people, imaging modality, contrast 
agent, true positive, true negative, false positive, false negative, and 
adjusted significant confounders. Discussing with the third reviewer 
resolved any discrepancy between the two reviewers. For examination 
with more than one report, information was assembled from the fore-
most later finding. 

2.4. Quality assessment 

All included studies were evaluated through the revised quality 
assessment tool for diagnostic accuracy studies (QUADAS-2). This tools 
evaluates the risk of bias and applicability concerns through assessment 
of patients selection, index test, reference standard, and flow and timing. 
Two reviewers assessed the high-quality content of the included articles 
one by one and resolved disagreements primarily based on consensus. 

3. Results 

3.1. Literature search 

Fig. 1 presents an overview of the study selection process. Applying 
predetermined search criteria, we identified 409 records from PubMed, 
147 from Web of Science, and 187 from Scopus. Initially, we eliminated 
50 duplicate records and excluded 656 studies based on the inclusion 
and exclusion criteria. The remaining 37 articles underwent thorough 
full-text examination, resulting in the selection of seven articles for in-
clusion in our systematic review. 

3.2. Characteristics of the included studies and the predictive models 

Table 1 represents the characteristics of the seven studies included in 
the systematic review. The studies comprised 1502 patients, with 1094 
individuals in the training cohorts, 214 in the validation cohorts, and 
194 in the test cohorts. Only two studies employed a prospective design, 
while the remaining studies utilized retrospective designs. Additionally, 
the studies used radiomics techniques based on various imaging mo-
dalities, including MRI (N = 4), ultrasound (N = 2), and CT (N = 1). 
Among the four MRI studies, three utilized dynamic contrast MRI, while 
one employed multiparametric MRI. 

Table 2 represents the characteristics of the predictive models 
employed in the seven included studies. Five studies included clinical 
data in the predictive model. The predominant predictive models uti-
lized in the included studies were multiple logistic regression models, 
often augmented with additional steps such as feature selection, 
dimension reduction, normalization, and classification. Furthermore, 
two of the studies incorporated deep learning methods in developing 
their predictive models. 

3.3. Quality assessment 

We assessed the methodological quality of the included studies 
through QUADAS-2. Fig. 2 shows the results of quality assessment. 

3.4. MRI studies 

Chen et al. [16] assessed the LN- pCR in patients with clinically 
node-positive breast cancer following NAC by incorporating multi-
parametric MRI and various clinicopathologic factors. In their retro-
spective study, they reviewed 158 patients who had NAC followed by 
surgery and correlated 224 axillary LNs identified on MRI with their 
pathological outcomes. Key MRI features post-NST, such as cortical 
thickness and fatty hilum, as well as time-intensity curve (TIC) patterns, 
in combination with hormone receptor and HER2 status, were identified 
as significant indicators of LN-pCR. The researchers developed and 
tested a multiple regression predictive model with these factors, which 
showed strong predictive ability with an AUC of 0.85, enabling the 
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effective and non-invasive prediction of LN-pCR pre-surgery. 
Liu et al. [17] studied 120 women diagnosed with axillary 

LN-positive breast cancer who underwent NAC and subsequent surgery 
were evaluated to establish a delta-radiomic model. The model aimed to 
predict the LN-pCR using dynamic contrast-enhanced magnetic reso-
nance imaging (DCE-MRI), using multiple regression models that 
incorporated both pre- and post-NAC radiomic features, as well as 
delta-radiomic changes. The findings revealed that the delta-radiomic 
model outperformed other models, achieving an AUC of 0.851 in the 
training set and 0.822 in the validation set. The predictive accuracy was 
further enhanced when the delta-radiomic model was combined with 
clinical features, such as ER and HER2 status, leading to AUCs of 0.932 
and 0.859 in the training and validation cohorts, respectively. The study 
underscored the potential of delta-radiomic features of the axillary LN as 
non-invasive biomarkers for early prediction of LN-pCR. 

