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ABSTRACT  DNA-Microarrays are powerful tools to obtain expression data on 

the genome-wide scale. We performed microarray experiments to elucidate 

the transcriptional networks, which are up- or down-regulated in response to 

the expression of toxic polyglutamine proteins in yeast. Such experiments 

initially generate hit lists containing differentially expressed genes. To look 

into transcriptional responses, we constructed networks from these genes. 

We therefore developed an algorithm, which is capable of dealing with very 

small numbers of microarrays by clustering the hits based on co-regulatory 

relationships obtained from the SPELL database. Here, we evaluate this algo-

rithm according to several criteria and further develop its statistical capabili-

ties. Initially, we define how the number of SPELL-derived co-regulated genes 

and the number of input hits influences the quality of the networks. We then 

show the ability of our networks to accurately predict further differentially 

expressed genes. Including these predicted genes into the networks improves 

the network quality and allows quantifying the predictive strength of the 

networks based on a newly implemented scoring method. We find that this 

approach is useful for our own experimental data sets and also for many oth-

er data sets which we tested from the SPELL microarray database. Further-

more, the clusters obtained by the described algorithm greatly improve the 

assignment to biological processes and transcription factors for the individual 

clusters. Thus, the described clustering approach, which will be available 

through the ClusterEx web interface, and the evaluation parameters derived 

from it represent valuable tools for the fast and informative analysis of yeast 

microarray data. 
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INTRODUCTION 

As an efficient tool for analyzing gene expression changes, 

DNA microarrays are widely used to decipher reactions to 

environmental changes and consequences of genetic alter-

ations in yeast, plants and humans [1, 2]. DNA microarrays 

can be used to define the expression of genes, to evaluate 

regulation between multiple genes, and to classify the 

genes according to their function and location. This is help-

ful in creating fingerprints of a tissue or an organ, in identi-

fying therapeutic drug targets and in toxicology studies [3-

6]. Results from these analyses are lists of genes differen-

tially expressed upon comparison of two experimental 

conditions (referred to as “hits”). Due to the large amount 

of data, computational tools are used to facilitate every 

step of the analysis process [7, 8]. Very powerful software 

packages are available to help with technical aspects of the 

method, which requires reliable analysis of the raw arrays 

and the derived signals [9, 10]. For comparison of different 

experiments, tools are available for cross-genechip normal-

ization, for obtaining differentially expressed genes or for 

comparing different experimental conditions regarding 

common transcriptional responses [11]. Further  tools  incl- 
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ude functions to facilitate the assembly of data analysis 

routines such as limma [12], web servers for microarray 

analysis, such as ArrayMining [13] and tools to perform 

technical aspects of the analysis, such as TM4 [14]. Also 

methods are available to group genes according to their 

function, regulation or biological processes with Gene Set 

Enrichment Analysis (GSEA) [15, 16] or clustering of the 

hits based on their co-regulation with Genesis [17], L2L [18] 

or LOLA [19]. Some of these tools include databases, which 

are designed for specific organisms or topics, in many cases 

for human and mammalian samples [15, 18, 19]. 

Clustering differentially expressed genes according to 

their transcriptional connection in most cases is performed 

by simultaneous analysis of larger numbers of microarray 

experiments [13, 17, 20]. This approach is very powerful to 

get information on common patterns observed in many 

arrays. It requires substantial input of array data and, thus, 

requires that sufficient numbers of experiments have been 

performed or arrays from the public domain are included 

in the experiment as training sets. Many studies have con-

vincingly shown the power of such approaches and the 

advantages to apply these methods for the construction of 

co-expression networks. For studies with very few arrays, 

this can make the selection of the training set and the data 

handling difficult, as the clustering results may be influ-

enced by the selection of these data sets.  

We previously had set out to describe the transcrip-

tional response to polyglutamine-induced toxicity [21]. 

Performing analyses on a sample set of only six arrays to 

compare three conditions for an unknown response, the 

selection of training sets was challenging. We thus used 

the extensive co-regulation information from the SPELL 

(Serial Pattern of Expression Levels Locator) database, 

which is based on the analysis of more than 10,000 micro-

array experiments. By correlating the results from our DNA 

microarray experiment with this database, we visualized 

the networks of the transcriptional responses to polyglu-

tamine-induced toxicity and obtained informative net-

works for each condition compared [21]. Each of these 

networks was constructed based on the 100 strongest dif-

ferentially expressed genes. Here, we statistically evaluate 

and further develop this database-guided clustering meth-

od for yeast microarray data. We define the sensitivity of 

the calculated networks to changes in the input parame-

ters and define options to score the validity of the net-

works based on connections and predictions, which can be 

obtained from the connected hits. 

