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Abstract

The present study aimed to improve the accuracy of genomic prediction of 16 agronomic

traits in a diverse bread wheat (Triticum aestivum L.) germplasm under terminal drought

stress and well-watered conditions in semi-arid environments. An association panel includ-

ing 87 bread wheat cultivars and 199 landraces from Iran bread wheat germplasm was

planted under two irrigation systems in semi-arid climate zones. The whole association

panel was genotyped with 9047 single nucleotide polymorphism markers using the genotyp-

ing-by-sequencing method. A number of 23 marker-trait associations were selected for traits

under each condition, whereas 17 marker-trait associations were common between terminal

drought stress and well-watered conditions. The identified marker-trait associations were

mostly single nucleotide polymorphisms with minor allele effects. This study examined the

effect of population structure, genomic selection method (ridge regression-best linear unbi-

ased prediction, genomic best-linear unbiased predictions, and Bayesian ridge regression),

training set size, and type of marker set on genomic prediction accuracy. The prediction

accuracies were low (-0.32) to moderate (0.52). A marker set including 93 significant mark-

ers identified through genome-wide association studies with P values� 0.001 increased the

genomic prediction accuracy for all traits under both conditions. This study concluded that

obtaining the highest genomic prediction accuracy depends on the extent of linkage disequi-

librium, the genetic architecture of trait, genetic diversity of the population, and the genomic

selection method. The results encouraged the integration of genome-wide association study

and genomic selection to enhance genomic prediction accuracy in applied breeding

programs.
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Introduction

The world wheat production in 2020 is estimated at 762.7 million tons [1]. Bread wheat (T. aes-
tivum) has approximately 10.67 grams of proteins and 47.54 grams of carbohydrates (per 100

grams of seeds), which is remarkably higher than other cereals and makes bread wheat one of

the most strategic crops [2]. Nonetheless, it should be noted that the quality of bread wheat

amino acids is not good enough for the human body and should be consumed along with

other sources of proteins [3].

Wheat is a highly adapted plant species which can grow between the latitudes of 30˚ to

60˚N and 27˚ to 40˚S [4]. In the Middle East, drought stress normally occurs at the end of the

growing season when the spike has already appeared. Drought and heat stresses can dramati-

cally decrease yield in this phase of growth [5]. Drought stress affects many vital biological pro-

cesses in plants such as photosynthesis, respiration, and metabolism [6, 7]. In the Persian

plateau, where most of the climate zone is arid or semi-arid, farmers are very well-trained dur-

ing the centuries to deposit rainwater throughout spring for irrigating farms at the end of the

growing season when there is no rain during the seed development stage [8]. The Persian

farmers irrigate their farms two to four more times with the stored water after spike appear-

ance to avoid yield loss due to late-season drought stress [8].

Genetic studies have identified many quantitative trait loci (QTL) for wheat traits (https://

triticeaetoolbox.org; http://plants.ensembl.org). However, some early known QTL were not

suitable for identifying candidate genes or even marker-assisted selection (MAS) due to the

unsatisfactory marker density or limited recombination rate [9]. After introducing genotyp-

ing-by-sequencing (GBS) [10] and implementing wheat genome sequencing projects [11, 12],

many single nucleotide polymorphisms (SNPs) of complex traits are found using the genome-

wide association study (GWAS) [5]. GWAS can identify QTL with the use of high marker den-

sity in complex genomes of diverse or breeding populations [9]. However, these SNPs can be

putative with minor allele effects [5]. All recent studies have shown that agronomic traits can

be significantly affected by environmental stresses [13]. Therefore, studying the genetic basis

of agronomic traits under stress conditions will help accelerating genetic gain in breeding

programs.

Genomic prediction (GP) [14] will boost the speed and efficiency of breeding programs by

increasing selection accuracy and reducing time cycles [15]. Genomic selection (GS) produces

a genomic estimated breeding value (GEBV) using all minor and major effects QTL in the

genome, so that candidate genes can be selected by genotyping before phenotyping [15]. GP

uses all markers within a model to train a prediction model in the training set (TS) which

includes all genetic effects, without considering how minor the genetic effects are [8, 15]. The

model will be applied to a validation set (VS) to estimate the accuracy of GP. The genetic arti-

chature of traits, population structure, GS method, TS and marker set (MS) are major factors

that can alter GP accuracy [15–18]. Many studies have reported moderate or high GP accuracy

for quantitative traits in different populations of wheat (Triticum aestivum L.) [15], rice (Oryza
sativa L.) [17], oat (Avena sativa L.) [19], maize (Zea mays L.) [20], switchgrass (Panicum vir-
gatum L.) [21], barley (Hordeum vulgare L.) [22], and wheatgrass (Thinopyrumn intermedium)

[23].

The present study determines GP accuracy using alleles derived from a mixed population

of 87 cultivars and 199 landraces of Iran bread wheat germplasm. The goal was to optimize

GP accuracy using different population structures, GS methods, TS sizes and types of MSs

for 16 agronomic traits under terminal drought stress (TDS) and well-watered (WW)

conditions.
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Materials and methods

Plant materials and field trials

A collection of two hundred and eighty-six Iran breed wheat accessions including 199 landra-

ces (collected during 1931–1968 in Persian plateau) and 87 cultivars (released during 1942–

2014), was kindly provided by the University of Tehran (UT) and Seed and Plant Improve-

ment Institute (SPII), Karaj, Iran. The detailed information about the landraces and cultivars

is given in S1 and S2 Tables in S1 File. The experiments were carried out at the Kheirabad

Agricultural Research Station (36˚31’51.7"N and 48˚45’29.9"E) in the Zanjan province and the

Agricultural Research Farm of Karaj Islamic Azad University (35˚43’44.1"N and 50˚49’44.6"E)

in Alborz province during the 2017–2018 cropping season using two separated alpha lattice

designs in each location with two replications for each experimental design. The plots were 1

m in length, 1 m in width, and 0.5 m apart. Drip irrigation method was used for watering with

the use of 2 tapes for each plot. Irrigation was conducted every ten days till the end of the spike

appearance of all genotypes. When, some genotypes were in the seed development stage, TDS

was inducted by terminating irrigation for one design in each location whereas another design

was WW three more times. This issue occurs in some parts of the Persian plateau and the Mid-

dle East, naturally. Weather conditions were recorded during the cropping season (S1 Fig in

S2 File). Both Zanjan and Alborz provinces are located in a cold semi-arid climate zone.

Genotyping and quality control

The genotyping-by-sequencing (GBS) [10] method was used for DNA fingerprinting. The

DNA extraction and library construction have been previously described for this collection

[24]. The Trait Analysis by aSSociation Evolution and Linkage (TASSEL) software [25] was

used to use the Universal Network Enabled Analysis Kit (UNEAK) pipeline [26] for SNP call-

ing. The W7984 genome was used as the reference genome. The call success rate was greater

than 85%. SNPs with a missing rate of> 20% were ruled out. SNPs with a minor allele fre-

quency (MAF) < 5% were excluded as well. Unanchored SNPs were removed too. The

remaining missing data were imputed using the LD KNNi method in TASSEL software [25].

Finally, a total of 9047 SNPs were used for further analysis.

Population structure and kinship

The population structure was evaluated by the Bayesian clustering approach with the use of an

admixture model in STRUCTURE software [27]. The number of subpopulations (K) was

assessed with the use of 10000 burn-in and 10000 Markov Chain Monte Carlo (MCMC) for

K = 1 to 10 in 10 independent runs. The best K value was estimated by ΔK statistic [28] in the

structure harvester website (http://taylor0.biology.ucla.edu/structureHarvester). Two subpop-

ulations (SBP-I and SBP-II) were identified within the association panel. The SNP calling was

performed for each subpopulation, and 7714 SNPs for SBP-I and 5873 SNPs for SBP-II were

identified. The 4785 markers were common between SBP-I and SBP-II, which were systemati-

cally separated for further analysis. The population structure matrix (Q-matrix) was obtained

for the association analysis of the whole population. In addition, principal component analysis

(PCA) was conducted on the SNP data set with the prcomp function using the tidyverse [29]

package in the R environment. The first three PCs were plotted versus each other using the

plotly [30] package to have a comprehensive perspective of the population. Also, a pairwise

kinship coefficient matrix (K-matrix) that estimates the probability of the recent co-ancestry

between genotypes [31] was achieved by the EMMA algorithm [32] embedded in the Genomic
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Association and Prediction Integrated Tool (GAPIT) [33] package in the R environment using

the complete SNP data set.

Molecular markers and linkage disequilibrium (LD)

The distribution of molecular markers and LD estimates was calculated for the whole associa-

tion panel (WAP) and each subpopulation, separately. LD among markers was estimated for

each chromosome using the full matrix option in TASSEL software [25]. Pairwise LD was mea-

sured as a squared correlation coefficient of alleles (r2) [34]. The cut-off line (r2 > 0.02) was

chosen following Sukumaran et al. [35]. The percentage of marker pairs and LD estimates

above the critical LD was determined for each chromosome and genome. Meanwhile, pairwise

LD estimates were plotted versus the genetic distance (cM), and then the LD decay curve line

was fitted on the data by LOESS regression model [36].