Gan et al. [18] created a clinical-radiomics model, employing a va-
riety of regression models that integrated several types of normalization, 
dimension reduction, feature selection, and classification as well as 
clinical data, to predict the LN-pCR in patients with breast cancer with 
axillary LN metastases. Their study included 248 patients with invasive 
breast cancer who underwent NAC followed by axillary LN dissection. 
The best-performing model in their study was refined using principal 

component analysis (PCA), a statistical procedure that transforms a set 
of observations of possibly correlated variables into a set of values of 
linearly uncorrelated variables called principal components. This pro-
cess of dimensionality reduction helped in identifying six key parame-
ters that, when combined with the clinical data, provided the most 
reliable prediction of apCR. Their study revealed that the 
clinical-radiomics model outperformed both the clinical and radiomics 
models with AUC values of 0.924, 0.851, and 0.878 across the training, 
validation, and testing cohorts, respectively, in predicting LN-pCR. 

Ha et al. [19] developed a CNN algorithm to predict LN-pCR after 
NAC in breast cancer patients. The study, conducted between January 
2009 and June 2016, included 127 breast cancer patients who under-
went breast MRI prior to NAC and had surgical pathology data available 
following surgery. The CNN model used in this study, composed of 10 
convolutional and 4 max-pooling layers, and techniques such as 
dropout, augmentation, and L2 regularization were employed to prevent 
the overfitting of the data. Also, the model underwent independent 
training utilizing k-fold cross-validation. For every individual breast 
tumor, the highest SoftMax score determined by the model was utilized 
to forecast the pathologic response of the axilla. Then, the trained model 
was utilized to predict classes on the earlier withheld testing dataset, 
which contains 20 % of the whole dataset. Using 2811 volumetric slices 

Fig. 1. PRISMA flowchart of the medical database search strategy.  
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Table 1 
Characteristics of the included studies.F.  

Author, 
Year 

Country Number of 
cases 

Age Postmenopausal 
(%) 

Molecular subtype Imaging modality Number of cases in each cohort 

HER2þ
(%) 

n.HRþ
(%) 

PRþ
(%) 

ERþ
(%) 

Triple 
negative 
(%) 

training cohort 
patient number 

validation cohort 
patient number 

Testing cohort 
patient 
number 

Chen et al., 
2022 [16] 

China  158 49.6, (9.9), 
(26–79) 
(Mean, (SD), 
(Range)) 

47/5 39/2 80/4 N/S N/S N/S Multiparametric MR  158 N/S N/S 

Liu et al., 
2023 [17] 

China  120 50.9, (10.1), 
(31–73) 
(Mean, (SD), 
(Range)) 

51/6 42/5 N/S 57/5 51/7 N/S DCE-MRI  84 36 N/S 

Gan et al., 
2021 [18] 

China  248 N/S 46 46/0 56/9 N/S N/S N/S DCE-MRI  125 53 70 

Ha et al., 
2018 [19] 

USA  127 50, (23–82) 
(Median, 
(Range)) 

N/S 27/6 N/S N/S 63/0 26 DCE-MRI  101 26 N/S 

Gu et al., 
2022 [20] 

China  484 47.4, (14.3) 
(Mean, (SD)) 

N/S 38/8 42/4 N/S 59/5 18/8 Ultrasound  297 99 88 

Li et al., 
2023 [22] 

China  138 49, (9.3) 
(Mean, (SD)) 

N/S 35/5 N/S 70/3 73/2 N/S CECT before and 
after NAC  

102 N/S 36 

Kim et al., 
2019 [21] 

South 
Korea  

227 48, 49, 
(27–69) 
(Mean, 
Median, 
(Range)) 

34/8 29/5 71/4 N/S N/S N/S Ultrasound  227 N/S N/S 

SD: Standard Deviation, HER2: Human Epidermal Growth Factor Receptor 2, HR: Hormone Receptor, ER: Estrogen receptor, PR: Progesterone Receptor, DCE-MRI: Dynamic Contrast-Enhanced Magnetic Resonance 
Imaging. 
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from 127 tumors extracted from pre-NAC MRI scans, the CNN model 
demonstrated an 83 % accuracy rate in predicting LN-pCR, with a 
sensitivity of 93 %, a specificity of 77 %, and an AUC of 0.93. The study 
concluded that utilizing a CNN and deep learning model based on 
radiomics prior to NAC is a feasible method to predict post-NAC LN-pCR. 