 

RESULTS 

Microarray data sets can be clustered into interconnected 

networks based on publicly available co-regulation data.  

We recently reported on the transcriptional response of 

yeast cells to the overexpression of toxic polyglutamine 

proteins [21]. Here, toxic polyglutamine stretches contain-

ing 56 residues (Q56) and non-toxic stretches with 30 resi-

dues (Q30) were expressed in yeast and compared to a 

non-polyglutamine expressing control. This approach re-

sults in several hundred genes, which are up- or down-

regulated in a single microarray experiment. We clustered 

these genes to visualize potential transcriptional networks 

(Figure 1) by using information about co-regulatory rela-

tionships from the SPELL webserver [22]. This data re-

FIGURE 1: Data processing in ClusterEx. A flexible number of hits 

(here the top 100) are obtained from the microarray data set as 

“hits”. For each hit, the best co-regulators (here 50) are obtained 

from the SPELL database. These are assembled into a pairwise 

matrix. After combining, each pair is only listed once with the 

number of occurrences (X). This matrix then is exported to Cyto-

scape and values are reported for percentage of hits included in 

the network and connection numbers per hit (Pathway 1). Fur-

thermore, a flexible number (here 50) of connectors from the 

matrix can be included into the network. For those the real ex-

pression values are obtained from the experimental data set. The 

CoRegScore is calculated from the positioning of these predicted 

connectors in the hit list of the experiment (Pathway 2). This pro-

cedure is described in the materials and methods section. 
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source contains information on co-regulated genes, provid-

ing 50 co-regulated genes (called co-regulators throughout 

the manuscript) ranked according to their correlation score 

in each single-gene query. To assess the sensitivity of the 

networks generated by this approach, we first tested the 

quality of the resulting networks, if we cluster the genes of 

the hit list using the information from varying numbers of 

co-regulators. As such, we initially used the 100 most dif-

ferentially regulated genes (called top100 throughout the 

manuscript) and clustered them based on 5, 10, 15, 20, 30 

or 40 co-regulators from SPELL. To evaluate the networks 

we determined the number of hits, which incorporate into 

a network by having at least one network connection to 

another hit (Figure 2A). Indeed, we observe that most of 

the top100 hits can be connected into a network, suggest-

ing that the top100-hits from our microarray experiment 

are part of a transcriptional response, which correlates 

with the information in SPELL. This holds true for both di-

rections in our experiments.  

To get statistical confirmation on these dependencies 

we used 100 sets of equally sized random hit lists and de-

termined to what extent our experimental microarray data 

perform better compared to the random hit lists. The ran-

dom hit lists show significantly less connected genes in the 

network with p-values under all conditions below 1E-05. 

Visualizing the obtained networks in Cytoscape [23] it also 

is obvious that most connected genes in the random net-

works only have one or two interaction partners (Figure S1). 

We additionally determined the number of connections 

per gene to further prove that the connection numbers are 

significantly better for our experimental set compared to 

random gene lists. This is the case for every number of 

SPELL-derived co-regulators and the differences are signifi-

cant with p-values below 1E-05 for all of them. In fact, if 40 

co-regulators are used to construct the network matrix, 

random hit lists yield approximately 12 connections per hit 

compared to more than 200 for the top100-hits down-

regulated in response to Q56-expression (Figure 2B). Visu-

alizing the networks, the differences between the two pol-

yglutamine experiments become obvious, with one of 

them (Q30 vs. Q0) being more loosely connected, while the 

response in the other network (Q56 vs. Q0) strongly clus-

ters (Figure S1). 

It is also evident from this approach that the number of 

included hits and the number of connections per hit in-

crease with the number of co-regulators used to build the 

matrix. This is true for all Q56 and Q30 datasets (Figure 2A, 

2B) – but this is also true for the random gene lists (Figure 

2A, 2B), implying that this approach could principally lead 

to clustering into large networks even of random genes, if 

too many co-regulators are used to build the network ma-

trix. 