Phenotypes

Phenotypic measurements included days to heading (DTH), days to maturity (DTM), dura-

tion of heading-to-maturity (DHTM) and plant height (PH), grain yield/m2 (GY) and thou-

sand kernel weight (TKW), seed length (SEL), seed width (SEW), seed number per spike (SN),

spike length (SPL) and spike weight (SPW), flag leaf length (FLL), flag leaf width (FLW),

peduncle length (PL), shoot diameter (SHD) and awn length (AWL). For details on measure-

ments and time of assessments, please refer to the manual “Physiological breeding II: a field

guide to wheat phenotyping” [37].

Data analysis

The phenotyping data of Zanjan and Alborz provinces were pooled for TDS and WW condi-

tions separately to have a wide range of phenotypic variations in semi-arid climate zones.

Then, analysis of variance (ANOVA) was conducted for the WAP under TDS and WW condi-

tions separately using the proc mixed procedure in SAS version 9.4 [38]. The model for data

analysis was

yijmk ¼ mþ gi þ lj þ ðglÞij þ rmðjÞ þ bkðmjÞ þ εijmk

where μ represents the total mean, gi represents the genetic effect of the ith genotype, lj indi-

cates the effect of the jth environment, and (gl)ij indicates the interaction effect between the ith

genotype and the jth environment. In addition, rm(j), bk(mj) and εijmk represent the effect of the

mth replication within the jth environment, the kth block effect withinmth replication within

the jth environment, and the residual effect following Nð0; s2
εÞ, respectively. All effects were

considered as random. Heritability (H2) estimates were calculated based on each plot mean

with an assumption of independence of effects using the following equation

H2 ¼ s2

g=½s
2

g þ s
2

gl=ðkÞ þ s
2

ε=ðrkÞ�

where s2
g ; s

2
gl; s

2
ε; k and r represent genotypic variance, genotype by environment interaction

variance, residual variance, the number of environments, and the number of replications,

respectively. The estimation of variance components was performed by the proc varcomp pro-

cedure, whereas all effects were considered as random.

GWAS

The best linear unbiased predictions (BLUPs) were estimated for each accession using the

same model described for phenotypic analyzes by the lme4 package [39] in the R environment.
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Then, the BLUPs were used for further analysis. The mixed linear model (MLM) [40] was used

for association analysis, whereas the K, K+Q, and K+PCA matrices were used in the assess-

ments. The association analysis was separately carried out for each trait under TDS and WW

conditions by GAPIT [33]. The significance threshold for MTAs was estimated with the −-

log10(P-value)� 3.0 (P� 0.001).

Prediction of candidate genes

The peak markers were used to perform BLAST searches on the IWGSC v1.0 RefSeq reference

genome (http://plants.ensembl.org/Triticum_aestivum/Tools/Blast). The predicted candidate

genes were selected from the local LD which included the identified MTAs. The annotated

genes in IWGSC v1.0, TGAC v1.0, and TAIR10 were used to predict the biological function of

the candidate genes (http://plants.ensembl.org and https://triticeaetoolbox.org). The predic-

tion of candidate genes was referred to the following criteria: a) genes identified by the peak

markers, and b) genes with known biological functions for the trait under study in wheat (T.

aestivum), and Arabidopsis (A. thaliana).

GP strategy

GP was estimated by three different methods: ridge regression-best linear unbiased prediction

(RR-BLUP) [41], genomic best linear unbiased prediction (GBLUP) [42], and Bayesian ridge

regression (BRR) [43]. All of the GP analyses were implemented in iPat software [44]. The

WAP, SBP-I, and SBP-II were assumed and assessed as three separated populations. For each

population, 10%, 20%, and 33% of accessions were randomly assigned to a VS and all of the

remaining accessions were used as a TS. The whole process was repeated 100 times for all of

the GP methods (BRR was conducted with 10000 iterations and 1000 burn-ins as well). In

addition, three marker sets (MSs) were defined to evaluate MS effect on GP accuracy. Hence,

first each population was tested by its MS (WAP with 9047 SNP markers, SBP-I with 7714

SNP markers, and SBP-II with 5873 SNP markers), all of which were designated as the whole

population marker set (WPMS). Then, 4785 SNP markers which were common among sub-

populations were systematically separated and used to assess GEBVs. This MS was named as

the common markers marker set (CMMS). The third MS included significant markers identi-

fied through GWASs with P� 0.001, which was designated as the significant markers marker

set (SMMS). The SMMS included 93 common markers identified by the K, K+Q, and K+PCA

matrices for all traits and both conditions. The GP was assessed for each trait under TDS and

WW conditions, separately. The accuracy of the GP was estimated as Pearson’s correlation

coefficient (r) among GEBVs and BLUPs over TS and VS. The average of accuracies was

reported across folds and repeats [45].

Results

Population structure and genetic relationship

The existence of two main subpopulations (Fig 1A) was identified with the use of ΔK statistic

(S2 Fig in S2 File). The cluster membership coefficients (Q) showed that the SBP-I included 77

cultivars and 71 landraces, and the SBP-II including 128 landraces and ten cultivars (Fig 1B).

Azar, Dastjerdi, Dayhim, Karaj1, Karaj2, Rayhani, Roshan, Shahi, Shahpassand, and Tobari66,

which were introduced as cultivar, were shown high admixture level (Fig 1B). The estimated

PCs for the WAP showed that PCs 1, 2, and 3 could explain 12.39, 5.58, and 2.81% of genotypic

variations, respectively (Fig 2). In addition, a heat map was constructed based on the kinship

values (S3 Fig in S3 File).
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Distribution of markers and LD estimates

A total of 9047 SNP markers were used for molecular marker analysis of the WAP. Chromo-

some 4D had the lowest number of markers (82), while chromosomes 2B and 3B had the high-

est number of markers (743 and 732, respectively) (S3 Table in S4 File). The total length of the

genetic map was 2590.353 cM. The genetic map length was the shortest for chromosome 2D

(85.027) but the longest for chromosome 3A (172.2) (S3 Table in S4 File). Marker density was

the lowest on chromosome 4D (0.91 Marker/cM), but the highest on chromosomes 2B, 6B,

and 3B (6.66, 6.23, and 6 Marker/cM, respectively) (S3 Table in S4 File). The B genome had

the highest number of markers (4131), followed by A (3347) and D genomes (1569) (S3

Table in S4 File). Within WAP, LD decayed above r2 > 0.02 at about 5.24 cM in the A genome,

at about 4.29 cM in the B genome, at about 9.95 cM in the D genome (Fig 3A–3C). In WAP,

LD decayed above r2 > 0.02 at about 5.43 cM in the whole genome (Fig 3D). A comparison of

pairwise markers with r2 > 0.02 indicated that A, B, and D genomes were contained 34.48,

57.30, and 8.22% of pairwise markers, whereas r2 means were higher in the D genome (S3

Table in S4 File). The highest percentage of pairwise markers was on chromosomes 2B

(13.14%) (S3 Table in S4 File). The fewest pairwise markers were on chromosome 4D (0.23%)

(S3 Table in S4 File). The distribution of molecular markers and LD estimates of the SBP-I and

II are given in S4 and S5 Tables in S4 File. LD decay is demonstrated for SBP-I and II in Fig

3E–3L.

Fig 1. Population structure of the whole association panel using 9047 markers. (A) The top panel shows the population structure of

286 Iran bread wheat accessions estimated by K = 2. (B) The following six panels demonstrate the admixture level for each genotype. The

name of each genotype is given on the x-axis. The numbers on the y-axis indicate the cluster membership coefficient (Q). The red color

indicates subpopulation-I, and the green color indicates subpopulation-II.

https://doi.org/10.1371/journal.pone.0247824.g001

Fig 2. Principle component analysis (PCA) for 286 Iran bread wheat accessions using 9047 markers. The first three

PCs are plotted versus each other. The cultivars and landraces are indicated with red and green colors, respectively.

https://doi.org/10.1371/journal.pone.0247824.g002
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Phenotypic data summary

ANOVA was conducted and minimum, mean, maximum, variance parameters, and heritabil-

ity (H2) estimates for all traits were calculated under TDS and WW conditions, separately (S6

Table in S5 File). The phenotypic values showed less ranges under the TDS conditions for all

agronomic traits, except DTH (S6 Table in S5 File). Among the accessions, significant geno-

type effect (G) was observed for all 16 agronomic traits under both TDS and WW conditions,

whereas the genotype-by-environment effect (G×E) was not significant for SEL, SEW, SPL,

