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Abstract

Applications of quantitative network analysis to functional brain connectivity have become

popular in the last decade due to their ability to describe the general topological principles of

brain networks. However, many issues arise when standard statistical analysis techniques

are applied to functional magnetic resonance imaging (fMRI) connectivity maps. Frequently,

summary measures of these maps, such as global efficiency and clustering coefficients, col-

lapse the changing structures of graph topology from many scales to one. This can result in

a loss of whole-brain spatio-temporal pattern information that may be significant in associa-

tion and prediction analyses. Drawing from the electrical engineering field, the resistance

perturbation distance is a quantification of similarity between graphs on the same vertex set

that has been shown to identify changes in dynamic graphs, such as those from fMRI, while

not being computationally expensive or result in a loss of information. This work proposes a

novel kernel-based regression scheme that incorporates the resistance perturbation dis-

tance to better understand the association with biological phenotypes from fMRI using both

simulated and real datasets.

Introduction

Since its introduction in the early 1990s [1] [2] [3], functional magnetic resonance imaging

(fMRI) has rapidly grown to become the most popular technique to observe the living human

brain [4]. Noninvasive, in-vivo techniques like fMRI can be used in biomedical research to

examine localization of brain regions engaged by a particular task, determining brain net-

works, and predicting psychological or disease states [5]. While most fMRI studies initially

focused on the examination of brain regions engaged during a specific task, increased attention

has been paid in examining the connectivity of the entire brain at rest, commonly referred to

as resting state fMRI (rs-fMRI) [6]. Analysis of rs-fMRI can help yield information about the

strength of connections within and among brain regions that may be unique to clinical popula-

tions [6] [7]. All of these objectives can be achieved through the application of statistical
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techniques that address the specific complications that arise from analysis of spatially corre-

lated, four-dimensional data.

The most common technique used to analyze fMRI data is a mass univariate analysis

(MUA). In MUA, a general linear model is fit at each voxel independently with a combination

of experimental conditions and biological confounders as covariates [8]. This creates a map of

parameter estimates and test statistics that is then thresholded to identify significant voxels;

the location and clustering of these significant voxels inform the functional relationships

within the brain. Time series methods have also been successfully implemented to examine the

interregional correlation values over the length of the fMRI scan [6]. However, these tech-

niques generally ignore the underlying spatial relationships within the data; even though voxel

responses are correlated, mass univariate analysis and its time series extension do not fully

account for the underlying spatial correlation [8]. However, by extending the general linear

model framework to allow for the modeling of non-linear relationships, more complex associ-

ations can be fit. One such way to accomplish this is through the use of kernels, which are

weighting functions used to estimate the conditional expectation of a random variable [9].

In contrast to the use of general linear models and kernel regression, applications of quanti-

tative network analysis through graph theory have become popular in the last decade due to

their utility in describing the general topological principles of brain networks [10]. The appli-

cation of graph theory to study the underlying structural and functional connections within

the brain was first introduced by Ed Bullmore and Olaf Sporns in their seminal work, pub-

lished in 2009 [10]. In their work, Bullmore and Sporns showed how connectivity analyses can

be used not only to analyze structural networks that represent the architectural connections

within and between regions, but also to analyze the underlying functional networks that can

elucidate how this architecture supports various neurophysiological dynamics [10]. Numerous

studies have reported that brain network parameters, derived from fMRI, EEG/MEG, and

structural MRI, differ between subjects based on task or underlying biological or physiological

condition [10]. However, many issues arise when applying standard statistical methods to

fMRI connectivity maps. Frequently, summary measures of these maps, such as global effi-

ciency and clustering coefficients, collapse the changing structure of graph topology from

many scales to one [11]. This can result in a loss of whole brain spatiotemporal pattern infor-

mation that may be significant in association and prediction analyses.

This study proposes a kernel regression scheme that incorporates the resistance perturba-

tion distance to better predict biological phenotypes from fMRI using both simulated and real

datasets. Drawing from the electrical engineering field, the resistance perturbation distance

(RPD) is a quantification of similarity between graphs on the same vertex set that has been

shown to identify changes in dynamic graphs, such as those from fMRI, while not being com-

putationally expensive or result in a loss of information [11]. By incorporating the RPD into a

kernel distance function, the high-dimensional feature space of brain networks, defined on

input pairs, can be generalized to non-linear spaces; this allows for a wider class of distance-

based algorithms, rather than the restrictive squared distance, to be representative of the simi-

larity between two networks. We hypothesize that this algorithm will show significant associa-

tions between the metric and phenotype.

The remainder of this paper is organized as follows. The methods section will describe the

derivation and properties of the resistance perturbation distance, the general framework for

distance-based kernels, and a kernel-based score test. We then apply these methods under a

variety of simulation paradigms and to the COBRE-I dataset. Finally, we conclude the paper

with a discussion and proposal of future directions. All R code has been made available as sup-

plementary material to this manuscript in the form of a Github repository.
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Materials and methods

The resistance perturbation distance

Like many complex systems, the human brain is highly dynamic, where the relationship

between regions changes with respect to time. The brain is a highly plastic organ, able to reor-

ganize itself through modifications of its neuronal connections. This feature is unique to the

central nervous system: neuroplasticity occurs at the beginning of life, where the immature

brain organizes itself, when it is subjected to trauma or injury, and throughout adulthood

whenever something new is learned. The most popular graph theory measures collapse this

complex system from many scales to one, resulting in a loss of information. In contrast, the

resistance perturbation distance is a quantification that is flexible enough to account for con-

figurational changes that can occur on a local scale (through local neighbors on the same

node) or on a global scale (through connections between clusters or hubs) [11].

Let G = (V, E, w), be an undirected, weighted graph that is connected and contains no self-

loops, where V = {1, 2, . . ., n} is the vertex set, E is the edge set, and w is a symmetric weight

function that provides a quantification of the strength of the relationship between two vertices.

The higher the value of w, the stronger the relationship between two vertices i and j. If we

define the weighted adjacency matrix to be

Aij ¼ Aji ¼
we if the edge e ¼ ½i; j� 2 E

0 otherwise;

(

ð1Þ

the degree matrix’s definition is simply Dii ¼
Pn

j¼1
Aij [11]. Using the adjacency and degree

matrices, the Laplacian matrix, L, is a symmetric and positive semi-definite matrix, where L =

D − A [11]. If the Moore-Penrose pseudo-inverse of L, denoted L†, is found, then, by defini-

tion of L, L† is also symmetric.

An important aspect to these adjacency matrices is that a family of distances on G(1) and

G(2) can be induced through the application of a matrix-to-matrix function ϕ on the corre-

sponding adjacency matrices. Monnig and Meyer define a general graph distance as

“Given a matrix-to-matrix function, φ, on a square matrix, Mn×n,

φ ¼ Mn�n ! Mn�n

and a distance d onMn×n, we define the pseudo-distance dφ between two graphs G(1) and

G(2) as

dφðGð1Þ;Gð2ÞÞ ¼ d½φðAð1ÞÞ;φðAð2ÞÞ�

where A(1) and A(2) are the adjacency matrices of G(1) and G(2), respectively. If φ is injective,

then dφ defines a distance [11].”

This definition is important in that it decouples two important aspects to the distance dϕ.

The matrix-to-matrix function ϕ extracts geometric or configurational properties from each

graph while the distance d can be used to emphasize the relative size of variations in ϕ. Koutra

et al. expand on this definition, defining axioms that any distance measure should satisfy:

1. dφ(G(1), G(1)) = 0

2. dφ(G(1), G(2)) = dφ(G(2), G(1))
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3. dφ(G(1), G(2))! 0 as the number of nodes v!1, where the edge sets between G(1) and

G(2) are complementary [12].

As well, a distance measure should satisfy the following properties:

1. Edge Importance: a change in an edge that creates disconnected components within the

graph should be penalized more than changes that maintain its connectivity properties.

2. Weight Awareness: the larger the weight of a removed edge, the greater its impact on the

distance.

3. Edge-“Submodularity”: a change is more meaningful in a sparse graph than in a denser

graph that are both defined on the same vertex set.

4. Focus Awareness: random changes in a graph result in a smaller impact than targeted

changes [11] [12].

The concept of effective resistance, commonly seen in the electrical engineering field, can

be extended to the graph theoretic measure of path length but with a richer choice of distance

d. Monnig and Meyer showed that the effective resistance between two vertices falls under the

definition of a general graph distance, but also preserves the three axioms and four properties

detailed above. Because the BOLD signal measures the indirect correlate of neuronal responses

in the brain, seeing the brain as a circuit board is not an uncommon analogy. Therefore, the

use of effective resistance can be easily extended to the summarization of fMRI data. Effective

resistance can be defined as

R ¼ diagðLyÞ1T þ 1diagðLyÞT � 2Ly;

diag Ly
� �

¼

Ly11

Ly22

..

.

Lynn

2

6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
5

ð2Þ

[11].

Using this, the resistance perturbation distance is then defined as the element-wise p-norm

of the difference between effective resistances such that

drpðpÞ Gð1Þ;Gð2Þð Þ ¼ kRð1Þ � Rð2Þ kp ¼
�
X

i;j2V

jRð1Þij � R
ð2Þ

ij j
p
�1
p

ð3Þ

for 1� p<1 [11].”

This metric defines a distance on the space of connected, undirected, weighted graphs on

the same vertex set, where R is fully and uniquely defined by L and the element-wise p-norm,

k�kp, is a norm for Mn×n. Thus, the distance can easily be shown to be non-negative and sym-

metric by application of the definition of an element-wise p-norm and satisfies the triangle

inequality,

kRð1Þ � Rð2Þ kp � kR
ð1Þ kp � kR

ð2Þ kp: ð4Þ

Additionally, if we observe G(1) = G(2), then drp(p)(G(1), G(2)) = 0 because R(1) = R(2) by defini-

tion. Conversely, if G(1) and G(2) are two graphs with the same effective resistance matrix,
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R(1) = R(2), this implies the equality of the Laplacian matrices, L(1) = L(2) and, continuing on

this train of thought, equality of their weighted adjacency matrices, A(1) = A(2) [11].

Distance-based kernels and a kernel-based score test

Rather than assume a parametric form in the relationship between functional connectivity

matrices and phenotypic classification, kernel distance estimation is a non-parametric way to

quantify the similarity between data instances. A range of kernel functions are used in statis-

tics, where the choice of kernel determines the function space used to approximate the rela-

tionship between two variables [13]. A distance-based kernel is denoted as

Kd x1; x2ð Þ ¼ exp
� d2ðx1; x2Þ

r

� �

; ð5Þ

where d2(x1, x2) is a distance function and ρ an unknown bandwidth or scaling parameter [9].

Kd(x1, x2) can be thought of as a measure of similarity between two subjects x1, x2 in terms of

some common, underlying multidimensional variable set Z. This similarity measure can then

be incorporated into a regression framework to test to what extent variation in Z can explain

variation in the outcome, Y. An important underlying assumption of this framework, however,

is that the distance metric is positive, symmetric, and semi-definite. Unlike other commonly

used distance metrics, like the edit distance [14], the RPD satisfies this property and, therefore,

can be utilized within a kernel function.

In the case of a dichotomous outcome, assume a logistic regression framework of the semi-

parametric form

logit½PrðYi ¼ 1Þ� ¼ XT
i bi þ kðZiÞ þ �i; ð6Þ

where Xi is a matrix of covariates whose association to the dichotomous outcome, Yi, is to be

parametrically estimated, k(�) is a centered, smooth kernel function, and Zi is a vectorized

form of the RPD matrix from the previous section [13] [9]. An important feature of k(Zi) is

that it lies within a Reproducing Hilbert Kernel Space (RHKS). A hypothesis test can be con-

ducted to determine whether the multidimensional variable set Zi is associated with Y, control-

ling for X, of the form

H0 : kð�Þ ¼ 0

HA : kð�Þ 6¼ 0

[13] [9].

Assuming that k(�) lies within a RHKS, kð�Þ 2 Hk, β and k(�) can be simultaneously esti-

mated by maximizing the penalized log likelihood function

‘½b; kð�Þ� ¼
Xn

i¼1

yilog
mi

1 � mi

� �

þ log 1 � mið Þ

� �

�
l

2
kkk2

Hk

¼
Xn

i¼1

½Yi X
T
i bi þ k Zið Þ

� �
� logð1þ expfXT

i bi þ k Zið ÞgÞ� �
l

2
kkk2

Hk
;

ð7Þ

where λ is a regularization parameter that reflects the trade off between model complexity and

goodness of fit [15]. At its boundaries, λ = 0 reflects a saturated model, while λ =1 reduces

the model to a fully parametric logistic regression model. However, it should be noted that

there are two unknown parameters within ℓ[β, k(�)]: the regularization parameter λ and band-

width parameter ρ. Intuitively, λ controls the magnitude of the unknown function k(�) while ρ
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controls the smoothness of k(�) [13]. The choice of ρ has a strong influence on the resulting

estimate and choosing the data-driven, minimally optimal value of ρ is crucial. Using the rep-

resenter theorem, which states that a solution to the penalized log likelihood function

min
kð�Þ2Hk

½‘yðkðx1Þ; :::; kðxnÞÞ þ O k k k
2

Hk
� ð8Þ

takes the form

k�ðZiÞ ¼
Xn

j¼1

ajKðxi; xjÞ ¼ K
T
i a; ð9Þ

[16] then the penalized log likelihood function can be rewritten as

‘ b; k �ð Þ½ � ¼
Xn

i¼1

Yi X
T
i bi þ k Zið Þ

� �
� log 1þ expfXT

i bi þ k Zið Þg
� �� �

�
l

2
aTKa: ð10Þ

Solving for α and β gives the closed form equations

â ¼
1

l
I þ

K
l

� �� 1

Y � Xb̂
� �

b̂ ¼ XT I þ
K
l

� �� 1

X

" #� 1

XT I þ
K
l

� �� 1

Y

ð11Þ

and then, plugging in â into k�(Zi),

k̂�ðZÞ ¼
1

l
fKðZ;Z1Þ; � � � ;KðZ;ZnÞg I þ

K
l

� �� 1

Y � Xb̂
� �

ð12Þ

[13]. However, it is possible to approach ℓ[β, k(�)] from a generalized linear mixed models

(GzLMM) perspective. As logistic regression is a special case of GzLMM, the kernel estimator

within the semiparametric logistic regression model parallels the penalized quasi-likelihood

function from a logistic mixed model, letting τ = 1/λ denote the regularization parameter and

ρ remaining the bandwidth parameter [13]. These parameters can be treated as variance com-

ponents, where k(�) * N(0, τK(ρ)) can be treated as a subject-specific random effect and the

covariance matrix K(ρ) is an n × n kernel matrix as previously defined [15]. This then means

that estimating β and k(�) can be done by maximizing the penalized log likelihood

‘ b; k �ð Þ½ � ¼
Xn

i¼1

Yi X
T
i bi þ k Zið Þ

� �
� log 1þ expfXT

i bi þ k Zið Þg
� �� �

�
1

2t
hTKh; ð13Þ

where h = Kα and τ = 1/λ [15]. This provides an advantage as it allows for testing of the null

hypothesis H0: τ = 1/λ = 0 without explicit specification of basis functions.

However, under the null hypothesis, the kernel matrix K disappears, which makes ρ a nui-

sance parameter that is inestimable under the null hypothesis. Davies studied the issue of a

nuisance parameter disappearing under the null hypothesis [17], and proposed a score test be

used. The score statistic is treated like a nuisance parameter-indexed Gaussian process. As Eq

10 is a nonlinear function of (α, β), a Newton-Raphson algorithm needs to be implemented to

maximize Eq 10 in terms of (α, β). If (j) is the jth iteration of the algorithm, then the (j + 1) step
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solves

XTDðjÞX XTDðjÞK

DðjÞX t� 1I þ DðjÞK

" #
b
ðjþ1Þ

aðjþ1Þ

2

4

3

5 ¼
XTDðjÞ~yðjÞ

DðjÞ~yðjÞ

2

4

3

5 ð14Þ

where ~yðjÞ ¼ XbðjÞ þ KaðjÞ þ ðDðjÞÞ� 1
ðy � XT

i b
ðjÞ
Þ, DðjÞ ¼ diag½XT

i b
ðjÞ
� ð1 � XT

i b
ðjÞ
Þ�, and h(j) =

Kα(j). Also noting that β and k(�), which depend on τ and ρ, can be estimated using penalized

quasi-likelihood under a logistic mixed model paradigm, then rewriting Eq 13

‘ b nð Þ; nð Þ � �
1

2
logjVj �

1

2
logjXTV � 1Xj �

1

2
ð~y � XbÞTV � 1 ~y � Xbð Þ; ð15Þ

where ν = (τ, ρ) and V = D−1 + τK. Then n̂ can be solved for in the usual way [15]. However, if

the derivative of (9) is taken with respect to τ, then the score test forH0: τ = 1/λ = 0 can be writ-

ten as

S rð Þ ¼
Qtðb̂0 ; rÞ � mQ

sQ
ð16Þ

where Qtðb̂0 ; rÞ ¼ ð~y � Xb̂0Þ
TDKðrÞDð~y � Xb̂0Þ ¼ ð~y � m0Þ

TKð~y � m0Þ, b̂0 is the maximum

likelihood estimate of β under the null hypothesis, m̂0 ¼ logit� 1ðXb̂0Þ, μQ = trace[P0K(ρ)],

s2
Q ¼ 2trace½P0KðrÞP0KðrÞ�, P0 = D0 − D0X(XT D0X)−1 XT D0, and D0 = diag[μ0 − (1 − μ0)]

[15].

S(ρ) under the null hypothesis is an approximate, ρ-indexed Gaussian process, which appli-

cation of Davies’ results [17] to get the upper bound for the score test’s p-value. It can be seen

that large values of Qtðb̂0 ; rÞ would result in a rejection of H0 and the upper bound of the p-

value is

F � Mð Þ þ
Wexpf�

1

2
M2g

ffiffiffiffiffiffi
8p
p

ð17Þ

where F(�) is the normal cumulative distribution function, M is the maximum of S(ρ) over all

of the searched range of ρ,W = |S(ρ1) − S(L)| + |S(ρ2) − S(ρ1)| + � � � + |S(U) − S(ρm)|, L and U
are the lower and upper bounds, respectively, of the search area for ρ, and ρm are the search

points between L and U [17] [15]. Liu et al. suggest setting the lower and upper bounds of the ρ
search to be L ¼ 0:1mini6¼j

Pp
l¼1
ðzil � zjlÞ

2
and U ¼ 100maxi6¼j

Pp
l¼1
ðzil � zjlÞ

2
[15].

Results

Simulations

Functional connectivity matrices were simulated using the MNS package in R. This package

uses the mixed neighborhood selection (MNS) algorithm, which separates a network into two

components: common population and subject-specific edges [18]. Using the preferential

attachment model proposed by Barabási and Albert in 1999, a set of edges, denoted Epop, is

shared across all subjects in the sample, where edge strengths are uniformly sampled [18].

Inter-subject variability among the edges, denoted �E, are chosen according to the Erdös and

Rényi model, where a choice of the number of elements of �E determines the number of ran-

dom edges and, thus, the level of inter-subject variability [18].
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To simulate the data that corresponds to the functional connectivity networks, a multivari-

ate normal distribution is utilized,

XðiÞ � Nð0; ½PDðYpop
þY

ðiÞ
Þ�
� 1
Þ; ð18Þ

where PD(�) is a function that ensures a positive definite standard deviation matrix, Θpop

denotes the population networks, and Θ(i) denotes the subject-specific networks.

To simulate the functional connectivity data using the MNS package, the gen.Network()
function was called; the parameters associated with the gen.Network() are detailed in the

MNS package documentation [18]. The result is an S3 object of class MNS. Fig 1 below shows

an example of simulated functional connectivity networks for three subjects.

For all simulations, the following settings were utilized in the gen.Network() function,

which seem to best represent the variability in functional connectivity networks from resting

state MRI datasets: p = 90, sparsity = 0.75, REsize = 10, REprob = 0.65,
REnoise = 3.

However, the data simulated in the MNS package does not exactly match data from a resting

state fMRI scan. The existence of negative correlations between brain networks has been a

hotly contested debate within the neuroimaging community; the origin, interpretation, and

link to the underlying structural connectivity are still unresolved issues. Because of this, the

norm within the field is to zero out any negative correlations within the connectivity matrices

before further analysis is performed. Other options include taking the absolute value or to

normalize the correlations to be between 0 and 1, although these are far less popular. For the

purposes of this manuscript, simulated datasets from the MNS package had all negative corre-

lations zeroed out.

