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Abstract

Besides monocyte (MO)-derived macrophages (MACs), self-renewing tissue-resident mac-

rophages (trMACs) maintain the intracutaneous MAC pool in murine skin. Here, we have

asked whether the same phenomenon occurs in human skin using organ-cultured, full-thick-

ness skin detached from blood circulation and bone marrow. Skin stimulation ex vivo with

the neuropeptide substance P (SP), mimicking neurogenic skin inflammation, significantly

increased the number of CD68+MACs in the papillary dermis without altering intracutaneous

MAC proliferation or apoptosis. Since intraluminal CD14+MOs were undetectable in the

non-perfused dermal vasculature, new MACs must have differentiated from resident intra-

cutaneous progenitor cells in human skin. Interestingly, CD68+MACs were often seen in

direct cell-cell-contact with cells expressing both, the hematopoietic stem cell marker CD34

and SP receptor (neurokinin-1 receptor [NK1R]). These cell-cell contacts and CD34+cell

proliferation were up-regulated in SP-treated skin samples. Collectively, our study provides

the first evidence that resident MAC progenitors, from which mature MACs can rapidly differ-

entiate within the tissue, do exist in normal adult human skin. That these NK1R+trMAC-pro-

genitor cells quickly respond to a key stress-associated neuroinflammatory stimulus

suggests that this may satisfy increased local MAC demand under conditions of wounding/

stress.

Introduction

Macrophages (MACs) are mononuclear phagocytic leukocytes that play a key role in adaptive

and innate immunity, and regulate tissue homeostasis [1–4]. While long believed to derive
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from circulating monocytes (MOs) [5–7], in most examined adult murine tissues, including

skin, MACs are entirely or partially self-maintained from proliferating tissue-resident MACs

(trMACs) of embryonal origin [8–11]. Moreover, during tissue inflammation, the contribution

of MOs to the increase of MAC number is minimal and is due in large part to the proliferation

of trMACs in murine tissues [10,12–14].

However, our current understanding of MAC ontogeny and differentiation in peripheral

tissues largely relies on studies in mice and remains unclear whether these concepts are trans-

ferable to the human system, namely to human skin. Yet, the fact that patients with congenital

monocytopenia still have skin MACs [15,16] supports the hypothesis that the pool of MACs in

human skin is either self-maintained or generated by locally resident progenitor cells. Interest-

ingly, it has already been demonstrated for human skin and upper airway mucosal mast cells,

that they can mature from resident progenitor cells [17–19], and can be expanded in the

absence of circulating progenitors, and bone marrow derived-stem cells.

Therefore, the current pilot study aimed to clarify whether, as in mice, the dermal MAC

pool in adult human skin is self-maintained and can be expanded in the absence of hemoper-

fusion with circulating MOs and bone marrow derived-stem cells.

To address it, full-thickness hair-bearing human skin fragments were organ-cultured

detached from blood circulation and bone marrow under serum-free conditions [20,21] and

compared MAC number and activities in both a steady-state and pro-inflammatory condi-

tions. For the latter, we simulated neurogenic inflammation through the administration of the

prototypic stress-associated sensory neuropeptide, substance P (SP) [22], which acts primarily

via neurokinin-1 receptor (NK1R) and Mas-related G Protein coupled receptor X2

(MRGPRX2) [23] and is a key mediator of neurogenic skin inflammation [22,24–26]. This

design was also chosen because intracutaneous SP administration increases the number of

intradermal MACs in several rodent models in vivo [24,25]. The number, proliferation and

apoptosis of CD68+MACs [27,28] and of putative MAC precursors, namely of CD34+cells

[29,30], was assessed in human dermis by quantitative (immuno-)histomorphometry [31].

Finally, preliminary mechanistic experiments were performed using the specific NK1R antago-

nist, aprepitant [32–34], in order to clarify how SP triggers the de novo generation of MAC in

human skin.