We also tested to what extend the size of the initial hit 

list influences the connectivity parameters for the  polyglu- 

tamine datasets. We calculated the networks for the pol-

ylgutamine data sets and for random hit lists using 20 co-

regulators and this time varied the number of hits. The 

percentage of included hits and the number of connections 

per hit was calculated, if instead of the top100-genes 30, 

50, 75, 125, 150, 200 or 300 hits are used for network con-

struction (Figure 3). The percentage of hits connected into 

these networks increases for the random hit lists, if the size 

of the lists gets larger (Figure 3A). At 300 genes, these lists 

already contain about 5 % of the yeast genome, making it 

very likely that a co-regulated partner for an individual hit 

is contained in the hit lists. Regarding the number of con-

nections per hit also the four experimental datasets show 

significantly higher readings compared to the random hit 

lists (p-values for 300 hits: < 1E-05 for all). In the random 

data most hits again have only one or two interaction part-

ners with one or two connections (Figure 3B). For the Q56 

and Q30 data sets, this type of database-guided clustering 

clearly exposes the most important transcriptional net-

works composed of differentially expressed genes. But for 

both described evaluation parameters – the number of hits 

in the network and the number of connections per hit – 

FIGURE 2: Analysis of network connectivity based on the used 

number of co-regulated genes. Connectivity parameters for hits 

derived from the Q56- and Q30 datasets were calculated for 100 

hits. The best 5-40 co-regulators were obtained from the SPELL 

data sheets. (A) Depicted are the number of hits, which are in-

cluded in the network and (B) the average number of connections 

per hit. As a control 100 random sets of genes were used and 

processed in the same manner. The error bars represent the 

standard deviation for the 100 random gene lists. 
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the usage of large numbers of co-regulators or hits eventu-

ally will lead to results, where the size of the random net-

works gets more similar to the networks based on experi-

mental results. This implies that selecting a reasonable 

number of hits and co-regulators is important to obtain 

significant results. We chose to include the top100-hits and 

20 co-regulators as well-balanced starting point. 

 

Addition of co-regulators predicted from databases in-

creases the connectivity of the network.  

When we inspected the matrix containing all network con-

nections we realized that many genes - even though they 

are not part of our top100-list – are highly connected to 

our top100-hits and thus are co-regulated in the SPELL-

database. Also in many cases these genes are indeed dif-

ferentially expressed, but just not strong enough to be part 

of the top100 genes we included in the hit list for network 

analysis. This points to a remarkable ability of this network 

construction method to correctly predict further co-

regulated genes based on the connections within the net-

work matrix. 

As a third parameter for network significance we aimed 

at deriving a score which quantifies this predictive ability of 

the network. To this end new genes, which are highly con-

nected in the network, were obtained from the connection 

matrix and exported as “list of predicted new co-regulated 

genes” (called connectors herein). To visualize their con-

nection to the top100-hit genes we included the connect-

ors into the network (marked by a grey frame). This has 

two positive consequences: first, it could include so far 

isolated hits into the network in a meaningful way. Second, 

the predictive strength of the network in general could be 

assessed based on these connectors by comparing the 

prediction with the real expression differences.  

We thus calculated networks of top100-hits from our 

microarray experiments as described before using 20 co-

regulated genes for each of them and expanded the net-

works by a maximum of 10, 20, 30, 40, 50, 75 or 100 con-

nectors derived from the network matrix based on their 

high number of connections to the top100-hits. After in-

cluding these connectors we again calculated the percent-

age of included hits. Indeed, we observe that some previ-

ously isolated genes from the hit list became part of the 

network when connectors are included (Figure S2A). Like-

wise the number of connections per hit increases with 

higher numbers of connectors in the network (Figure S2B). 

The inclusion of these connectors thus indeed improves 

the quality and information content of the networks. 

 

A scoring function can assess the accuracy of predicted 

co-regulators and provide statistical information about 

network quality.  

So far evaluation of the networks was based on the per-

centage of included hits and the number of connections 

per hit. After determination of these supposedly co-

regulated connectors, it now is possible to use the quality 

of these predictions to quantify the predictive ability of the 

network. This can be achieved by comparing the predic-

tions with the real expression values for these connectors. 

If they are indeed part of the transcriptional clusters as 

predicted by our clustering routine, they should be regu-

lated in the same direction in this microarray experiment. 

We thus define and implement a scoring function in our 

ClusterEx routine, which describes the quality of these 

predictions. This can be done by sorting all 5,815 genes 

from the array data set according to their expression dif-

ferences. The first 100 genes are identical to the top100-

list used to create the network. If the 50 predicted con-

nectors would be 101-150 in the sorted list of all array 

genes, the prediction would be perfect. We thus use the 

positioning of the connectors in the sorted list to deter-

mine a score (called CoRegScore) from 100 (best possible 

positioning of the connectors) to -100 (worst possible posi-

tioning of the connectors) and obtained these scores for 

our polylgutamine microarray data sets in the analysis. 

Indeed, all scores are clearly positive with values of 68 

(Q56up), 59 (Q56down), 38 (Q30up) and 80 (Q30down), if 

50 connectors are included (Figure 4).  

FIGURE 3: Analysis of network connectivity based on the number 

of initial hits. Connections between hits derived from the Q56- 

and Q30 datasets were calculated based on a variable number of 

hits. The top30-top300 most strongly regulated hits were used to 

construct a network. (A) Depicted are the number of hits, which 

are included in the interconnected network and (B) the average 

number of connections per hit. As a control 100 random sets of 

genes were used and processed in the same manner. The error 

bar represents the standard deviation for the 100 random gene 

lists. 
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To assess, whether these values show a statistically sig-

nificant deviation from random data, we performed the 

calculation of the CoRegScore on randomly generated ar-

ray data. Indeed, an average CoRegScore close to 0 was 

obtained after evaluating the 100 random array sets. The 

standard deviation of these random gene sets drops with 

the number of connectors included, suggesting that best 

results can be obtained, if about 50 connectors are derived 

for a network constructed as described (top100-hits with 

20 SPELL-derived co-regulators). p-values under this condi-

tion are determined to be 5.9E-05 (Q56up), 2.3E-05 

(Q56down), 0.0144 (Q30up), and <1E-05 (Q30down), im-

plying that the predictive ability of the Q30up direction is 

the weakest. This correlates also with the lower number of 

connections under this experimental condition and hints at 

a network, which may not significantly represent a coordi-

nated transcriptional response. For the other three net-

works instead, most predicted connector genes are indeed 

regulated in the same direction as the rest of the network 

they were calculated from. This shows that the co-

regulated clusters exposed by the algorithm behave pre-

dictable and thus likely represent transcriptional units in 

which all member genes respond as part of the response. 

 

Statistical evaluation of expression networks is generally 

applicable for yeast microarray datasets.  

Using several evaluation options we have demonstrated 

that the clustering of hits using SPELL-derived co-regulators 

in our ClusterEx algorithm generates significant networks 

for our polyglutamine data sets. To show that this ap-

proach is generally applicable for yeast microarray data 

sets, we picked ten microarray datasets from the collection 

of more than 10,000 experimental microarray data on the 

SPELL webserver. Picking ten data sets from this resource 

should provide unbiased information on the general func-

tionality of the algorithm. Data sets were used from a 

study on the heat shock response in yeast [24], a study on 

the overexpression of transcription factors [25], a study on 

the change in nutritional conditions [26], phosphate depri-

vation [27] and growth inhibition by rapamycin, iodide or 

thyamin among others [28-32] (datasets summarized in 

Table S1). We used the same parameters as outlined be-

fore (20 co-regulators from the SPELL list for the top100-

hits, maximum of 50 included connectors). We calculated 

for each of these the corresponding networks and deter-

mined the percentage of hits included. In all cases the per-

centage of included hits is at least two-fold higher com-

pared to random gene lists (Figure 5A). We also deter-

mined the number of connections per hit and find that 

each of the twenty networks performed better than the 

random data sets (Figure 5B). Some of the networks yield 

more than 200 connections per hit, whereas others are not 

as closely connected. Nevertheless, for all those experi-

mental data sets the described clustering approach results 

in a significant network structure. 

We then compute up to 50 connectors for each net-

work and include them to quantify the predictive strength 

as described by the CoRegScore. All networks constructed 

showed values higher than 0. They yielded scores between 

96 (Z-Score=5.43, p<1E-05) and 22 (Z-Score=1.25, 

p=0.1056). This implies that in most of these cases the co-

regulation analysis as outlined in our procedure (Figure 1) 

yields significant correlations and extracts transcriptional 

clusters based on the top100 differentially regulated genes, 

while also providing the connections for the visual descrip-

tion of these networks (Figure 6). In some cases, like for 

the response to heat (Figure S3B) this is highly significant, 

while in others, like for the overexpression of Hsf1 (Figure 

S3A) it becomes obvious that the predictive strength is 

much less pronounced due to a weaker and much less or-

chestrated response. We thus believe that the CoRegScore 

and the method to derive it from database-guided cluster-

ing could be a valuable tool in defining the significance of 

the connections and the information content in a clustered 

expression network. 

 

Clustered expression networks provide better significance 

of derived biological information.  

When visualizing the networks with Cytoscape it becomes 

apparent that in some cases distinct clustering units are 

observable in the same network. Thus, if more than one 

expressional cluster is part of the overall response, the 

described algorithm is able to assign the hits and divide 

them into individual parts of the response (see Figure 7). 

We aimed at testing, whether within these clusters signifi-

cant  biological   information  is  enriched.  To  this  end  we  

FIGURE 4: Analysis of connectors based on their real expression 

behavior. The CoRegScore evaluates to what extent connectors 

are regulated in the predicted direction. A positive score implies 

that the majority of algorithm-determined connectors are regu-

lated in the same direction as the top100-hits. To obtain a CoReg-

Score of 100, the predicted connectors have to be the next genes 

after the top100 in terms of expression differences. The CoReg-

Score is calculated as described in the materials and methods 

section. Depicted here is the variability of the CoRegScore de-

pending on the number of connectors derived from the pairwise 

co-regulation matrix. 100 random experimental sets were con-

structed and evaluated under the same conditions to obtain the 

average score of a random data set and the standard deviation of 

this value. 
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FIGURE 5: Evaluation of parameters for different exper-

imental setups. Different microarray experiments were 

used to test the general applicability of the clustering 

approach, the connectivity parameters and the CoReg-

Score. (A) Depicted here is the percentage of hits in-

cluded within the network upon analysis of the top100 

connected by 20 co-regulators obtained from SPELL. (B) 

The average number of connections per hit is shown 

under the same conditions. (C) The CoRegScore is calcu-

lated for each data set after addition of up to 50 con-

nectors and compared to the values for random data 

sets derived before. 
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manually isolated clustered regions in Cytoscape and test-

ed whether this selected group of hits provides more and 

better information about the functionality and the origin of 

the transcriptional response compared to the full unclus-

tered hit list. To evaluate the biological information hidden 

within the transcriptional clusters we analyzed them ac-

cording to their involved biological processes via the gene-

ontology terms (GO-terms) [33, 34] with the PANTHER web 

service [35]. We further determined enrichment of binding 

sites for transcription factors for the hits within the clusters 

using YEASTRACT [36] (Table S1). Indeed, in almost all cas-

es a striking improvement of the p values can be obtained 

for the isolated clusters compared to the full unclustered 

hit list. This shows that the full response may be composed 

of several reactions, which can be much better assigned to 

GO-terms or transcription factor dependencies based on 

isolated clusters (Figure 7). Notably, even for small clusters, 

now individual transcription factors can be assigned by 

YEASTRACT, which before was impossible when the full 

unclustered hit list was used.  

The described clustering approach thereby disentan-

gles the multifaceted cellular response. This in particular is 

evident for the response to phosphate starvation (Figure 6). 

Here, for example, we receive significant enrichment of the 

transcription factors Gcn4 (cluster down1, p-value: 5.0E-

05) and Pho4 (cluster up1, p-value: 4.57E-08) for phos-

phate starvation in individual clusters, but hardly any sig-

nificance, when the full list is used as query with p-values 

of 0.99 and 0.108 respectively (Table S2, Figure 7). The 

same holds true for biological processes, which are also 

positively affected by investigating clustered subsets com-

pared to the full hit list (Table S2). The detailed analysis of 

the yeasts’ response to phosphate starvation thereby re-

veals 4 different clusters related to 4 different biological 

processes: direct phosphate metabolic processes, the re-

sponse to oxidative stress, iron homeostasis and purine 

synthesis. If the full hit list is analyzed, the top 10 GO-terms 

of biological processes are all assigned to iron homeostasis 

related processes. Thus, the described algorithm may not 

only help to visualize the transcriptional networks and ob-

tain statistical information on the networks, but also to 

group the genes to increase the likelihood of obtaining 

significant biological information from databases helping to 

identify multiple transcription factors and biological func-

tions. 

 

DISCUSSION 

Here we set out to define a way to cluster microarray data 

according to their expressional relationship and to obtain 

information on the significance of this clustering approach. 

The outlined approach allows obtaining good visualization 

of microarray results and provides solutions for several 

analysis problems. Initially, the clustering helps to shift the 

focus of the analysis towards the whole transcriptional 

response. The visual clustering versus the presentation in a 

table helps to understand the relationship of the hits to-

wards each other, aids to visualize the potential transcrip-

tional relationships, and further supports determining the 

transcription factors whose activation and inactivation 

results in the described responses. This might be hampered  

as long as all hits are used to search the relevant databases, 

but by using clusters this becomes more feasible.  

Beyond that, the scoring function and the other pa-

rameters described enable a judgment of the quality of the 

network and allow evaluating the significance of the ob-

tained results beyond the statistical significance of each 

individual hit. Despite their good performance in our study, 

parameters evaluating the network solely based on its in-

cluded hits and connection numbers have shortcomings 

because they neglect all the genes, which are not part of 

the hit list. The CoRegScore instead connects the top100-

hits used to construct the relevant network with co-

regulated genes, which perform below the top100-list. 

Thus, it evaluates the significance of the analysis in the 

context of the large part of the experimental data set, 

which would be omitted if the network is just derived from 

the top100-hits. 

Thus, analyses based on these three parameters - in-

cluded hits, connections per hit and CoRegScore – may 

have internal evaluation criteria that possibly allow per-

forming the full clustering analysis without the need to 

average biological replicates before. Instead, biological 

replicates could be individually analyzed by the described 

approach and then be compared based on the transcrip-

tional clusters. These might be differentially affected in 

different biological replicates, which may be a realistic re-

sult analyzing transcriptional networks. To support this 

approach a server-based analysis tool was implemented, 

which is accessible from 

http://www.richterlab.de/Protocols/Protokolle-

Software.htm. It performs an analysis on provided hit lists 

and returns the calculated network. 

Our approach to clustering the top100-hits of any yeast 

microarray experiment would be the automated procedure 

performed by ClusterEx: 1.) The top100-hits can be deter-

mined from the array data by the user. 2.) These hits are 

assembled into a network matrix by ClusterEx using co-

regulatory relationships from the SPELL database. 3.) Up to 

50 connectors are determined from the interaction matrix 

and put into the network together with their connections. 

4.) The determined connectors are evaluated to obtain the 

CoRegScore. If the CoRegScore is positive (significance is 

between 40 and 100), the clustering as visible in the net-

work is significant. 5.) The network matrix is used in Cyto-

scape to visualize the relevant clusters together with the 

connectors, which improve the clustering due to their high 

connectivity. The “Edge-weighted spring embedded layout” 

according to Kamada and Kawai [38] is optimal for this 

visualization. 6.) Individual clusters are selected and GO-

terms and transcription factors are found with PANTHER 

and YEASTRACT to guide further analyses and experiments. 

Beyond the results presented for the yeast model or-

ganism it will also be interesting to see whether this ap-

proach can lead to similar results for higher organisms, 

such as C. elegans. Unlike yeast, nematodes consist of 

many different cells and cell types,  each with its own  tran- 
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FIGURE 6: Visualization of networks upon glucose-depletion and phosphate starvation. The top 100-hits of different datasets were con-

nected in ClusterEx and visualized in Cytoscape. Connectivity is retrieved as described by obtaining 20 coregulators from SPELL and including 

50 connectors. The edge-weighted spring embedded layout is used to position highly connected genes in close proximity in Cytoscape. 

Genes are colored according to their log differences in the respective experiments. Clusters which are further analyzed for their GO-terms 

via PANTHER and for their transcription factors via the YEASTRACT web service are marked with black boxes. A) Genes differentially regulat-

ed in S. cerevisiae upon growth on the carbon sources glucose versus glycerol [37] were built into an interconnected network. The top100 

hits (black frame) and 50 connectors (grey frame) were included into the network. Upper panel: downregulation, lower panel: upregulation. 

B) Genes differentially regulated in S. cerevisiae upon phosphate starvation [27] were built into an interconnected network. The top100 hits 

(black frame) and 50 connectors (grey frame) were included in the network. Upper panel: downregulation, lower panel: upregulation. 
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scriptional signature and, potentially, its specific response 

to developmental and environmental alterations. 

 

MATERIALS AND METHODS 

Datasets 

The experimental datasets used in this study are based on 

Affymetrix Yeast Genome 2.0 microarray datasets consisting 

of 5815 expression values, which were evaluated previously 

[21]. In short, yeast strains were transformed with a yeast 

expression plasmid harboring a polyglutamine-construct con-

sisting of 56 glutamines. Likewise, yeast cells were trans-

formed with a construct, leading to expression of an identical-

ly designed protein with either 30 or zero glutamine residues. 

Yeast cells were kept on transformation plates for three days 

and then harvested for RNA extraction and microarrays exper-

iments. The microarrays experiments were performed and 

evaluated to yield the MAS5 and RMA-normalized values at 

the “Kompetenzzentrum für Fluoreszente Bioanalytik” at the 

Universität Regensburg. 