SPW, FLL, FLW, PL, SHD, and AWL under both TDS and WW conditions (S7 and S8 Tables

in S5 File). The G, G×E, andH2 parameters showed higher values under the WW conditions

compared to the TDS conditions (S6 Table in S5 File).H2 values for agronomic traits varied

from 0.47 (DTM) to 0.86 (DTH) under TDS conditions, and from 0.52 (DTM) to 0.87 (DTH)

under WW conditions (S6 Table in S5 File). Pearson correlation coefficients were calculated

under both conditions (S9 and S10 Tables in S5 File). DTH with DHTM (-0.66) and PH (0.61)

indicated the highest correlations under the TDS conditions (S9 Table in S5 File). Further-

more, the highest correlations were observed between DTH with DHTM (-0.71) and PH

(0.65) under the WW conditions (S10 Table in S5 File). DTH with DTM (0.37), DTM with

Fig 3. Overview of the linkage disequilibrium (LD) within the whole association panel (WAP), subpopulation-I (SBP-I), and

subpopulation-II (SBP-II). The figure indicates the LD decay estimated as the squared correlation coefficient (r2) using pairwise markers

plotted versus genetic distance (cM) for A genome (A, E, and I), B genome (B, F, and J), D genome (C, G, and K), and whole-genome (D, H, and

L), respectively in the WAP, SBP-I, and SBP-II. The green curve lines were fitted to LD by the LOESS regression model.

https://doi.org/10.1371/journal.pone.0247824.g003

PLOS ONE Determining genomic prediction accuracy in wheat landraces and cultivars

PLOS ONE | https://doi.org/10.1371/journal.pone.0247824 March 5, 2021 8 / 20

https://doi.org/10.1371/journal.pone.0247824.g003
https://doi.org/10.1371/journal.pone.0247824


DHTM (0.48), DHTM with PH (-0.45), DTH with TKW (0.32), SEW (0.30), and SPW (0.32),

DTM with TKW (0.30), SEL (0.35), and SEW (-0.37), GY with TKW (0.30), and SN (0.33),

TKW with SEL (0.35), SEL with SEW (0.36), and SPW (-0.31), SEW with SPW (0.34), and SN

with SPW (0.30) showed more than 0.30 correlation under WW conditions (S10 Table in

S5 File).

MTAs

Association mappings were conducted using K, K+Q, and K+PCA matrices in the MLMs and

utilizing 9047 SNP markers for 16 agronomic traits under TDS and WW conditions, sepa-

rately. A comparison demonstrated that MLMs including K-matrix by P values� 0.001,�

0.01, and� 0.05 could identify 0.06, 0.72, 4.37% of MTAs under TDS conditions and 0.06,

0.75, 4.44% of MTAs under WW conditions, respectively (S11 Table in S6 File). A combina-

tion of random effects (K-matrix) with fixed effects (Q and PCA matrices) showed that adding

Q or PCA matrices to MLMs will increase the number of identified MTAs (S11 Table in S6

File). In total, 250 and 293 MTAs were identified with P values� 0.001 for all traits under TDS

and WW conditions, respectively (S12 and S13 Tables in S7 File). The highest number of

MTAs was identified for AWL under TDS (36) and WW (39) conditions (S12 and S13 Tables

in S7 File), being followed by DHTM under TDS (32) and WW (36) conditions (S12 and S13

Tables in S7 File). Then, the duplicated markers, the markers which were located close to each

other, and markers with higher P values were removed, and only the peak markers were kept.

Finally, 23 MTAs were selected for traits under each of the TDS and WW conditions (Table 1),

whereas 17 MTAs were identified under both conditions. Such MTAs were considered as the

most possible stable QTL for semi-arid environments (Table 1). Thirteen of the identified

MTAs were on the A genome, fourteen of the identified MTAs on the B genome, and two of

the identified MTAs on the D genome (Table 1). The highest number of the identified MTAs

(4) was on chromosome 5B (Table 1). The rs65502 marker was significant among GY, SN, and

SPW traits under TDS and WW conditions (Table 1). This MTA was considered as one of the

most important genomic regions associated with wheat yield (Table 1). The identified MTAs

encoded proteins were mostly regulator of the response to wounding, phosphorylation, pro-

tein kinase activity, hyperosmotic stress response, heat shock proteins, auxin regulation, organ

development, dehydration, methylation, and transcription regulation. The predicted candidate

genes and described molecular functions are provided in S14 Table in S8 File.

GP

The prediction accuracies varied from -0.32 to 0.52 (S15 Table in S9 File). Three traits in

SBP-I, seven traits in SBP-II, and six traits in WAP showed the highest prediction accuracies

under both TDS and WW conditions (S15 Table in S9 File). The DHTM (0.35 and 0.22),

TKW (0.31 and 0.30), SEL (0.28 and 0.31), SEW (0.26 and 0.31), FLL (0.30 and 0.29) and FLW

(0.22 and 0.23) in WAP, DTH (0.25 and 0.28), PH (0.26 and 0.26) and PL (0.29 and 0.30) in

SBP-I, and DTM (0.27 and 0.18), GY (0.41 and 0.42), SN (0.33 and 0.34), SPL (0.19 and 0.20),

SPW (0.52 and 0.50), SHD (0.22 and 0.22) and AWL (0.29 and 0.29) in SBP-II, showed the

highest prediction accuracies under TDS and WW conditions, respectively (S15 Table in S9

File, Fig 4).

The RR-BLUP, GBLUP, and BRR methods identified the highest prediction accuracies for

2, 8, and 6 phenotypes under TSD conditions, and 3, 5, and 8 phenotypes under WW condi-

tions, respectively (S15 Table in S9 File). The highest prediction accuracies were identified by

the GBLUP method for DTH, DHTM, PH, SEW, SPL, SPW, FLL, and PL, by the RR-BLUP

method for DTM and TKW, and by the BRR method for GY, SEL, SN, FLW, SHD, and AWL
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under TDS conditions (S15 Table in S9 File, Fig 5). Likewise, the highest prediction accuracies

were identified by the GBLUP method for DTH, PH, SEW, SPL, and PL, by the RR-BLUP

method for DTM, DHTM, and AWL, and by the BRR method for GY, TKW, SEL, SN, SPW,

FLL, FLW, and SHD under WW conditions (S15 Table in S9 File, Fig 5). It was notable that

none of the estimated highest prediction accuracies were identified by the RR-BLUP and BRR

methods in the SBP-I (S15 Table in S9 File).

The TS and MS effects were identified for each phenotype after classifying phenotypes by

the selected population and the GS method to attain the highest GP accuracies. The highest

prediction accuracies were identified for ten phenotypes (DTH, DTM, DHTM, TKW, SEL,

SEW, SN, SPW, PL, and SHD) under TDS conditions and eleven phenotypes (DTH, DTM,

DHTM, GY, TKW, SEL, SEW, SPW, FLL, FLW, and SHD) under WW conditions when 90%

of accessions applied in TS (S15 Table in S9 File). Therefore, no sign of reaching the plateau of

the prediction accuracy was observed for these phenotypes (Fig 6). PH and AWL showed the

Table 1. The identified single nucleotide polymorphism (SNP) markers for 16 agronomic traits in the association panel including 286 Iran bread wheat accessions

grown under terminal drought stress (TDS) and well-watered (WW) conditions in semi-arid environments, Iran.

Trait Markera Chrb Position Allelesc TDS WW

Model -log10 (P value) MAF Marker R2 (%) Model -log10 (P value) MAF Marker R2 (%)