Materials and methods

Human tissue collection and full-thickness skin organ culture

All experiments on human tissue were performed according to Helsinki guidelines. As a labo-

ratory that specializes in hair research with special interest in the role of perifollicular macro-

phages in scalp skin, we purposely used healthy frontotemporal human hairy scalp skin

samples from women undergoing cosmetic facelift surgery, obtained from collaborating plastic

surgeons, after written patient consent and ethics committee approval from the University of

Münster (n. 2015-602-f-S), which severely limited the amount of available human skin for

organ culture. 4mm skin fragments were obtained from the skin samples upon arrival to the

laboratory after overnight shipment, and organ cultured as previously described [20,35] with

minor modifications.

To better conserve the viability of immunocytes, a mixture of William’s E and RPMI

medium (1:1), which contains insulin, hydrocortisone and L-glutamine [20,21] was used.

After a 24h of equilibration period, skin punches were treated with 10−8, 10−10 M of SP or

with a corresponding vehicle control (media only).

Alternatively, before and during SP stimulation, the selective NK1R antagonist, aprepitant

[32–34] was administered at 10-7M, in order to prevent the effect of SP.

Human skin harbours macrophage progenitors
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To test DNA synthesis, samples were treated for 24h with 10μM EdU (5-ethynyl-2’-deox-

yuridine) [36].

To test if the endothelial cells can be activated by SP, skin biopsies were incubated either

with 10−10 M of SP or with 2 different concentrations (0.5–50 ng/ml) of TNFα for 24h [21].

(for details, see S1 Text).

Immunohistochemistry/Immunofluorescence microscopy and quantitative

(immuno-)histomorphometry

After acetone fixation, skin cryo-sections were incubated with the primary antibodies listed in

S1 Table over night at 4˚C, or 1h at 37˚C, after appropriate pre-incubation with serum (S2

Table) and with the appropriate secondary antibody (S3 Table) or solutions provided by stain-

ing kits (for details, see S1 Text).

The number of single or double-positive cells were evaluated by quantitative (immuno-)his-

tomorphometry [31] in the papillary dermis, in an area defined as 200μm from the basement

membrane of the epidermis (S1 Fig), or in the whole skin section using Biozero-II Analyzer

software (for details, see S1 Text).

Statistics

Data are expressed as number, percentage or fold change over vehicle or day 0 when vehicle

was not determined. All data were analysed with GraphPad Prism 6 software (GraphPad

Prism). Statistical significance was calculated by One-way ANOVA test for parametric data, or

Kruskal-Wallis test for non-parametric data. Bonferroni’s test or Dunn’s test were used,

respectively, as post hoc test. p<0.05 was regarded as significant.

Results and discussion

SP selectively increases the number of resident CD68+MACs in human

papillary dermis ex vivo
After 24h of SP stimulation (10-10M and 10-8M [21]) ex vivo, the number of cells expressing

CD68, a late endosomal glycoprotein which selectively demarcates human MACs [27,28], was

significantly increased in human papillary dermis compared to control samples (Fig 1).

Fig 1. Effect of SP on CD68+cells. Quantitative analysis and representative images of CD68+cells in human skin fragments at day 0 or treated with vehicle, or SP ex
vivo. The number of positive cells was counted in the papillary dermis (200μm from the epidermis). N = 15–16 skin biopsies/group from 4 different donors. Fold change

of Mean or Mean ± SEM. One-way ANOVA, post hoc test Bonferroni (#p<0.05). Scale bare: 50μm.

https://doi.org/10.1371/journal.pone.0227817.g001

Human skin harbours macrophage progenitors
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We detected a difference of CD68+cell number between samples treated with SP 10-10M

and vehicle samples of 66.8 cell/mm2 (i.e. an increase of 34% compared to vehicle controls)

(Fig 1). Given that the increase in the number of CD68+MACs consistently occurred within

only 24 h of SP stimulation, and this in a non-blood-perfused tissue, this evidence constitutes a

remarkable numeric enhancement.

Instead, the overall number of antigen-presenting cells in human skin, including MACs

positive for MHC class II [37,38], remained essentially unchanged (S2A Fig).

This unexpected result rose the hypothesis that the increase number of CD68+MAC may be

counteracted by the depletion of other MHCII+ cells, namely dendritic cells.