3.5. CT and ultrasound studies 

Gu et al. [20] conducted a study on 628 breast cancer patients from 

January 2017 to July 2021. They selected 484 female patients with 
breast tumors for further analysis and evaluated various clinical char-
acteristics, including estrogen receptor (ER), progesterone receptor 
(PR), Ki67, and HER2 statuses. Based on clinical and ultrasound imaging 
data, the study aimed to develop two deep learning radiomics (DLR) 
models aimed at individually predicting tumor pCR to NAC (DLR-pCR) 
and the status of LN metastasis (LNM) after NAC (DLR-LNM). These 
models were developed using pre-NAC and post-NAC ultrasonography 
images. Additionally, they introduced two Deep Learning Radiomics 

Table 2 
Characteristics of the predictive models employed in the seven included studies.  

Author, 
Year 

Imaging 
modality 

Sequence Slice 
thickness 
(mm) 

MRI field 
intensity 
(T) 

Gold 
standard 
test 

Predictive model 
type 

AUC (%) Sensitivity 
(%) 

Specificity 
(%) 

Are clinical 
data 
included in 
the 
predictive 
model? 

Chen 
et al., 
2022  
[16] 

Multiparametric 
MR 

T2 - DWI - 
DCE 
T1 - Fat 
suppressed 
T1 

1 1/5 LND Multiple regression 
model based on MRI 
morphological 
parameters, signal 
intensity curve, 
ADC, and clincial 
characteristics. 

Training: 
69 

Training: 
69 

Training: 
59 

Yes 

Liu et al., 
2023  
[17] 

DCE MRI DCE T1 5 3 LND Multiple regression 
model of pre and 
post NAC radiomics 
and delta-radiomics 
and clincial 
characteristics with 
feature selection 
using LASSO. 

Training: 
73.4 
Validation: 
68.3 

Training: 
70.2 
Validation: 
95 

Training: 
70.3 
Validation: 
50 

Yes 

Gan 
et al., 
2021  
[18] 

DCE MRI DCE T1 2/4 3 LND Several regression 
models with several 
types of 
normalization, 
dimension 
reduction, feature 
selection, and 
classification, along 
with clinical data. 
The best model 
included 6 
parameters derived 
using principal 
component analysis 
(PCA). 

Training: 
78.6 
Validation: 
67 

- - Yes 

Ha et al., 
2018  
[19] 

DCE MRI DCE T1 N/A N/A LND CNN and deep 
learning model 
based on radiomics 
before NAC. 

- - - No 

Gu et al., 
2022  
[20] 

Ultrasound US N/A N/A LND Deep learning 
radiomics 
nomogram model of 
US radiomics and 
clinical 
characteristics. 

Training: 
91.6 
Validation: 
85.3 
Test: 86.3 

Training: 
84 
Validation: 
79.6 
Test: 74.5 

Training: 
86.6 
Validation: 
82 
Test: 81.8 

Yes 

Li et al., 
2023  
[22] 

CECT before and 
after NAC 

CECT 5 N/A LND ML-based pairwise 
auto-encoder model 
of CT radiomics 
before and after 
NAC and their 
alterations with data 
normalization, 
dimensionality 
reduction, and 
features screening 

Training: 
94.4 
Test: 1 

Validation: 
98.5 

- No 

Kim 
et al., 
2019  
[21] 

Ultrasound US N/A N/A LND Multivariate logistic 
regression of 
ultrasound features 
and clinical 
characteristics 

- - - Yes 

DCE-MRI: Dynamic Contrast-Enhanced Magnetic Resonance Imaging, DWI: Diffusion Weighted imaging, ADC: Apparent Diffusion Coefficient, CECT: Contrast- 
Enhanced Computed Tomography US: Ultrasound, LND: Lymph Node Dissection, N/A: Not Applicable. 
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Networks (DLRNs), DLRN-pCR and DLRN-LNM, designed for distinct 
tasks based on clinical characteristics and DLR scores generated from 
both DLR-pCR and DLR-LNM. Their DLRN-PCR model achieved high 
predictive performance with AUCs of 0.970, 0.903, and 0.896 in 
training, validation, and test cohorts, respectively. The DLRN-LNM 
model also showed promising results with AUCs of 0.896, 0.842, and 
0.845 in the same cohorts. The authors emphasized the importance of 
independent models for tumor and axillary lymph node evaluation after 
NAC to avoid unnecessary treatments. 

Kim et al. [21] focused on predicting axillary pCR after NAC in breast 
cancer patients with axillary lymph node metastasis. Their study 
included 227 patients, of which 106 achieved pCR and 121 had 
non-pCR. They utilized ultrasound and CT imaging to evaluate various 
characteristics of axillary lymph nodes. The study identified histologic 
grade, hormonal receptor status, residual tumor size, fatty hilum loss, 
and eccentric cortical thickening as independent predictors of axillary 
pCR. They developed a combined model that outperformed the clini-
copathologic and imaging models by integrating clinical and imaging 
characteristics. The combined model achieved higher sensitivity 
(67.9 %) and specificity (73.6 %) in predicting axillary pCR, offering the 
potential for better axillary management strategies. 

Li et al. [22] explored the application of radiomics-based Con-
trast-enhanced CT in evaluating axillary lymph node response to NAC. 
They analyzed 138 breast cancer patients with axillary LN metastasis, of 
which 57 achieved LN-pCR and 81 had non-LN-pCR. A program called 
pyradiomics, an open-source tool, was used to retrieve radiomics fea-
tures, including first-order features, shape-based features, and texture 
features. Then, some CT parameters were selected for comparison. These 
parameters included LN long-axis diameter, LN short-axis diameter, LN 
L/S ratio, tumor long-axis diameter, tumor short-axis diameter, area, CT 
enhancement, and cortical thickness. By comparing CT parameters 
before and after NAC, they found significant variations between LN-pCR 
and non-LN-pCR patients. They then used a pairwise autoencoder to 
develop a radiomics model, demonstrating substantial diagnostic 
effectiveness with AUCs of 0.981, 0.971, and 1.000 in the training, 
validation, and test cohorts. This research provided a novel approach for 
evaluating the response of metastatic lymph nodes using 
radiomics-based CT analysis. 

4. Discussion 

In patients with breast cancer presenting initially with node-positive 
disease, assessing the status of axillary LNs following NAC is critical for 
tailoring axillary treatments, potentially obviating the need for ALND if 
negative pathology is confirmed. To predict the status of axillary LNs 
post-NAC, various predictive models, such as multiple regression models 
and CNN-based deep learning models, have been developed. In this 
study, we systematically reviewed the evidence from multiple studies 
that employed a variety of predictive models based on radiomics and 
machine learning techniques, utilizing MRI, CT, and ultrasound to pre-
dict the LN status post-NAC. These studies highlighted the efficacy of 
machine learning approaches that used radiomics data from different 
imaging modalities and revealed that integrating radiological imaging 
characteristics with clinical patient data enhances the predictive accu-
racy regarding the status of LN after NAC. 

4.1. The application of radiomics in breast cancer 

The application of radiomics in the diagnosis or prognosis of breast 
cancer has been a novel topic in recent years. And a systematic review of 
individual studies can be advantageous to use the results in clinical 
practice. A study done by Gong et al. [23] performed a meta-analysis to 
assess the pooled diagnostic value of different radiomics modalities to 
predict axillary and sentinel lymph node metastasis in patients with 
breast cancer. Based on the subgroup analysis in the mentioned study, 
they reported that ultrasound had the highest diagnostic performance. 
However, the number of studies that used ultrasound was not big 
enough, and most of them combined radiomic features with clinical 
features or deep learning algorithms. 