DTH rs48214 3B 68.263 (222) C/(59) T K+Q 3.59 0.21 5.45 K+Q 3.35 0.21 5.13

DTM rs34236 2B 62.594 (258) A/(22) T K 3.79 0.08 6.52

rs28367 2A 18.219 (19) A/(262) G K 3.69 0.07 5.46

rs61739 4B 44.689 (28) A/(254) G K 3.74 0.09 5.54

DHTM rs41211 2B 72.825 (221) A/(54) G K+PCA 4.34 0.21 8.50

rs19295 5A 38.892 (36) A/(234) G K 3.76 0.15 6.69 K 4.03 0.15 5.54

rs31147 7A 71.904 (30) C/(240) G K 3.83 0.14 6.81

PH rs1184 2B 55.205 (58) A/(206) G K+PCA 3.92 0.24 6.56 K+PCA 4.25 0.24 7.31

GY rs65502 5B 93.434 (248) A/(31) T K+PCA 5.34 0.12 9.06 K+PCA 4.35 0.11 6.95

TKW rs54576 2A 59.228 (53) A/(221) G K 3.97 0.22 5.77 K 3.96 0.22 5.65

rs17145 6A 25.146 (21) A/(252) G K+Q 3.49 0.10 4.98 K 3.96 0.09 5.65

SEL rs998 6A 53.619 (154) A/(108) G K+Q 4.91 0.42 7.18 K+Q 5.38 0.41 7.70

SEW rs55852 3B 77.361 (139) A/(123) C K 3.63 0.45 4.88 K 3.78 0.45 5.13

SN rs51365 2D 13.642 (222) A/(52) C K+PCA 3.61 0.20 6.11

rs65502 5B 93.434 (248) A/(31) T K+Q 4.54 0.12 6.14 K+Q 4.06 0.11 5.44

rs64054 7A 58.263 (207) A/(63) G K 3.5 0.23 4.68

SPL rs60932 3A 53.669 (24) A/(254) C K+PCA 5.03 0.10 7.59 K+PCA 5.01 0.09 7.51

SPW rs15276 1A 44.512 (204) C/(69) T K+Q 3.55 0.26 5.32

rs2368 1B 32.984 (218) G/(44) T K+Q 3.45 0.20 5.18

rs65502 5B 93.434 (248) A/(31) T K+PCA 4.09 0.12 8.99

rs53982 5D 132.023 (249) C/(33) T K+PCA 3.96 0.10 8.79 K+PCA 3.29 0.10 7.94

FLL rs58293 4B 50.376 (264) C/(19) G K+Q 3.47 0.07 4.69

rs59732 6B 60.336 (234) C/(38) T K+PCA 3.79 0.16 5.36 K+PCA 3.79 0.16 4.97

FLW rs6770 3B 45.525 (19) C/(245) T K+Q 3.95 0.10 6.02

PL rs31423 7A 32.091 (207) A/(60) G K+PCA 3.28 0.23 5.45 K+PCA 3.32 0.23 5.07

SHD rs11489 4A 136.19 (265) C/(14) T K+PCA 4.05 0.05 6.84 K+PCA 3.87 0.05 6.64

rs49193 6A 25.146 (258) G/(21) T K 4.15 0.08 5.81 K 4.12 0.07 5.81

AWL rs59275 2A 59.228 (95) A/(170) G K+PCA 4.71 0.37 6.73 K+PCA 4.08 0.35 5.63

rs8958 5B 35.359 (235) C/(35) T K+PCA 3.69 0.14 5.06 K+PCA 4.19 0.14 5.95

The number of homozygous alleles is given in parentheses. The type of statistical matrices used in the GWASs is also provided.

https://doi.org/10.1371/journal.pone.0247824.t001
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highest prediction accuracy under both TDS and WW conditions when 80% of the population

applied in TS (Fig 6). GY, SPL, FLL, and FLW under TDS conditions, and SN and PL under

WW conditions indicated the highest prediction accuracy when 80% of the population applied

in TS (S15 Table in S9 File). Consequently, a sign of reaching the plateau of the prediction

accuracy was seen for these phenotypes (Fig 6). In addition, the highest accuracy of the GP was

seen for SPL under the WW conditions, when 67% of the population applied in TS (Fig 6).

The SMMS (93 significant markers) showed the highest prediction accuracy for all traits

under both conditions (S15 Table in S9 File, Fig 7). The SMMS, also, was produced higher pre-

diction accuracies in all of the GS methods, compared to the CMMS and WPMS (S15 Table in

S9 File, Fig 7).

Discussion

Effect of population on GP accuracy

The cross-validation (CV) results revealed differences in the prediction accuracies which were

only explainable by population structure. If we assume the SBP-I as a half-pure population (77

cultivars and 71 landraces), the SBP-II as a diverse population (128 landraces and 10 cultivars),

and the WAP as a mixed population (87 cultivars and 199 landraces), it is expected that a

mixed population will perform more reliably because of additional diversity in TS and more

cultivars in VS during CV repeats [18, 19]. A mixed population may have an adequate size in a

breeding program, while the main issue is whether it contains more diverse or breeding

Fig 4. The effect of population on genomic prediction (GP) accuracy for 16 wheat agronomic traits under terminal drought stress (TDS) and well-watered (WW)

conditions. A-F´) The accuracy of GP in the whole association panel (WAP), subpopulation-I (SBP-I), and subpopulation-II (SBP-II) are shown with green, red, and

blue colors, respectively. The prediction accuracies were calculated by ridge regression-best linear unbiased prediction (RR-BLUP), genomic best linear unbiased

predictions (GBLUP), and Bayesian ridge regression (BRR) methods. The boxplots show the first, second (median) and third quartile. The middle points indicate a

mean of GP accuracies for the trait of interest. DTH, days to heading; DTM, days to maturity; DHTM, duration of heading-to-maturity; PH, plant height (cm); GY,

grain yield (kg/m2); TKW, thousand kernel weight (g); SEL, seed length (mm); SEW, seed width (mm); SN, seed number per spike (number); SPL, spike length (cm);

SPW, spike weight (g); FLL, flag leaf length (cm); FLW, flag leaf width (mm); PL, peduncle length (cm); SHD, shoot diameter (mm) and AWL, awn length (cm).

https://doi.org/10.1371/journal.pone.0247824.g004
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genotypes. The best strategy would be using a large TS with high diversity which can be com-

pared with either diverse or breeding VS. However, a breeding VS will provide more exact

results for the trait of interest [19]. This strategy will ensure that no genotype has a full rela-

tionship in TS and VS, and therefore the possibility of obtaining reliable results would be more

[15, 21]. It was reported that the prediction accuracy was better when two less-related groups

of genotypes were combined [19]. A randomized combination of accessions from the subpop-

ulations showed higher prediction accuracy compared to predictions within the subpopula-

tions [16]. In the present study, the highest prediction accuracies for DHTM, TKW, SEL,

SEW, FLL, and FLW was seen in WAP, indicating that TS has suitable size and diversity for

these traits. In SBP-I, it is not clear that the estimated prediction accuracies for DTH, PH, and

PL are because of the TS size or diversity since the population included 52% cultivar and 48%

landrace. This study hypothesized that probably older genotypes could preserve information

related to predict the performance of new genotypes in SBP-I. The SBP-II was shaped from

about 92% landrace. Therefore, the identified prediction accuracies for DTM, GY, SN, SPL,

SPW, SHD, and AWL have relied more on the diversity of TS rather than the size of TS.

Effect of GS method on GP accuracy

It was reported that RR-BLUP works well for genetic architectures containing many loci with

small effects [46]. If heritability is stable, the RR-BLUP will not be sensitive to the genetic

Fig 5. The effect of genomic selection (GS) method on genomic prediction (GP) accuracy for 16 wheat agronomic traits under terminal drought stress (TDS) and

well-watered (WW) conditions. A-F´) The accuracy of GP for ridge regression-best linear unbiased prediction (RR-BLUP), genomic best linear unbiased predictions

(GBLUP), and Bayesian ridge regression (BRR) genomic selection (GS) methods are demonstrated with green, red, and blue colors, respectively. The GP accuracies were

calculated across the whole association panel (WAP), subpopulation-I (SBP-I), and subpopulation-II (SBP-II). The boxplots show the first, second (median) and third

quartile. The middle points indicate a mean of GP accuracies for the trait of interest. DTH, days to heading; DTM, days to maturity; DHTM, duration of heading-to-

maturity; PH, plant height (cm); GY, grain yield (kg/m2); TKW, thousand kernel weight (g); SEL, seed length (mm); SEW, seed width (mm); SN, seed number per spike

(number); SPL, spike length (cm); SPW, spike weight (g); FLL, flag leaf length (cm); FLW, flag leaf width (mm); PL, peduncle length (cm); SHD, shoot diameter (mm)

and AWL, awn length (cm).

https://doi.org/10.1371/journal.pone.0247824.g005

PLOS ONE Determining genomic prediction accuracy in wheat landraces and cultivars

PLOS ONE | https://doi.org/10.1371/journal.pone.0247824 March 5, 2021 12 / 20

https://doi.org/10.1371/journal.pone.0247824.g005
https://doi.org/10.1371/journal.pone.0247824


architecture of the trait [46]. The Bayesian methods will improve prediction accuracy when

the number of QTL decreases and effects increase [47]. However, RR-BLUP and GBLUP are

mathematically equivalent [14], if a population is an advanced-breeding population and mark-

ers are closely related to the trait of interest, more genetic variance will be achieved by the

GBLUP compared to other GS methods [48]. RR-BLUP assumes all markers with a similar

variance [14] and shrinks marker effects equally toward zero. GBLUP derives genetic relation-

ships from predictors and estimates breeding values from the relationship matrix using a

BLUP model [49]. BRR is similar to RR-BLUP and shrinks all effects of the markers toward

zero [50]. However, the shrinkage depends on the population size [51]. In the present study,

the highest prediction accuracies were identified in the SBP-I only by the GBLUP method.

Hence, this study concluded that the GBLUP detected genetic effects better in this population

due to the presence of more cultivars in the SBP-I. The RR-BLUP method had better perfor-

mance in the WAP and SBP-II, which were mixed and diverse populations, respectively.

Therefore, this study concluded that probably the RR-BLUP could identify loci with minor

genetic effects in the WAP and SBP-II. The results of BRR method was similar to the RR-BLUP

method and identified linkages among markers and QTL better in the WAP and SBP-II. It was

reported that, the performance of the population with multi-subpopulations is dependent on

Fig 6. The effect of training set (TS) size on genomic prediction (GP) accuracy for 16 wheat agronomic traits under terminal drought stress (TDS) and well-

watered (WW) conditions. A-F´) The GP accuracies are provided after selecting population and genomic selection (GS) method. The TSs were included 67, 80, and 90

percentage of genotypes of each population. Three marker sets (MSs) were used during the assessments. The whole population marker set (WPMS) included 9047, 7714,

and 5873 markers for WAP, SBP-I, and SBP-II, respectively, the common markers marker set (CMMS) included 4785 common markers among subpopulations, and the

significant markers marker set (SMMS) included 93 significant markers identified through GWASs which were demonstrated by dotted, dashed, and solid lines with

green, red, and blue colors, respectively. DTH, days to heading; DTM, days to maturity; DHTM, duration of heading-to-maturity; PH, plant height (cm); GY, grain yield

(kg/m2); TKW, thousand kernel weight (g); SEL, seed length (mm); SEW, seed width (mm); SN, seed number per spike (number); SPL, spike length (cm); SPW, spike

weight (g); FLL, flag leaf length (cm); FLW, flag leaf width (mm); PL, peduncle length (cm); SHD, shoot diameter (mm) and AWL, awn length (cm).

https://doi.org/10.1371/journal.pone.0247824.g006
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the existence of ancestral LD which is common across subpopulations [52]. The GS methods

which can obtain marker-QTL LD would have more effective outcomes compared to methods

which take the genetic relationships between training and validation populations into the

model [53, 54]. The RR-BLUP and BRR are the linear models which assume the linearity of

marker effects. With having perfect linkages among markers and QTL, a larger population

would increase GP accuracy [47, 55]. Optimizing TS and removing less related markers can

improve prediction accuracy if the linkages among markers and QTL are not perfect [48, 55].

Effect of TS on GP accuracy

This study assumed that probably some closely related accessions were present in the associa-

tion panel. If the related individuals are present in both TS and VS, the inflation produced by

half and full-sib families may lead to false results during the CV repeats. Differences among

prediction accuracies decrease in larger TSs [19]. The Bayesian Cπ outperformed RR-BLUP

for four out of five phenotypes when 90 to 100 lines were in TS [19]. Bayesian B showed similar

prediction accuracy with GBLUP in a large TS [56]. In this study, the WAP and SBP-II showed

that eight phenotypes (DTM, DHTM, TKW, SEL, SEW, SN, SPW, and SHD) under TDS con-

ditions and ten phenotypes (DTM, DHTM, GY, TKW, SEL, SEW, SPW, FLL, FLW, and SHD)

Fig 7. The effect of type of marker set (MS) on genomic prediction (GP) accuracy for 16 wheat agronomic traits under terminal drought stress (TDS) and well-

watered (WW) conditions. A-F´) The GP accuracies are provided after selecting population and genomic selection (GS) method. Three MSs were used during the

assessments. The whole population marker set (WPMS) included 9047, 7714, and 5873 markers for WAP, SBP-I, and SBP-II, respectively, the common markers marker

set (CMMS) included 4785 common markers among subpopulations, and the significant markers marker set (SMMS) included 93 significant markers identified

through GWASs. The TSs were included 67, 80, and 90 percentage of genotypes of each population which were demonstrated by solid, dashed, and doted lines, with

green, red, and blue colors, respectively. DTH, days to heading; DTM, days to maturity; DHTM, duration of heading-to-maturity; PH, plant height (cm); GY, grain yield

(kg/m2); TKW, thousand kernel weight (g); SEL, seed length (mm); SEW, seed width (mm); SN, seed number per spike (number); SPL, spike length (cm); SPW, spike

weight (g); FLL, flag leaf length (cm); FLW, flag leaf width (mm); PL, peduncle length (cm); SHD, shoot diameter (mm) and AWL, awn length (cm).

https://doi.org/10.1371/journal.pone.0247824.g007

PLOS ONE Determining genomic prediction accuracy in wheat landraces and cultivars

PLOS ONE | https://doi.org/10.1371/journal.pone.0247824 March 5, 2021 14 / 20

https://doi.org/10.1371/journal.pone.0247824.g007
https://doi.org/10.1371/journal.pone.0247824


under WW conditions have had the highest prediction accuracy with the use of 90% of the

population in TS. This study concluded that a high level of diversity in TS led to the highest

prediction accuracy for phenotypes identified in the mixed (WAP) and diverse (SBP-II) popu-

lations. Such results are in line with many types of research [56, 57]. The highest prediction

accuracy observed for GY, SPL, FLL, FLW, and AWL, under TDS, and for SN, SPL, and AWL,

under WW conditions, when 80% of accessions utilized in the TSs of the WAP and SBP-II.

These results may indicate that less diversity was needed to evaluate the prediction accuracy of

these phenotypes. Developing a robust LD across generations is necessary for preserving pre-

diction accuracy since previous generations probably will have less relationship to new genera-

tions [58]. When 80 to 90% of SBP-I was utilized in the TS under both conditions, the plateau

of the prediction accuracy was seen for DTH, PH, and PL. Since the SBP-I was shaped from

48% landrace and 52% cultivar, it is not clear that the highest prediction accuracies for DTH,

PH, and PL are due to diversity or inbred genotypes in the TS. The only trait showed the high-

est prediction accuracy by 67% of accessions in TS was SPL in the SBP-II under the WW con-

ditions. The most likely explanation is that TS and VS have been fairly diverse for SPL, so that

TS could evaluate VS very well.

Effect of MS on GP accuracy

The ability of GS to enhance plant breeding is based on the fact that genotyping will soon

become cheaper, and consequently, breeders will be able to save time and reduce phenotyping

tasks [8, 15]. Although, higher prediction accuracy will be obtained with increasing marker

density [56, 59], if the marke set is in a direct linkage with the traits of interest, GS would

potentially explain all genotypic variables which are in LD [60]. Therefore, not only appropri-

ate marker density should be identified, markers that are in LD should be used for attaining

the highest prediction accuracy which may reduce the costs of the breeding programs [16, 61].

This study integrated the output of GWASs with different GS methods. The results revealed

that all of the markers used in the present study were not necessary to achieve the highest

attainable GP accuracy. The prediction accuracies were slightly increased or remained con-

stant for all traits (except SPL, PL, and AWL) with the use of CMMS since the uncommon

markers between subpopulations were deleted from the GS methods. The GP accuracies

increased for all traits using SMMS. It is believed that GP with a reduced number of significant

markers may have the same shortcomings as the marker-assisted recurrent selection method

[62]. The results of the present study suggest further investigations to avoid future challenges.

Conclusion

This study concluded that obtaining the highest GP accuracy depends on the extent of LD, the

genetic architecture of trait, genetic diversity of the population, and the GS method.

Supporting information

S1 File. S1 and S2 Tables are lists of the 199 landraces and 87 cultivars from Iran bread

wheat germplasm used in the present study.

(XLSX)

S2 File. S1 Fig shows climate conditions in fields during the 2017–2018 cropping season,

and S2 Fig demonstrates ΔK values for population structure.

(DOCX)

PLOS ONE Determining genomic prediction accuracy in wheat landraces and cultivars

PLOS ONE | https://doi.org/10.1371/journal.pone.0247824 March 5, 2021 15 / 20

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0247824.s001
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0247824.s002
https://doi.org/10.1371/journal.pone.0247824


S3 File. S3 Fig provides a heat map of the kinship values for 286 Iran bread wheat acces-

sions used in the present study.

(PDF)

S4 File. S3-S5 Tables are provided information about the distribution of molecular mark-

ers and linkage disequilibrium estimates in the whole association panel and subpopula-

tions.

(DOCX)

S5 File. S6 Table is provided information about descriptive statistics and variance parame-

ters, S7 and S8 Tables are the results of the analysis of variance, and S9 and S10 Tables are

the Pearson correlation coefficients for 16 agronomic traits under terminal drought stress

and well-watered conditions.

(DOCX)

S6 File. S11 Table compares the statistical power of K, K+Q, and K+PCA matrices for

genome-wide association mapping, in the present study.

(DOCX)

S7 File. S12 and S13 Tables are lists of single nucleotide polymorphisms identified through

genome-wide association studies for 16 agronomic traits under terminal drought stress

and well-watered conditions, respectively.

(XLSX)

S8 File. S14 Table describes selected markers for 16 agronomic traits.

(DOCX)

S9 File. S15 Table provides genomic prediction accuracy for 16 agronomic traits under ter-

minal drought stress and well-watered conditions as well as a summary.

(XLSX)

Acknowledgments

The authors appreciate Dr. Ali Moghaddam for coordinating field trials. We also would like to

thank Ms. Mahlagha Motamedi and Mr. Mohammad Mamaghani for their help during con-

ducting experiments and phenotypings.

Author Contributions

Conceptualization: Morteza Shabannejad.

Data curation: Morteza Shabannejad.

Formal analysis: Morteza Shabannejad.

Investigation: Morteza Shabannejad.

Methodology: Morteza Shabannejad, Hadi Alipour.

Resources: Mohammad-Reza Bihamta, Hadi Alipour.

Supervision: Mohammad-Reza Bihamta, Eslam Majidi-Hervan, Asa Ebrahimi.

Validation: Mohammad-Reza Bihamta, Eslam Majidi-Hervan.

Visualization: Morteza Shabannejad.

Writing – original draft: Morteza Shabannejad.

PLOS ONE Determining genomic prediction accuracy in wheat landraces and cultivars

PLOS ONE | https://doi.org/10.1371/journal.pone.0247824 March 5, 2021 16 / 20

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0247824.s003
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0247824.s004
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0247824.s005
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0247824.s006
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0247824.s007
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0247824.s008
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0247824.s009
https://doi.org/10.1371/journal.pone.0247824


Writing – review & editing: Morteza Shabannejad, Mohammad-Reza Bihamta, Eslam Majidi-

Hervan, Hadi Alipour, Asa Ebrahimi.

References
1. Food and Agriculture Organization (FAO): FAOSTAT. [Cited 2020 Nov 5]. Available from: http://www.

fao.org/faostat

2. United States Department of Agriculture—Agricultural Research Service (USDA-ARS): FoodData Cen-

tral. [Cited 2020 Nov 12]. Available from: https://fdc.nal.usda.gov

3. Dietary protein quality evaluation in human nutrition. Report of an FAQ Expert Consultation. FAO Food

Nutr Pap. 2013; 92:1–66. PMID: 26369006

4. Nuttonson MY. Wheat-climate relationships and the use of phenology in ascertaining the thermal and

photo-thermal requirements of wheat: based on data of North America and some thermally analogous

areas of North America in the Soviet Union and Finland. Amer Inst of Crop Ecol. Washington DC, USA;

1995.

5. Rahimi Y, Bihamta MR, Taleei A, Alipour H, Ingvarsson PK. Genome-wide association study of agro-

nomic traits in bread wheat reveals novel putative alleles for future breeding programs. BMC Plant Biol.

2019; 19(1):541. https://doi.org/10.1186/s12870-019-2165-4 PMID: 31805861

6. Pinheiro C, Chaves MM. Photosynthesis and drought: can we make metabolic connections from avail-

able data? J Exp Bot. 2011; 62(3):869–82. https://doi.org/10.1093/jxb/erq340 PMID: 21172816

7. Michaletti A, Naghavi MR, Toorchi M, Zolla L, Rinalducci S. Metabolomics and proteomics reveal

drought-stress responses of leaf tissues from spring-wheat. Sci Rep. 2018; 8(1):5710. https://doi.org/

10.1038/s41598-018-24012-y PMID: 29632386

8. Shabannejad M, Bihamta MR, Majidi-Hervan E, Alipour H, Ebrahimi A. A simple, cost-effective high-

throughput image analysis pipeline improves genomic prediction accuracy for days to maturity in wheat.

Plant Methods. 2020; 16(1):146. https://doi.org/10.1186/s13007-020-00686-2 PMID: 33292394

9. Zhang J, Song Q, Cregan PB, Jiang GL. Genome-wide association study, genomic prediction and

marker-assisted selection for seed weight in soybean (Glycine max). Theor Appl Genet. 2016; 129

(1):117–30. https://doi.org/10.1007/s00122-015-2614-x PMID: 26518570

10. Elshire RJ, Glaubitz JC, Sun Q, Poland JA, Kawamoto K, Buckler ES, et al. A robust, simple genotyp-

ing-by-sequencing (GBS) approach for high diversity species. PLoS One. 2011; 6(5):e19379. https://

doi.org/10.1371/journal.pone.0019379 PMID: 21573248

11. International Wheat Genome Sequencing C. A chromosome-based draft sequence of the hexaploid

bread wheat (Triticum aestivum) genome. Science. 2014; 345(6194):1251788. https://doi.org/10.1126/

science.1251788 PMID: 25035500

12. International Wheat Genome Sequencing C, investigators IRp, Appels R, Eversole K, Feuillet C, Keller

B, et al. Shifting the limits in wheat research and breeding using a fully annotated reference genome.

Science. 2018; 361(6403). https://doi.org/10.1126/science.aar7191 PMID: 30115783

13. Sehgal A, Sita K, Siddique KHM, Kumar R, Bhogireddy S, Varshney RK, et al. Drought or/and Heat-

Stress Effects on Seed Filling in Food Crops: Impacts on Functional Biochemistry, Seed Yields, and

Nutritional Quality. Front Plant Sci. 2018; 9:1705. https://doi.org/10.3389/fpls.2018.01705 PMID:

30542357

14. Meuwissen THE, Hayes BJ, Goddard ME. Prediction of total genetic value using genome-wide dense

marker maps. Genetics. 2001. 157;1819–1829. PMID: 11290733

15. Poland J, Endelman J, Dawson J, Rutkoski J, Wu S, Manes Y, et al. Genomic selection in wheat breed-

ing using genotyping-by-sequencing. Plant Genome. 2012; 5:103–113. https://doi.org/10.3835/

plantgenome2012.06.0006

16. Muleta KT, Bulli P, Zhang Z, Chen X, Pumphrey M. Unlocking Diversity in Germplasm Collections via

Genomic Selection: A Case Study Based on Quantitative Adult Plant Resistance to Stripe Rust in

Spring Wheat. Plant Genome. 2017; 10(3). https://doi.org/10.3835/plantgenome2016.12.0124 PMID:

29293811

17. Spindel J, Begum H, Akdemir D, Virk P, Collard B, Redona E, et al. Genomic selection and association

mapping in rice (Oryza sativa): effect of trait genetic architecture, training population composition,

marker number and statistical model on accuracy of rice genomic selection in elite, tropical rice breeding

lines. PLoS Genet. 2015; 11(2):e1004982. https://doi.org/10.1371/journal.pgen.1004982 PMID:

25689273

18. Tayeh N, Klein A, Le Paslier MC, Jacquin F, Houtin H, Rond C, et al. Genomic Prediction in Pea: Effect

of Marker Density and Training Population Size and Composition on Prediction Accuracy. Front Plant

Sci. 2015; 6:941. https://doi.org/10.3389/fpls.2015.00941 PMID: 26635819

PLOS ONE Determining genomic prediction accuracy in wheat landraces and cultivars

PLOS ONE | https://doi.org/10.1371/journal.pone.0247824 March 5, 2021 17 / 20

http://www.fao.org/faostat
http://www.fao.org/faostat
https://fdc.nal.usda.gov/
http://www.ncbi.nlm.nih.gov/pubmed/26369006
https://doi.org/10.1186/s12870-019-2165-4
http://www.ncbi.nlm.nih.gov/pubmed/31805861
https://doi.org/10.1093/jxb/erq340
http://www.ncbi.nlm.nih.gov/pubmed/21172816
https://doi.org/10.1038/s41598-018-24012-y
https://doi.org/10.1038/s41598-018-24012-y
http://www.ncbi.nlm.nih.gov/pubmed/29632386
https://doi.org/10.1186/s13007-020-00686-2
http://www.ncbi.nlm.nih.gov/pubmed/33292394
https://doi.org/10.1007/s00122-015-2614-x
http://www.ncbi.nlm.nih.gov/pubmed/26518570
https://doi.org/10.1371/journal.pone.0019379
https://doi.org/10.1371/journal.pone.0019379
http://www.ncbi.nlm.nih.gov/pubmed/21573248
https://doi.org/10.1126/science.1251788
https://doi.org/10.1126/science.1251788
http://www.ncbi.nlm.nih.gov/pubmed/25035500
https://doi.org/10.1126/science.aar7191
http://www.ncbi.nlm.nih.gov/pubmed/30115783
https://doi.org/10.3389/fpls.2018.01705
http://www.ncbi.nlm.nih.gov/pubmed/30542357
http://www.ncbi.nlm.nih.gov/pubmed/11290733
https://doi.org/10.3835/plantgenome2012.06.0006
https://doi.org/10.3835/plantgenome2012.06.0006
https://doi.org/10.3835/plantgenome2016.12.0124
http://www.ncbi.nlm.nih.gov/pubmed/29293811
https://doi.org/10.1371/journal.pgen.1004982
http://www.ncbi.nlm.nih.gov/pubmed/25689273
https://doi.org/10.3389/fpls.2015.00941
http://www.ncbi.nlm.nih.gov/pubmed/26635819
https://doi.org/10.1371/journal.pone.0247824


19. Asoro FG, Newell MA, Beavis WD, Scott MP, Jannink JL. Accuracy and training population design for

genomic selection on quantitative traits in elite North American oats. Plant Genome. 2011; 4:132–144.

https://doi.org/10.3835/plantgenome2011.02.0007

20. Zhao Y, Gowda M, Liu W, Wurschum T, Maurer HP, Longin FH, et al. Accuracy of genomic selection in

European maize elite breeding populations. Theor Appl Genet. 2012; 124(4):769–76. https://doi.org/10.

1007/s00122-011-1745-y PMID: 22075809

21. Lipka AE, Lu F, Cherney JH, Buckler ES, Casler MD, Costich DE. Accelerating the switchgrass (Pani-

cum virgatum L.) breeding cycle using genomic selection approaches. PLoS One. 2014; 9(11):

e112227. https://doi.org/10.1371/journal.pone.0112227 PMID: 25390940

22. Sallam AH, Endelman JB, Jannink JL, Smith KP. Assessing genomic selection prediction accuracy in a

dynamic barley breeding population. Plant Genome. 2015; 8(1):1–15. https://doi.org/10.3835/

plantgenome2014.05.0020 PMID: 33228279

23. Crain J, Bajgain P, Anderson J, Zhang X, DeHaan L, Poland J. Enhancing Crop Domestication Through

Genomic Selection, a Case Study of Intermediate Wheatgrass. Front Plant Sci. 2020; 11:319. https://

doi.org/10.3389/fpls.2020.00319 PMID: 32265968

24. Alipour H, Bihamta MR, Mohammadi V, Peyghambari SA, Bai G, Zhang G. Genotyping-by-Sequencing

(GBS) Revealed Molecular Genetic Diversity of Iranian Wheat Landraces and Cultivars. Front Plant

Sci. 2017; 8:1293. https://doi.org/10.3389/fpls.2017.01293 PMID: 28912785

25. Bradbury PJ, Zhang Z, Kroon DE, Casstevens TM, Ramdoss Y, Buckler ES. TASSEL: software for

association mapping of complex traits in diverse samples. Bioinformatics. 2007; 23(19):2633–5. https://

doi.org/10.1093/bioinformatics/btm308 PMID: 17586829

26. Lu F, Lipka AE, Glaubitz J, Elshire R, Cherney JH, Casler MD, et al. Switchgrass genomic diversity,

ploidy, and evolution: novel insights from a network-based SNP discovery protocol. PLoS Genet. 2013;

9(1):e1003215. https://doi.org/10.1371/journal.pgen.1003215 PMID: 23349638

27. Pritchard JK, Stephens M, Donnelly P. Inference of population structure using multilocus genotype

data. Genetics. 2000; 155:945–959. PMID: 10835412

28. Evanno G, Regnaut S, Goudet J. Detecting the number of clusters of individuals using the software

STRUCTURE: a simulation study. Mol Ecol. 2005; 14(8):2611–20. https://doi.org/10.1111/j.1365-294X.

2005.02553.x PMID: 15969739

29. Wickham H, Averick M, Bryan J, Chang W, McGowan L, François R, et al. Welcome to the Tidyverse.

Journal of Open Source Software. 2019; 4(43):1686. https://doi.org/10.21105/joss.01686

30. Sievert C, Parmer C, Hocking T, Chamberlain S, Ram K, Corvellec M, et al. plotly: Create Interactive

Web Graphics via ‘plotly.js’. 2017. [Cited 2020 Nov 12]. Available from: https://CRAN.R-project.org/

package = plotly

31. Loiselle BA, Sork VL, Nason J, Graham C. Spatial genetic structure of a tropical understory shrub, Psy-

chotria officinalis (Rubiaceae). Am J Bot. 1995; 82:1420–1425. https://doi.org/10.1002/j.1537-2197.

1995.tb12679.x

32. Kang HM, Zaitlen NA, Wade CM, Kirby A, Heckerman D, Daly MJ, et al. Efficient control of population

structure in model organism association mapping. Genetics. 2008; 178(3):1709–23. https://doi.org/10.

1534/genetics.107.080101 PMID: 18385116

33. Lipka AE, Tian F, Wang Q, Peiffer J, Li M, Bradbury PJ, et al. GAPIT: genome association and predic-

tion integrated tool. Bioinformatics. 2012; 28(18):2397–9. https://doi.org/10.1093/bioinformatics/bts444

PMID: 22796960

34. Weir BS. Genetic data analysis II. Sinauer. Sunderland, MA. 1996: 73.

35. Sukumaran S, Dreisigacker S, Lopes M, Chavez P, Reynolds MP. Genome-wide association study for

grain yield and related traits in an elite spring wheat population grown in temperate irrigated environ-

ments. Theor Appl Genet. 2015; 128:353–363. https://doi.org/10.1007/s00122-014-2435-3 PMID:

25490985

36. Cleveland WS. Robust Locally Weighted Regression and Smoothing Scatterplots. J Am Stat Assoc.

1979; 74(368):829–36.

37. Pask AJD, Pietragalla J, Mullan DM R M. Physiological breeding II: A field guide to wheat phenotyping.

CIMMYT; 2012. [Cited 2020 Nov 12]. Available from: https://repository.cimmyt.org/handle/10883/1288

38. Institute S: Base SAS 9.4 procedures guide: Statistical procedures: SAS Institute; 2017.

39. Bates D, Maechler M, Bolker B, Walker S, Christensen RHB, Singmann H, et al. Package lme4: linear

mixed-effects models using Eigen and S4. R package version 1.1–18–1. 2018. [Cited 2020 Nov 23].

Available from: https://CRAN.R-project.org/package=lme4

40. Zhang Z, Ersoz E, Lai CQ, Todhunter RJ, Tiwari HK, Gore MA, et al. Mixed linear model approach

adapted for genome-wide association studies. Nat Genet. 2010; 42(4):355–60. https://doi.org/10.1038/

ng.546 PMID: 20208535

PLOS ONE Determining genomic prediction accuracy in wheat landraces and cultivars

PLOS ONE | https://doi.org/10.1371/journal.pone.0247824 March 5, 2021 18 / 20

https://doi.org/10.3835/plantgenome2011.02.0007
https://doi.org/10.1007/s00122-011-1745-y
https://doi.org/10.1007/s00122-011-1745-y
http://www.ncbi.nlm.nih.gov/pubmed/22075809
https://doi.org/10.1371/journal.pone.0112227
http://www.ncbi.nlm.nih.gov/pubmed/25390940
https://doi.org/10.3835/plantgenome2014.05.0020
https://doi.org/10.3835/plantgenome2014.05.0020
http://www.ncbi.nlm.nih.gov/pubmed/33228279
https://doi.org/10.3389/fpls.2020.00319
https://doi.org/10.3389/fpls.2020.00319
http://www.ncbi.nlm.nih.gov/pubmed/32265968
https://doi.org/10.3389/fpls.2017.01293
http://www.ncbi.nlm.nih.gov/pubmed/28912785
https://doi.org/10.1093/bioinformatics/btm308
https://doi.org/10.1093/bioinformatics/btm308
http://www.ncbi.nlm.nih.gov/pubmed/17586829
https://doi.org/10.1371/journal.pgen.1003215
http://www.ncbi.nlm.nih.gov/pubmed/23349638
http://www.ncbi.nlm.nih.gov/pubmed/10835412
https://doi.org/10.1111/j.1365-294X.2005.02553.x
https://doi.org/10.1111/j.1365-294X.2005.02553.x
http://www.ncbi.nlm.nih.gov/pubmed/15969739
https://doi.org/10.21105/joss.01686
https://CRAN.R-project.org/package
https://CRAN.R-project.org/package
https://doi.org/10.1002/j.1537-2197.1995.tb12679.x
https://doi.org/10.1002/j.1537-2197.1995.tb12679.x
https://doi.org/10.1534/genetics.107.080101
https://doi.org/10.1534/genetics.107.080101
http://www.ncbi.nlm.nih.gov/pubmed/18385116
https://doi.org/10.1093/bioinformatics/bts444
http://www.ncbi.nlm.nih.gov/pubmed/22796960
https://doi.org/10.1007/s00122-014-2435-3
http://www.ncbi.nlm.nih.gov/pubmed/25490985
https://repository.cimmyt.org/handle/10883/1288
https://CRAN.R-project.org/package=lme4
https://doi.org/10.1038/ng.546
https://doi.org/10.1038/ng.546
http://www.ncbi.nlm.nih.gov/pubmed/20208535
https://doi.org/10.1371/journal.pone.0247824


41. Endelman JB. Ridge regression and other kernels for genomic selection with R package rrBLUP. Plant

Genome. 2011; 4:250–255. https://doi.org/10.3835/plantgenome2011.08.0024

42. Clark SA, van der Werf J. Genomic best linear unbiased prediction (gBLUP) for the estimation of geno-

mic breeding values. Methods Mol Biol. 2013; 1019:321–30. https://doi.org/10.1007/978-1-62703-447-

0_13 PMID: 23756897

43. Perez P, de los Campos G. Genome-wide regression and prediction with the BGLR statistical package.

Genetics. 2014; 198(2):483–95. https://doi.org/10.1534/genetics.114.164442 PMID: 25009151

44. Chen CJ, Zhang Z. iPat: intelligent prediction and association tool for genomic research. Bioinformatics.

2018; 34(11):1925–7. https://doi.org/10.1093/bioinformatics/bty015 PMID: 29342241

45. Resende MF Jr., Munoz P, Resende MD, Garrick DJ, Fernando RL, Davis JM, et al. Accuracy of geno-

mic selection methods in a standard data set of loblolly pine (Pinus taeda L.). Genetics. 2012; 190

(4):1503–10. https://doi.org/10.1534/genetics.111.137026 PMID: 22271763

46. Lorenz AJ, Chao S, Asoro FG, Heffner EL, Hayashi T, Iwata H, et al. Genomic Selection in Plant Breed-

ing. Knowledge and Prospects. Adve in Agron. 2011; 110(C):77–123. https://doi.org/10.1016/B978-0-

12-385531-2.00002–5

47. Daetwyler HD, Pong-Wong R, Villanueva B, Woolliams JA. The impact of genetic architecture on

genome-wide evaluation methods. Genetics. 2010; 185(3):1021–31. https://doi.org/10.1534/genetics.