It is known, in fact, that under conditions of neurogenic inflammation, dermal dendritic

cells fast respond and migrate to the lymph node [24,39]. Given that several subtypes of den-

dritic cells are present in human dermis and that it is still not entirely clear which is the best

marker [40,41], we have opted for a double immunostaining protocol of MHCII with CD11c.

Our results showed that the number of MHCII+CD11c+ dendritic cells is reduced by ca. 20%

in SP treated samples as compared to vehicle samples (S2B Fig). This explains the essentially

unaltered number of MHCII+cells after SP stimulation, since the decrease in CD11c+cells is

counterbalanced by the observed increase in the number of (also MHCII+) CD68+MACs.

Thus, intradermal MACs in human skin and/or their progenitor cells are highly responsive to

SP stimulation, even in the absence of functional sensory skin innervation.

MOs are unlikely to significantly contribute to the de novo generation of

CD68+MACs in human skin ex vivo
The newly formed dermal CD68+MACs could plausibly have derived from circulating MOs.

However, when we have investigated the number of MOs trapped in the lumen of blood vessels

by using double-immunostaining to visualize both the endothelium (CD31+cells) and

CD14+MOs, hardly any CD14+MOs were found to be trapped in CD31+blood vessels (Fig

2A).

Furthermore, the number of MO-derived MACs (i.e. CD14+CD68+cells) [42], which repre-

sented ca. 75% of the total MAC population found in human skin ex vivo (Fig 2B), was unaf-

fected by SP treatment (Fig 2B). Interestingly, Tamoutounour and colleagues, demonstrate

that in mouse skin around 20% of CD68+MACs are Ly-6C- (i.e. the mouse analogue of CD14),

indicating the existence of a pool of dermal MACs that is established prenatally and persists in

adulthood, independently from circulating monocytes [10,42,43], showing that MACs are

indeed “partially” self-maintained by proliferating tissue-resident MACs of embryonal origin.

Therefore, the fact that we also found around 25% of CD68+MACs in human skin to be

negative for CD14 nicely correlates with mouse data and suggests that a substantial portion of

human dermal MACs are also maintained independently from circulating monocytes.

In addition, H&E staining was also used to investigate whether blood was still trapped in

capillaries after skin processing and organ culture, and to discriminate macrophage (large

irregularly shaped cells) from monocytes (smaller and more rounded cells) [43,44] in the

capillaries.

We could not find any MACs trapped in the blood vessels of any skin samples analysed (S3

Fig), confirming that the isolate CD14+cells found in capillaries were indeed CD14+ circulating

MOs. We have also found very few histochemically stained red blood cells in skin samples at

day 0 but not in vehicle or SP treated skin samples, i.e. organ cultured samples (S3 Fig). There-

fore, while some blood remained trapped in the blood vessels after punches preparation, most

of it was washed out during organ culture, further supporting our hypothesis that the newly

generated MAC after SP stimulation did not derive from CD14+ circulating monocytes.

Human skin harbours macrophage progenitors
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Fig 2. CD14+ MOs in human skin ex vivo. (a) Representative images of CD14/CD31cells in human skin fragments at day 0 or treated with vehicle, or SP ex vivo. The

CD14+cells were visualized in the entire dermis. N = 8 skin biopsies/group from 2 different donors (126 skin sections). Arrows indicate CD14+MOs trapped in the

lumen of blood vessel cells (white arrows), and CD14+MOs localized close to blood vessels (violet arrows). (b) Quantitative analysis, and representative images of

CD14/CD68 in immunofluorescence staining in human skin fragments at day 0 or treated with vehicle, or SP ex vivo. The percentage and number of double-positive

cells was counted in the papillary dermis (200μm from the epidermis). N = 8 skin biopsies/group from 2 different donors. Mean ± SEM, One-way ANOVA, post hoc

test Bonferroni (# p<0.05). (c) Quantitative analysis, and representative images of P-selectin in immunofluorescence staining in human skin fragments at day 0 or

treated with vehicle, SP or TNFα ex vivo. Staining intensity was evaluated in the entire dermis. N = 8 skin biopsies/group from 2 different donors. Fold change of

Mean ± SEM, Kruskal-Wallis-Test, post hoc test Dunn, #p<0.05, ##p<0.01, ###p<0.001. