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Abstract
Sepsis is a common clinical critical disease with high mortality. The excessive release of cytokines from macrophages is the
main cause of out-of-control immune response in sepsis. Mesenchymal stem cells (MSCs) are thought to be useful in
adjunctive therapy of sepsis and related diseases, due to their function in immune regulation, anti-inflammatory, anti-
bacterial, and tissue regeneration. Also there have been several successful cases in clinical treatment. Some previous studies
have shown that MSCs regulate the function of macrophages through secreting cytokines and extracellular vesicles, or
transferring mitochondria directly to target cells, which affects the progress of sepsis. Here, we review the regulation of
MSCs on macrophages in sepsis, mainly focus on the regulation ways. We hope that will help to understand the im-
munological mechanism and also provide some clues for the clinical application of MSCs in the biotherapy of sepsis.
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Introduction

Sepsis is a common severe disease in clinic, which is
characterized as a life-threatening organ dysfunction
caused by the host’s maladjusted response to infection.
About eight million people die of sepsis every year around
the world, with a mortality rate of 25–50%, and the
prevalence rate is still increasing year by year.1 Also the
high mortality rate of severe patients with COVID-19 is
also mainly caused by septic shock.2

The impaired immune function and out-of-control im-
mune response are the main pathological mechanism for
sepsis, and the excessive release of “waterfall” cytokines
from activated macrophage is the main cause of immune
dysfunction, which also is the key point for the treatment of
sepsis.3 However simply inhibiting macrophages is not a
good treatment for sepsis because the over inhibition of
immune response will lead to secondary infection and the

high mortality.4,5 Therefore, cell therapy is considered to be
an effective adjunctive treatment to inhibit the over-
activation of immune cells and block the release of
cytokines.6

Mesenchymal stem cell (MSC) is a kind of adult stem
cells with self-renewal ability, multi differentiation
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potential, and immune regulation ability.7 MSCs are
thought hopeful in sepsis treatment for the abilities of
immune regulation, anti-inflammatory, anti-bacterial, and
tissue regeneration.8 Among them, the regulation of MSCs
on macrophages is thought to be one of the key points.9

Here, we searched the publications from the databases
such as Web of Science, Elsevier Science Direct,
SpringerLink, Wiley Online Library, MDPI, and Pubmed,
mostly in past 10 years, in the field of regulation ways of
MSCs on macrophages in the progress of sepsis. The
keywords were mainly sepsis & MSC & macrophage. We
hope to promote the study on septic immunological
mechanism and provide some clues for the clinical ap-
plication of MSCs for sepsis therapy.

Role of MSCs in the progress of sepsis

Because of these functions of immune regulation, anti-
inflammatory, anti-bacterial, and tissue regeneration,
MSCs are thought to be good candidate in treating sepsis
and septic shock related diseases with immune and in-
flammatory dysfunction.8 MSCs can regulate inflammatory
response through paracrine cytokines and intercellular
interaction, which can enhance bacterial clearance, reduce
the level of pro-inflammatory factors, strengthen tissue
repair ability, improve multiple organ dysfunction,10,11 and
reduce mortality in sepsis.3,4 Clinical trials have shown that
MSCs reduce the Sequential Organ Failure Assessment
(SOFA) score and improve the survival rate of sepsis
patients.12

Role of macrophages in sepsis

As the central cells in innate and adaptive immunity,
macrophages play important roles in all stages of sepsis. In
the early stage of bacterial infection, macrophages are
activated by pattern recognition receptor (PRR), showing a
pro-inflammatory state and releasing a large number of
inflammatory factors and cytokines.13 While in the late
stage of sepsis, the bactericidal activity of macrophages is
reduced, that causes immunosuppression and increases
secondary infection of sepsis.4

The mitochondrial autophagy of macrophages also plays
a role in the progress of sepsis. Inhibiting autophagy of
macrophages increases the release of reactive oxygen spe-
cies (ROS) and affects the polarization and inflammatory
bodies activation, and then influencing the prognosis of
sepsis.14,15 In addition, some studies have shown that in the
sepsis mouse models induced by cecal ligation and puncture
(CLP), bacteria exposed to the peritoneal cavity increases the
expression of Cx43 and extracellular ATP release in mac-
rophages. Through binding with purinergic receptors in
macrophages themselves, ATP induces the release of pro-
inflammatory factors, resulting in further deterioration of

sepsis.5,16,17 In addition, the activation of purinergic re-
ceptors can also damage the activation of NLRP3 inflam-
matory bodies, which is positively correlated with the high
mortality of sepsis patients.18 Inhibiting the secretion of pro-
inflammatory factors decreases the myocardial dysfunction
and mortality in sepsis.19

MSCs regulate macrophages in sepsis

MSC transplantation regulate macrophages in the progress
of sepsis mainly in several ways: secreting paracrine cy-
tokines or extracellular vesicles or directly forming
nanotubes/gap junctions between cells to transfer
messages.9,20–23 Below, we review how these ways play
roles and summarize them in Figure 1.

MSCs regulate macrophages through paracrine
factors to affect sepsis

Macrophages are the main target cells of MSCs in treating
sepsis.24 MSCs secrete cytokines to regulate the production
of inflammatory factors and polarization of macrophages,
affect phagocytosis and other related functions, inhibit
macrophage infiltration in tissues, and reduce pathological
damage of organs, all of those effectively improve the
survival rate of sepsis.

In sepsis, macrophages are mainly composed by pro-
inflammatory M1 type, and the number of macrophages is
related to the prognosis of sepsis.25MSCs secrete cytokines
to induce the transformation of macrophage polarization
from M1 to anti-inflammatory M2 type, which regulates
the out-of-control inflammatory response in sepsis.13,26,27

Also, MSCs enhance the phagocytosis and bacterial killing
ability of macrophages through heme oxygenase-1 and
improve the survival rate of septic animals.28

MSCs also produce prostaglandin E2 (PGE2) that binds
with the receptors EP2 and EP4 on the surface of mac-
rophages, which induces polarization to M2 type and in-
creases the secretion of anti-inflammatory cytokine IL-
10,24 in turn activates STAT6 and mTOR signaling,29 in-
duces the production of PI3K and ROS,30 affects the ac-
tivation of inflammatory body NLRP3,31 decreases the
inflammation and improves acute liver failure, and finally
relieves symptoms of sepsis.

Qiu et al. have found that MSCs secrete TGF-β1 to
induce LPS stimulated-macrophage polarization to M2
type through Akt/FoxO1 signaling pathway, which en-
hances phagocytosis, inhibits excessive inflammatory re-
sponse in sepsis.32

MSCs also secrete CCL2 and CXCL12 as heterodimers,
which bind with receptor CCR2 on the surface of mac-
rophages, upregulate the expression of IL-10 and induce
polarization to M2 type, and reduce intestinal injury.33
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MSCs also affect the inflammatory phenotype of sepsis
by secreting lactic acid26 to induce M2 polarization and
secreting syndecan-2 to regulate the bacterial clearance
ability of macrophages34

In conclusion, MSCs can secrete cytokines to regulate
macrophages and play roles in the progress of sepsis.

MSCs regulate macrophages through extracellular
vesicles to affect sepsis

Extracellular vesicles (EVs) include exosomes, micro
vesicles (MVs), micro particles (MPs), and apoptotic
bodies. MSCs can secrete EVs to regulate macrophages
and affect the progress of sepsis.20

Exosomes are vesicles formed by fusion of multi-
vesicular bodies (MVBs) and plasma membrane, which
can mediate signal transfer and affect the function of target
cells. Many studies have investigated the role of exosomes
fromMSCs in regulating macrophages in sepsis, especially
miRNA among exosomes. For example, mir-146a35 and
mir-2136 in exosomes increase the efficacy of MSCs
pretreated by IL-1β in septic mice. MiR-17 in exosomes
mediates the activation of NLRP3 inflammasomes in
macrophages and reduces LPS induced acute lung injury.37

The exosomes enriched with exogenous mir-223 reduce the
inflammatory response in septic mice and protect from
heart injury.38 Exosomes from MSCs can also regulate
macrophage polarization by inhibiting glycolysis39 or af-
fect the production of IL-27 to improve LPS induced lung

injury.40 Vesicles similar to exosomes fromMSCs decrease
the expression of TNF-α and IL-6 in macrophages and
alleviate inflammatory response in sepsis mouse models.41

The mitochondria transfer mediated by EVs fromMSCs
to macrophages increases oxidative phosphorylation and
ATP production, promotes polarization to M2 type, in-
creases bacteria clearance, and reduces lung injury in LPS
induced septic mice.20,42 The transplantation of exosomes
from apoptotic and healthy MSCs both significantly im-
prove the survival rate of septic rats and reduce pulmonary
inflammation.43

In conclusion, both of cytokines and extracellular
vesicles secreted from MSCs play roles in the progress of
sepsis by regulating macrophages. Also some studies
have shown that conditioned medium (CM) from MSCs
also induces macrophage M2 polarization27 and improves
lung injury and inflammation in mice treated by LPS.44

MSC-CM demonstrates a potent anti-inflammatory effect
on LPS-activated macrophages, and the IL4 stimulation
improves this effect.45 These results further identify the
role of MSC paracrineon macrophages in sepsis, in-
cluding factors and extracellular vesicles in conditioned
medium.

MSCs regulate macrophages through direct
intercellular transfer to affect sepsis

MSCs can transfer mitochondria and other substances by
forming tunneling nanotubes (TNT)22 or gap junctions46,47

Figure 1. The regulation ways of MSCs on macrophages in sepsis.
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with target cells. In sepsis, several studies have investigated
on the transfer from MSCs to macrophages.

MSCs transfer mitochondria through nanotubes to
macrophages, which can enhance oxidative phosphoryla-
tion and bioenergy, and increase phagocytosis under in-
flammation48 and bacterial clearance ability,22 while Cx43-
formed-gap junctions are not involved in this progress.22

Though M2 polarization of macrophages can be induced
only through paracrine of MSCs in sepsis, which is further
promoted with the presence of intercellular contact, sug-
gesting that direct contact between cells is also necessary
for the regulation of MSCs on macrophages.49 However,
some other studies have shown that direct intercellular
contact between MSCs and macrophages is not necessary
for the treatment of LPS induced sepsis.50

In addition to the aforementioned, some studies have
shown that MSCs also regulate the progress of sepsis by
affecting the production of ROS, bacterial killing
ability,28,30 or the activation of NLRP3 inflammatory
bodies51 in macrophages, without illustrating the regula-
tion ways of MSCs on macrophages.

Precondition improves the curative effect of MSCs
on sepsis via regulating macrophages

The regulation effect of MSC is related to the inflammatory
state of the body. The inflammatory level is high, the
better.52 Therefore, pretreating MSCs with inflammatory
factors before injection can improve the curative effect.
TGF-β1 overexpression in MSCs inhibits macrophage
infiltration in tissues, reduces the level of pro-inflammatory
cytokines and organ damage in septic mice.53 Pretreating
MSCs with IL-1β significantly inhibits M1 phenotype of
macrophages, while promotes M2 phenotype, which en-
hances immunosuppression, accordingly alleviates liver
and lung injury and increases the survival rate of sepsis
model mice,35 maybe via the abundantly upregulation of
miR-21 and package in exosomes from MSCs upon IL-1β
stimulation.36 Iron oxide–based synthetic nanoparticles
(SPION) pretreated MSCs promote macrophages to po-
larize towards the M2 phenotype under sepsis-induced
liver injury in mice.54 Similarly, IL-4 stimulated MSCs
improve the anti-inflammatory effect on LPS-activated
macrophages.55 From all of these results, MSCs precon-
dition may be a promising therapeutic approach to improve
outcome in septic patients.

At present, infection control and supportive therapy are
still the main therapeutic methods on sepsis. However,
adjunctive therapy is considered a promising direction to
improve the survival rate. Some phase I/II clinical and
preclinical trials56 have been processed via MSCs intra-
venous injection.57–61 These trials proved that MSCs were
safe62 in treating sepsis without obvious side effects. But

the sample size was still not large enough to identify the
effectiveness.

The limitations of clinical application include the var-
iance of activity and quality of MSCs cultured in vitro.
Also, the functional heterogeneity of MSCs may play its
part. In addition, the mode and timing of MSC trans-
plantation should be considered. The answers of these
questions will help to develop more effective MSCs for
clinical treatment of sepsis.

The limitation of the review is only focus on the reg-
ulation ways of MSCs on macrophages in sepsis. Maybe
the cellular mechanism behind the ways is more significant
for the clinical application of MSCs in sepsis. Also, in
sepsis the damages of tissues and organs affect the cellular
microenvironment, for example, in intestinal tract.63 Then
how the microenvironment affects the function of MSCs,
which is not well investigated. Now only some in vitro data
show that septic serum or LPS precondition affect the
function of MSCs.64–66 These questions need more in-
vestigation to summarize and illustrate in future.

Conclusion

Here, we review the regulation ways of MSCs on mac-
rophages in the progress of sepsis mainly through secreting
cytokines and extracellular vesicles or transferring mito-
chondria directly between cells by forming nanotubes/gap
junctions.
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