110.116855 PMID: 20407128

48. Rutkoski J, Singh RP, Huerta-Espino J, Bhavani S, Poland J, Jannink JL, et al. Efficient use of historical

data for genomic selection: a case study of stem rust resistance in wheat. Plant Genome. 2015; 8(1):1–

10. https://doi.org/10.3835/plantgenome2014.09.0046 PMID: 33228293

49. VanRaden PM. Efficient methods to compute genomic predictions. J Dairy Sci. 2008; 91(11):4414–23.

https://doi.org/10.3168/jds.2007-0980 PMID: 18946147

50. Perez P, de Los Campos G, Crossa J, Gianola D. Genomic-Enabled Prediction Based on Molecular

Markers and Pedigree Using the Bayesian Linear Regression Package in R. Plant Genome. 2010; 3

(2):106–16. https://doi.org/10.3835/plantgenome2010.04.0005 PMID: 21566722

51. Juliana P, Singh RP, Singh PK, Crossa J, Rutkoski JE, Poland JA, et al. Comparison of Models and

Whole-Genome Profiling Approaches for Genomic-Enabled Prediction of Septoria Tritici Blotch, Stago-

nospora Nodorum Blotch, and Tan Spot Resistance in Wheat. Plant Genome. 2017; 10(2). https://doi.

org/10.3835/plantgenome2016.08.0082 PMID: 28724084

52. Hayes BJ, Bowman PJ, Chamberlain AC, Verbyla K, Goddard ME. Accuracy of genomic breeding val-

ues in multi-breed dairy cattle populations. Genet Sel Evol. 2009; 41:51. https://doi.org/10.1186/1297-

9686-41-51 PMID: 19930712

53. Habier D, Fernando RL, Dekkers JC. The impact of genetic relationship information on genome-assis-

ted breeding values. Genetics. 2007; 177(4):2389–97. https://doi.org/10.1534/genetics.107.081190

PMID: 18073436

54. Zhong S, Dekkers JC, Fernando RL, Jannink JL. Factors affecting accuracy from genomic selection in

populations derived from multiple inbred lines: a Barley case study. Genetics. 2009; 182(1):355–64.

https://doi.org/10.1534/genetics.108.098277 PMID: 19299342

55. de Los Campos G, Hickey JM, Pong-Wong R, Daetwyler HD, Calus MP. Whole-genome regression

and prediction methods applied to plant and animal breeding. Genetics. 2013; 193(2):327–45. https://

doi.org/10.1534/genetics.112.143313 PMID: 22745228

56. Meuwissen TH. Accuracy of breeding values of ’unrelated’ individuals predicted by dense SNP genotyp-

ing. Genet Sel Evol. 2009; 41:35. https://doi.org/10.1186/1297-9686-41-35 PMID: 19519896

57. Isidro J, Jannink JL, Akdemir D, Poland J, Heslot N, Sorrells ME. Training set optimization under popu-

lation structure in genomic selection. Theor Appl Genet. 2015; 128(1):145–58. https://doi.org/10.1007/

s00122-014-2418-4 PMID: 25367380

58. Habier D, Fernando RL, Dekkers JC. The impact of genetic relationship information on genome-assis-

ted breeding values. Genetics. 2007; 177(4):2389–97. https://doi.org/10.1534/genetics.107.081190

PMID: 18073436

59. de Roos AP, Hayes BJ, Goddard ME. Reliability of genomic predictions across multiple populations.

Genetics. 2009; 183(4):1545–53. https://doi.org/10.1534/genetics.109.104935 PMID: 19822733

60. Daetwyler HD, Hickey JM, Henshall JM, Dominik S, Gredler B, van der Werf JHJ, et al. Accuracy of esti-

mated genomic breeding values for wool and meat traits in a multi-breed sheep population. Anim Prod

Sci. 2010; 50:1004–1010. https://doi.org/10.1071/AN10096

61. Howard R, Carriquiry AL, Beavis WD. Parametric and nonparametric statistical methods for genomic

selection of traits with additive and epistatic genetic architectures. G3 (Bethesda). 2014; 4(6):1027–46.

https://doi.org/10.1534/g3.114.010298 PMID: 24727289

PLOS ONE Determining genomic prediction accuracy in wheat landraces and cultivars

PLOS ONE | https://doi.org/10.1371/journal.pone.0247824 March 5, 2021 19 / 20

https://doi.org/10.3835/plantgenome2011.08.0024
https://doi.org/10.1007/978-1-62703-447-0%5F13
https://doi.org/10.1007/978-1-62703-447-0%5F13
http://www.ncbi.nlm.nih.gov/pubmed/23756897
https://doi.org/10.1534/genetics.114.164442
http://www.ncbi.nlm.nih.gov/pubmed/25009151
https://doi.org/10.1093/bioinformatics/bty015
http://www.ncbi.nlm.nih.gov/pubmed/29342241
https://doi.org/10.1534/genetics.111.137026
http://www.ncbi.nlm.nih.gov/pubmed/22271763
https://doi.org/10.1016/B978-0-12-385531-2.00002%26%23x2013%3B5
https://doi.org/10.1016/B978-0-12-385531-2.00002%26%23x2013%3B5
https://doi.org/10.1534/genetics.110.116855
https://doi.org/10.1534/genetics.110.116855
http://www.ncbi.nlm.nih.gov/pubmed/20407128
https://doi.org/10.3835/plantgenome2014.09.0046
http://www.ncbi.nlm.nih.gov/pubmed/33228293
https://doi.org/10.3168/jds.2007-0980
http://www.ncbi.nlm.nih.gov/pubmed/18946147
https://doi.org/10.3835/plantgenome2010.04.0005
http://www.ncbi.nlm.nih.gov/pubmed/21566722
https://doi.org/10.3835/plantgenome2016.08.0082
https://doi.org/10.3835/plantgenome2016.08.0082
http://www.ncbi.nlm.nih.gov/pubmed/28724084
https://doi.org/10.1186/1297-9686-41-51
https://doi.org/10.1186/1297-9686-41-51
http://www.ncbi.nlm.nih.gov/pubmed/19930712
https://doi.org/10.1534/genetics.107.081190
http://www.ncbi.nlm.nih.gov/pubmed/18073436
https://doi.org/10.1534/genetics.108.098277
http://www.ncbi.nlm.nih.gov/pubmed/19299342
https://doi.org/10.1534/genetics.112.143313
https://doi.org/10.1534/genetics.112.143313
http://www.ncbi.nlm.nih.gov/pubmed/22745228
https://doi.org/10.1186/1297-9686-41-35
http://www.ncbi.nlm.nih.gov/pubmed/19519896
https://doi.org/10.1007/s00122-014-2418-4
https://doi.org/10.1007/s00122-014-2418-4
http://www.ncbi.nlm.nih.gov/pubmed/25367380
https://doi.org/10.1534/genetics.107.081190
http://www.ncbi.nlm.nih.gov/pubmed/18073436
https://doi.org/10.1534/genetics.109.104935
http://www.ncbi.nlm.nih.gov/pubmed/19822733
https://doi.org/10.1071/AN10096
https://doi.org/10.1534/g3.114.010298
http://www.ncbi.nlm.nih.gov/pubmed/24727289
https://doi.org/10.1371/journal.pone.0247824


62. Massman JM, Jung HJG, Bernardo R. Genomewide Selection versus Marker-assisted Recurrent

Selection to Improve Grain Yield and Stover-quality Traits for Cellulosic Ethanol in Maize. Crop Sci.

2013; 53:58–66. https://doi.org/10.2135/cropsci2012.02.0112

PLOS ONE Determining genomic prediction accuracy in wheat landraces and cultivars

PLOS ONE | https://doi.org/10.1371/journal.pone.0247824 March 5, 2021 20 / 20

https://doi.org/10.2135/cropsci2012.02.0112
https://doi.org/10.1371/journal.pone.0247824