The four properties of a distance—edge importance, weight awareness, edge-“submodular-

ity,” and focus awareness—were tested for the resistance perturbation distance under varying

simulation models of ten-node connectivity matrices. Under the edge importance property, in

weighted graphs, changes that created disconnected components should be penalized more

than changes that maintain the connectivity properties of the graph. We simulated this prop-

erty by breaking up the simulated connectivity matrix into four, equally-sized quadrants and

then zeroing out all non-zero cells within the off-diagonal (quadrants I and III) to create two

disconnected components. Then, the same number of components were randomly zeroed out

to create a comparable “random” graph. Pairwise RPDs were plotted for 1000 iterations in

Fig 2, below.

Fig 1. Simulated networks for N = 3 subjects under the “cohort” method. Solid lines between nodes represent population edges and dashed lines

represent subject-specific edges. Red edges represent a positive association between edges while blue edges represent negative associations. The

following command was used: gen.Network(method = “cohort”,p = 15,Nsub = 3,sparsity = 0.2,REsize = 10,
REprob = 0.5,REnoise = 1).

https://doi.org/10.1371/journal.pone.0199340.g001
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Under the weight awareness property, in weighted graphs, the larger the weight of the

removed edge, the greater the impact on the distance. Minimum and amximum non-zer ocor-

relations were iteratively zeroed out from a simulated connecitivty matrix. Pairwise RPDs

were plotted for 1000 iterations in Fig 3, below.

Under the edge-“submodularity” property, in weighted graphs, a specific change is more

important in a graph with few edges than in a much denser, but equally sized, graph. The max-

imum non-zero correlation was systematically removed from each iteratively-simulated con-

nectivity matrix. Within the gen.Network() function, sparsity parameters of 0.45 (for a

sparse graph) and 0.95 (for a dense graph) were set. Pairwise RPDs were plotted for 1000 itera-

tions in Fig 4, below.

Finally, under the focus awareness property, in weighted graphs, random changes in graphs

are less important than targeted changes of the same extent. Similar to Koutra et al. [12], tar-

geted changes were made by deleting all edges from a randomly chosen node while random

changes were made by randomly removing the same number of edges from the whole graph.

Pairwise RPDs were plotted for 1000 iterations in Fig 5, below. As these figures and tables

Fig 2. Edge importance property. Boxplot of 1000 iterations under targeted deletions resulting in disconnected components and equally-numbered,

but random, deletions. A natural logarithm transformation has been applied to all resistance perturbation distance values for this figure. While random

deletions result in a wider overall spread of distances, targeted deletions result, on average, in a larger RPD than a comparable random deletion.

https://doi.org/10.1371/journal.pone.0199340.g002
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show, the Koutra et al. properties are all satisfied under the simulated constraints of fMRI data.

using the MNS package in R.

Next, to analyze the robustness of the kernel-based score test described, several simulations

were conducted. These simulations were split between the number of groups of functional

connectivity matrices that were generated; a simulation under a one generation process pre-

sumes that the null hypothesis is true (all subjects come from the same underlying population)

while a two generation process presumes that the null hypothesis is false and subjects come

from two distinct populations. To simplify the analyses for these simulations, no covariates

were generated.

A series of simulation studies were conducted to evaluate the performance of the kernel-

based score test under the hypothesis test of H0: k(�) = 0 versusHA: k(�) 6¼ 0. As there is no

closed-form solution for the test statistic’s accompanying p-value, power and Type I error

were calculated using simulated datasets. For the power simulation, 100 different datasets were

produced, ten from the “control” population, ten from the “patient” population, and the

Fig 3. Weight awareness property. Boxplot of 1000 iterations under minimum and maxiumum non-zero correlation paradigms. A natural logarithm

transformation has been applied to all resistance perturbation distance values for this figure. While minimum non-zero deletions result on a wider

overall spread of distances, the maximum non-zero correlation deletions result, on average, in a larger RPD than a comparable minimum non-zero

correlation deletion.

https://doi.org/10.1371/journal.pone.0199340.g003
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remaining 80 from a third “noise” population. Each of these populations were simulated under

different gen.Network() function calls in order to prevent common preferential attach-

ment model parameters. This third population was included to mimic the noisy nature of

fMRI data. The noise population was distributed between the “control” and “patient” popula-

tions such that the final sample sizes were 55 in the “control” population and 45 in the

“patient” population. Each simulated connectivity matrix was generated with the following

parameters: p = 90, sparsity = 0.75, REsize = 10, REprob = 0.65, and

REnoise = 3. Bounds of the ρ search were set based on the suggestion from Liu et al. [15].

An indicator function was used to determine whether each simulation’s resulting p-value was

greater than α = 0.05. After 1000 iterations, the empirical power of the kernel-based score test

was 0.945. Similarly, for the test statistic’s Type I error rate, all 100 simulated samples came

from a single generation process with the same parameters as the power simulation and

bounds of the ρ search. After 1000 iterations, the empirical Type I error rate of the kernel-

based score test was 0.0496. These simulations show that the empirically-calculated Type I

Fig 4. Edge-“submodularity” property. Boxplot of 1000 iterations under sparse and dense graph paradigms. A natural logarithm transformation has

been applied to all resistance perturbation distance values for this figure. Random deletions from dense graphs, on average, result in smaller RPDs than

in comparable sparse graphs.

https://doi.org/10.1371/journal.pone.0199340.g004
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error is very close to the nominal value of 0.05 while the power of the score test has sufficiently

high power to detect true differences in a dataset.