As example datasets to test the described algorithm and 

parameters we used PCL-files from the sample set collection 

at http://spell.princeton.edu/spell/search/dataset_listing. All 

the sets we analyzed are also shown in the final figures. 

 

ClusterEx implementation 

The full analysis procedure is performed automatically by the 

routine called ClusterEx, starting from loading the input files 

with the expression values to export of the network files and 

statistical parameters. MAS5- or RMA-processed datasets or 

PCL-files  from  SPELL can  be  used as input files.  Alternatively, 

hit lists can be provided directly. Furthermore the number of 

wanted top-hits and the number of co-regulators can be set. 

Noise thresholds can be set and noise was considered 

throughout the study at MAS5-values below 15, a value about 

30 % higher than the threshold, where statistical scattering of 

the results for the two conditions increased sharply [21]. The 

C/C++ based routine was originally developed in the IDE Dev-

C++ (Bloodshed Software) and further developed in the IDE 

Code::Blocks (The Code::Blocks Team). The routine is con-

trolled from a graphical user interface developed in Visual 

Studio 2005 C# (Microsoft Corporation). Calculations were 

performed on a HP 250 notebook with 8 GB memory and Intel 

Celeron Dual-Core 2.16GHz processor. Analysis time for 100 

hits with 20 co-regulators is in the range of 30 seconds.  

ClusterEx also can be run via a web interface accessible 

from http://www.richterlab.de/Protocols/Protokolle-

Software.htm. The Apache2/PHP webserver connects from 

this page to the same routine running on a Raspbian Linux 

operating system. Analysis time for 30 hits with 10 co-

regulators is currently in the range of 3 seconds and the web 

service will be upgraded periodically to allow calculations of 

more extensive networks. 

 

Network construction 

Network construction was implemented in ClusterEx as de-

scribed [21]. In short, as shown in Figure 1 for each hit a num-

ber of renaked co-regulators were obtained from the SPELL 

webpage (http://spell.yeastgenome.org/), usually 20. The hit 

plus the 20 co-regulators yield 441 pairwise interactions (con-

nections). These were collected in the interaction matrix for 

each hit, resulting in 44,100 connections for 100 hits if 20 co-

regulators are used and 168,100 pairwise connections, if 40 

co-regulators are used. These were sorted to ensure that each 

gene pair is only present once in the matrix, keeping the num-

ber of connections as a characteristic parameter for each gene 

pair. These numbers are later used to obtain the “connections 

per hit” as depicted in Figure 2B, S2B. The network together 

with the actual expression values for each of the genes includ-

ed was exported as file for import and visualization in Cyto-

scape [23]. All networks shown in this study were clustered 

using the ClusterEx-provided interaction matrix and the ener-

gy minimization function “Edge-weighted spring-embedded 

layout” from Cytoscape, which is based on an algorithm by 

Kamada and Kawai [38]. After this only very limited graphical 

optimization was performed to better align overlapping nodes. 

 

Identification and evaluation of the best connector genes 

Clusters as obtained from the top100-hits are unlikely to con-

tain all the genes which belong to these clusters. Many of 

these instead are going to be part of the remaining 5,715 

genes of the 5,815-sized full data set. These “missing genes” 

can be in parts obtained from the connection matrix, as they 

will be listed as co-regulators in the SPELL database and identi-

fiable based on their large number of connections to the 

top100-hits. Identification of these best connected non-hit 

genes, called connectors, was then based on their perfor-

mance within the co-regulation-matrix. A maximal number of 

connectors is given by the user and the threshold-number of 

connections required to be added was then determined by 

ClusterEx. If any gene had more connections to a hit gene then 

required by this threshold, it was maintained as connector.  

The connector genes increase the percentage of hits con-

nected in the network and also the number of connections per 

hit considerably. They additionally enable the evaluation of a 

new parameter, describing the predictive quality of the net-

work (CoRegScore). To obtain this CoRegScore for the con-

nectors the experimental datasets were ranked with the high-

est up-regulated gene on top. The positions of the algorithmi-

cally derived connectors were then added up and used to 

calculate the score, which varies between 100 (perfect predic-

tion) and -100 (entirely wrong prediction) with 0 being a use-

less prediction based on the equation: 

 

���������� = 100 − 200 ∗
������������������ − �������������������

������������������� − �������������������
 

 

 

Random networks 

A procedure to obtain random hit lists was implemented for 

the genes included in the yeast FASTA genome library. 100 of 

these random sets were analyzed in the same manner as the 

experimental data sets. Genes with no entry in our SPELL-

derived database were omitted from the analysis, leading 

currently to the exclusion of about 10-15% of the genes. The 

variation in results between the 100 different random hit lists 

was used to obtain standard deviations for the random hit lists. 