Also, the application of machine learning and deep learning to di-
agnose is emerging. Some studies reported that using machine learning 
and deep learning models has improved the diagnostic accuracy of 
medical imaging, and not only they can be used in the diagnosis of breast 
cancer but also in the prognosis and prediction of the tumor progression 
[24,25]. For example, Zheng and her colleagues [26] reported in their 
study that deep learning models can be applied for the prediction of 
axillary lymph node status in early-stage breast cancer. 

4.2. The comparison of different imaging modalities 

Among the included studies predicting the pCR after neoadjuvant 
chemotherapy in our systematic review, three studies [27–29] used MRI, 
two studies [20,21] used ultrasonography, and one study [22] used CT. 
Among studies that reported the diagnostic accuracy of MRI for the 
prediction of pCR after neoadjuvant chemotherapy, the study done by 
Ha et al. had the highest AUC. Ha et al. [29] developed a convolutional 
neural network (CNN) algorithm to predict pCR in their studies. How-
ever, other studies used radiomics features alone and in addition to 
clinical features to predict pCR. The AUC of both radiomic and 
radiomics-clinical features in these studies was lower than the study that 
used a deep learning model. 

Also, our result showed that there is a big difference in the diagnostic 
performance of studies using ultrasound. This difference can be due to 
the models that were used in these two studies. The study done by Gu 
et al. [20] applied a deep learning model. However, Kim et al. [21] used 
a model that combined only imaging features or imaging and clinico-
pathologic features to predict pCR. So, the higher performance of the 
study done by Gu et al. [20] can be the higher capability of deep learning 
models to be used for the prediction of pCR. 

Moreover, a study by Li et al. [22] used CT radiomics to predict the 
pCR of axillary lymph nodes after neoadjuvant chemotherapy in breast 
cancer patients with axillary lymph node metastasis. This study reported 
that the AUC of single features ranged from 0.598 to 0.711. Then, they 
combined the features, and the results showed that the AUC was 0.962 
and 1.000 for the validation set and test set, respectively. 

Fig. 2. Methodological quality analysis of the included studies through 
QUADAS-2. Green indicates low, yellow unclear, and red high risk of bias. 
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Then, the comparison of different modalities revealed that a study 
that used ultrasound without deep learning algorithms reported the 
lowest diagnostic performance. And the highest diagnostic performance 
was reached by a study using CT radiomics. However, only one study 
used CT radiomics to predict pCR. In addition, the application of deep 
learning algorithms in MRI and ultrasound studies has increased the 
accuracy of these modalities compared to the application of these mo-
dalities without deep learning models. 

4.3. Limitations and suggestions 

This systematic review is subject to certain limitations. Notably, the 
studies under review employed a diverse array of imaging techniques 
and model construction methods, which introduces a significant degree 
of heterogeneity. For example, some included studies used MRI, some 
used CT-scan, and others used ultrasonography. Moreover, some 
included studies used machine learning models. However, some other 
studies used deep learning models. Also, due to a lack of appropriate 
study the subgroup analysis based on the imaging techniques and ma-
chine learning or deep learning approaches was impossible. This di-
versity may disrupt the generalizability and comparability of the 
methodologies across different settings. In addition, the lack of an 
external validation cohort in the majority of the included studies raises 
concerns regarding the reproducibility of the results. 

So, it is suggested to conduct more studies on the application of 
machine learning and deep learning models in different modalities to 
predict pCR after neoadjuvant chemotherapy in breast cancer patients 
with axillary lymph node metastasis. Also, more studies can be per-
formed to find useful features of CT-scan and its overall diagnostic 
performance to have a better insight into the performance of this mo-
dality compared to others. 

5. Conclusion 

In conclusion, according to our results, the application of radiomics 
can be beneficial in predicting pCR after neoadjuvant chemotherapy in 
breast cancer patients with axillary lymph node metastasis. Also, 
applying deep learning models can improve the diagnostic performance 
of each modality. Moreover, MRI and CT’s overall performance was 
higher than ultrasound’s. So, the result of this study can be applied in 
clinical practice to decide whether or not neoadjuvant chemotherapy 
can be helpful in a breast cancer patient. 
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