A simulation was also conducted under a two generation process to understand the impact

of how the allocation of the “noise’” population to the “control” and “patient” populations

affected the kernel-based score test’s p-values. In a very similar manner to the power simula-

tion, three datasets were produced. However, the allocation of the simulated noise population

to the control and patient populations was varied; the percentage of the noise population allo-

cated to the control population varied along (5%, 95%) by increments of 5%. One hundred

iterations occurred at each noise allocation. Any iteration that resulted in a p-value greater

than 0.05 was considered a false negative as the simulation was set up in such a way that the

underlying truth was that the “control” and “patient” populations were different from one

another. The results of the simulation are plotted in Fig 6, below. The highest Type II errors

occurred between noise splits where 40% and 55% of the noise was allocated to the control

population; this is not surprising as a noise allocation that was nearly evenly split between the

two groups would make the group average graph look exceedingly similar.

Fig 5. Focus awareness property. Boxplot of 1000 iterations under targeted and random change paradigms. A natural logarithm transformation has

been applied to all resistance perturbation distance values for this figure. Targeted deletions, on average, results in larger RPDs than in comparable

random graph deletions.

https://doi.org/10.1371/journal.pone.0199340.g005
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Similarly, a simulation was conducted under a one generation process to understand how

splitting the 100 connectivity matrices between “control” and “patient” populations affected

the p-values of the kernel-based score test. Like the Type I error simulation, only one dataset

was produced. However, how this dataset was split between the two populations was varied;

the number of connectivity matrices allocated to the “control” population varied along (5, 95),

increasing in increments of one at each iteration. Any iteration that resulted in a p-value less

than 0.05 was considered a false positive as the simulation was set up in a way that the underly-

ing truth was that there was no significant difference between “controls” and “patients.” The

results of the simulation are plotted in Fig 7, below. The total Type I error across all allocations

was 0.05, on par with the empirical Type I error calculated.

COBRE-I dataset

Created with the focus of studying the neural mechanisms of schizophrenia, the Center for

Biomedical Research Excellence through the Mind Research Network for Neurodiagnostic

Disvoery (MRN) contributed raw anatomical and functional MR data from 72 patients with

Fig 6. P-values under varying noise population allocations under a two generation simulation process. At each noise allocation, 100 iterations were

conducted. The red dashed line is at the nominal p-value of 0.05. Any point above this red line is a false negative while any points below this red line are

true positives. The highest proportion of false negatives occurs at noise splits at or surrounding 0.5, as expected.

https://doi.org/10.1371/journal.pone.0199340.g006
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diagnosed schizophrenia and 75 healthy controls to the 1000 Functional Connectomes Project

[19]. Previous studies [20] [21] of this dataset have shown significant differences between

schizophrenia and control patients in the hippocampus and default mode network with more

subtle differences in the temporal and frontal networks. However, neither of these studies

approached their analysis from a graph theoretic perspective, choosing instead to perform ver-

sions of a mass univariate analysis.

Although the initial COBRE-I dataset consisted of 147 subjects, two control patients had to

be excluded due to disenrollment [19]. A multi-echo, magnetization prepared rapid gradient

echo (MPRAGE) sequence was used to acquire the anatomical information on each subject,

with the following parameters: TR/TE/TI = 2530/[1.64, 3.5, 5.36, 7.22, 9.08]/900ms; flip

angle = 7˚; FOV = 256x256mm; slab thickness = 176mm; matrix = 256x256x176; voxel

size = 1x1x1mm; number of echoes = 5; pixel bandwidth = 650Hz, total scan time = 6 minutes

[19]. Resting state functional MR data was acquired using a single-shot, full k-space, echo pla-

nar imaging (EPI) with ramp sampling correction using the intercommissural line as the refer-

ence and the following parameters: TR = 2 seconds; TE = 29ms; matrix size = 64x64; 32 slices;

Fig 7. P-values under varying noise population allocations under a one generation simulation process. Allocation of the 100 generated connectivity

matrices varied from 5:95 to 95:5, increasing in increments of one. The red dashed line is at the nominal p-value of 0.05. Any point below this red line is

a false positive while any point above this red line is a true negative. As can be seen, the false positive rate from this simulation agrees with the Type I

error rate previously calculated.

https://doi.org/10.1371/journal.pone.0199340.g007
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voxel size = 3x3x4mm [19]. In addition to this imaging data, the MRN also provided pheno-

typic information on each subject, including age, gender, handedness, and diagnostic informa-

tion, when applicable. Table 1 provides a summary of the phenotypic information on controls

and patients.

An automated pre-processing and denoising pipeline was implemented with the CONN

software package within MatLab [22]. Within this pipeline, the first four volumes were dis-

carded to ensure T1 equilibrium effects and each subject’s images were realigned to the first

volume however no slice-timing correction was applied as images were acquired in a descend-

ing manner. Data were spatially normalized to the Montreal Neurological Institute (MNI)

space and smoothed using a Gaussian kernel with a full-width at half-maximum of 8mm. Dur-

ing the denoising process, two different sources of possible confounds were regressed out: (1)

BOLD signal from white matter and cerebrospinal fluid (CSF); and (2) realignment parameters

(6 total). Correlation matrices were then extracted from CONN following a first-level ROI-to-

ROI analysis. A hybrid physical atlas was used, where the FSL Harvard-Oxford atlas was used

to parcellate the cortical and subcortical areas and the Automated Anatomical Labeling (AAL)

atlas [23] was used to to parcellate the cerebellar areas; this resulted in a physical atlas of 132

regions. Weighted networks were extracted from the �.mat files using the R.matlab pack-

age. As the matrices contained Fisher’s transformed correlation coefficients, the hyperbolic

tangent function was applied to all correlations then negative correlations were set to zero.

Using the entire dataset, which included 72 schizophrenia and and 73 control patients fol-

lowing the pre-processing and denoising procedures, the outcome was a binary classification

variable of schizophrenia diagnosis. The regression parameters for the phenotypic covariates

of age, sex, and handedness were parametrically estimated while the RPD matrix was non-

parametrically estimated. Specifically, we considered the following semiparametric logistic

model:

logit½PrðY ¼ 1Þ� ¼ b0 þ b1 � ageþ b2 � sexþ b3 � handednessþ kðRPDÞ ð19Þ

where k(�) is a nonparametric kernel distance function of the 132 × 132 RPD matrix. Details of

the estimation procedure can be found in the Methods section. Additionally, a simpler, fully

non-parametric logistic model was considered, which did not include any of the phenotypic

covariates:

logit½PrðY ¼ 1Þ� ¼ kðRPDÞ: ð20Þ

This was done to test whether the phenotypic covariates were confounders in the association

between the RPD matrix and binary schizophrenia classification.

The same two models (semiparametric and fully non-parametric) were fit to the full dataset,

but for which all negative correlations within the subject-level fMRI connectivity matrices left

Table 1. COBRE dataset subject demographics.

Control (n = 73) Patient (n = 72)

Age in years, mean (SD) 35.90 (11.64) 38.17 (13.89)

Sex, n (%)

Male 50 (68.5%) 58 (80.56%)

Female 23 (31.5%) 14 (19.44%)

Handedness, n(%)

Left 1 (1.35%) 10 (13.89%)

Right 71 (95.94%) 60 (83.33%)

Ambidextrous 2 (2.70%) 2 (2.78%)

https://doi.org/10.1371/journal.pone.0199340.t001
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as is. This was done to determine whether there was a significant loss of information by follow-

ing the neuroimaging standard of zeroing out any negative correlation between regions of

interest. Recent articles [24] [25] have pointed to a potentially significant physiological role of

negative correlations within fMRI. Specifically, Parente et al. notes that, while these negatively

correlated brain networks still lack a well-defined biological explanation, they appear to be

have an association with the alterations in brain function in people diagnosed with schizophre-

nia [24].

The results of these analyses are present in Table 2, below.

Table 2 shows that only under the fully non-parametric paradigm when the negative corre-

lations were zeroed out was the null hypothesis of H0: k(�) = 0 rejected. The hypothesis that

keeping all negative correlations within the dataset would preserve more information was not

confirmed as both the semiparametric and fully non-parametric models were not significant at

the α = 0.05 level. Heat maps of the average connectivity matrix for control versus schizophre-

nia patients under both paradigms can be seen in Fig 8, below. These heat maps show exceed-

ingly similar patterns of average connectivity between the two groups, which may be the

reason why the RPD-based score test was unable to find a significant difference in most of the

scenarios we considered.

A subset of the entire COBRE dataset, which included all schizophrenia subjects who had

an diagnosis of paranoid schizophrenia (ICD-9 code of 295.3) and an equal number of ran-

domly selected control subjects, was analyzed. To ensure comparable groups, frequency

matching for handedness, sex, and age category (18 – 25, 26 – 35, 36 – 45, 46+) was conducted.

Because schizophrenia is such a heterogeneous condition, by restricting the sample of cases to

only those with the same sub-diagnosis, some of the noise present within the dataset exoge-

nous to the normal variation in fMRI connectivity would be removed. As with the full dataset,

four different regression models were fit to the data, the results of which are summarized in

Table 3, below.

Table 3 shows that for all four conditions, the null hypothesis of H0: k(�) = 0 fails to be

rejected. Heat maps of the average connectivity matrix for the randomly-selected control ver-

sus paranoid schizophrenia patients under both paradigms can be seen in Fig 9, below. As

with the full COBRE dataset, the heat maps do not show gross differences in the totality of

functional connectivity. However, in both cases, the schizophrenia patients appear to have

lower correlations between regions of interest than the control patients.

As a comparison, the global efficiency and rich club coefficient were calculated for each

COBRE-I subject’s connectivity matrix and then included in respective conventional logisitic

regression frameworks, where group was the outcome of interest and age, sex, and handedness

were included as additional covariates of interest. These regressions were performed for both

the full COBRE-I dataset and for the subset of paranoid schoziphrenia subjects. However,

because of the way in which these graph theoretic measures are calculated, negative correla-

tions could not remain within the connectivity matrices and, thus, only the condition in which

negative correlations were zeroed out couldbe tested. Table 4, shows the results of these regres-

sions for the graph theoretic measure covariate only to provide direct comparison to the kernel

Table 2. Analysis of full COBRE dataset.