Selected random networks were visualized in Cytoscape to 

confirm that the connection parameters were calculated cor-

rectly.  

Furthermore, a procedure to generate random microarray 

expression datasets was implemented and here also 100 da-

tasets were analyzed to evaluate the significance of the 

CoRegScore. The calculation was performed identically to the 

calculations on the experimental datasets and the results from 

the  random  sets  were  used to  calculate the  average  CoReg 
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FIGURE 7: Biological processes and transcription 

factors of isolated clusters. Clusters are marked in 

Cytoscape as indicated in the corresponding figures 

(Figure 6, S3). The gene-ontology term (GO-term) 

biological process of the genes (upper panel) and 

the transcription factors regulating the genes (lower 

panel) of the isolated clusters (blue) and the full 

gene hit list (red) are depicted. The full analysis is 

listed in Table S2. The negative log of the p-value of 

the three highest ranking terms of the cluster analy-

sis and the corresponding values of the full hit lists 

analysis are depicted. The red line marks the p-value 

of the best GO-term or transcription factor, when 

analyzing the non-clustered control of all hits. “-“ = 

analysis did not yield in any significant results. 
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Score for the random datasets and the standard deviation of 

this score. Due to the low connectivity of the random data 

sets  often  only  few genes  were included as connectors  even  

though 50 were approached. This could lead to a higher 

standard deviation, but we refrained from excluding data sets, 

where only 1 or 2 connectors could be identified. 

 

Evaluation of isolated clusters by PANTHER and YEASTRACT 

The networks generated by our approach were analyzed in 

Cytoscape. In order to scrutinize the biological relevance of 

the clustering approach, we analyze transcription factors regu-

lating the isolated clusters and the biological processes the 

clustered genes are involved in. Genes which are grouped 

together and form isolated clusters are marked in the corre-

sponding networks (Figure 1, 6, S3). Via the PANTHER web 

service we analyzed the biological processes the clusters are 

part of [35]. Hereby the lists were analyzed for statistical 

overrepresentation of the gene ontology term “biological pro-

cess”. The hits were sorted according to their p-values on the 

website. The transcription factors regulating isolated clusters 

were analyzed via the YEASTRACT web service [36]. We evalu-

ated these lists for all transcription factors with physical bind-

ing evidence. For both analyses the three highest ranking hits 

were summarized in Table S1. 

 

Statistics  

Statistical analysis was performed for three parameters: the 

percentage of hits that could be connected in the network by 

at least one connecting gene. Furthermore, the average num-

ber of connections per hits was calculated. Based on this pro-

cedure the parameters used to construct the network, like the 

size of the initial top-hit list and the number of co-regulators 

obtained from the SPELL datasheets, were evaluated and re-

fined. Also the CoRegScore was evaluated statistically based 

on the results from the random datasets. 

The p-values for the differences in parameters between 

the networks derived from microarray data and random da-

tasets were calculated based on the Z-score defined below. 

 

� =
�� − μ

���
 

 

The values for µ and σX were obtained from the evaluation 

of 100 random datasets, with µ being the average value and σX 

being the standard deviation. The value for X originates from 

the evaluation of the experimental data set. The p-value, to 

show the probability of obtaining a higher reading compared 

to X from any random data set, can be obtained from the Z-

score tables as “upper tailed tests” or “one-tail test” on 

http://www.socscistatistics.com/pvalues/normaldistribution.a

spx. 

 

Programs and databases  

We used the SPELL (Serial Pattern of Expression Levels Loca-

tor) database for evaluating our datasets 

(http://spell.yeastgenome.org/). SPELL is a query-driven 

search engine for large gene expression microarray compen-

dia.  

We used the PANTHER web service 

(http://amigo.geneontology.org/amigo/landing) for identify-

ing GO-Terms within the isolated clusters. The PANTHER (Pro-

tein ANalysis THrough Evolutionary Relationships) Classifica-

tion System was designed to classify proteins (and their genes) 

in order to facilitate high-throughput analysis [35]. YEASTRACT 

(http://www.yeastract.com/) was used to analyze transcrip-

tion factors/regulators that potentially regulate an isolated 

cluster [36]. 
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