Regression P-value of score test for H0: k(�) = 0

Semiparametric Zeroing out Negative Correlations p = 0.53

Semiparametric Keeping Negative Correlations p = 0.61

Fully Non-Parametric Zeroing out Negative Correlations p = 0.02

Fully Non-Parametric Keeping Negative Correlations p = 0.48

https://doi.org/10.1371/journal.pone.0199340.t002
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logistic regression framework. In all cases, the graph theoretic measure, whether global effi-

ciency or rich club coefficient, were not significantly associated with group label. This lack of

significance in these comparison models provides further evidence of the complex nature of

the functional connectivity data and how subtle the differences between control subjects and

subjects with schizophrenia are.

Conclusion

Discussion

In this paper, we applied a concept from the electrical engineering field, the resistance pertur-

bation distance, to a kernel logistic regression framework, where the outcome of interest is a

Fig 8. Correlation heat maps full COBRE-I dataset. Correlation heat maps of control and schizophrenia subjects under zeroing out negative

correlations (top row) and normalizing all correlations (bottom row).

https://doi.org/10.1371/journal.pone.0199340.g008

Table 3. Analysis of COBRE dataset—Paranoid schizophrenia cases only.

Regression P-value of score test for H0: k(�) = 0

Semiparametric Zeroing out Negative Correlations p = 0.49

Semiparametric Keeping Negative Correlations p = 0.59

Fully Non-Parametric Zeroing out Negative Correlations p = 0.15

Fully Non-Parametric Keeping Negative Correlations p = 0.46

https://doi.org/10.1371/journal.pone.0199340.t003
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binary classifier, phenotypic covariates are modeled parametrically, and the distance metric is

modeled nonparametrically using a kernel machine method. The RPD is computationally effi-

cient and does not result in a loss of information on either a local or global scale, unlike many

other graph theoretic measures. The application of a kernel logistic regression allows for the

RPD to be modeled without making any assumption as to the parametric form of its associa-

tion with the binary classifier. Because our model is semi-parametric, we were able to control

for potential phenotypic confounders within a parametric framework, allowing for ease of

parameter estimate interpretation should they be desired. Further, the kernel regression

Fig 9. Correlation heat maps paranoid schizophrenia COBRE-I dataset. Correlation heat maps of control and schizophrenia subjects for only the

paranoid schizophrenia subset under zeroing out negative correlations (top row) and normalizing all correlations (bottom row).

https://doi.org/10.1371/journal.pone.0199340.g009

Table 4. Analysis of COBRE dataset—Global efficiency and rich clubs.

Dataset Graph Theoretic Measure P-value of Wald Test

Full COBRE-I Global Efficiency p = 0.06

Full COBRE-I Rich Club Coefficient p = 0.35

Paranoid Schizophrenia Only Global Efficiency p = 0.84

Paranoid Schizophrenia Only Rich Club Coefficient p = 0.99

https://doi.org/10.1371/journal.pone.0199340.t004
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framework could be extended to account for repeated measures, allowing for RPD metrics to

be calculated at multiple points during each subject’s fMRI scan time.

Limitations and future directions

There are several limitations that affect our approach. First, while our model proved to have

high power, a low Type I error rate, and robust to varying study design and searchable spaces

of the score test statistics, only one significant association was found between the RPD matrix

and the binary classifier in the full COBRE-I dataset under the fully non-parametric score test

with negative correlations zeroed out. However, when accounting for multiple comparisons,

this association is no longer significant. The difference between simulation and real datasets

could be due to a variety of factors, either working in isolation or compounded on one

another. Several recently-published studies [7] [26] [27] have noted that choice of pre-pro-

cessing pipeline can impact the results of an inferential analysis involving graph theoretic

measures, especially in resting state fMRI. We have not studied the impact of different

parameters within the same pre-processing pipeline nor the impact of an entirely different

manner of pre-processing on the RPD. As well, it was noted earlier that, while the overall pat-

terns of connectivity within the heat maps appear to be similar between cases and controls,

the overall magnitude of the correlations may differ; the RPD is not sensitive to a global dif-

ference in the magnitude of edge weights as it is scale invariant. Finally, while no self loops

allows for desirable mathematical properties of simple graphs, its absence is significant bio-

logically. Network function is maintained by biologic feedback loops, which cannot be mod-

eled with the current graph theory framework. These feedback loops could have particular

importance in the distinction of fMRI connectivity patterns between controls and those with

schizophrenia.

A future direction within this modeling approach would be to use the RPD and kernel

logistic regression within a different, more confined brain atlas. The hybrid atlas contains 132

parcellated regions covering the entirely of the brain. However, it may be that restricting this

methodology to pre-specified regions of interest may bear results more comparable to that

seen in simulation. Additionally, as the RPD is scale invariant, relative, rather than absolute,

differences in connectivity may be more informative for this algorithm. Specifically, if the total

sample average connectivity between two nodes is some value ρ satisfying −1< ρ< 1, then

looking at differences in individual deviation values from this average, rather than the absolute

differences, may help circumvent the scale invariance of the distance metric. Finally, extending

this algorithm within a tensor machine context could overcome the issue of subtle differences

within the functional conenctivity between groups.
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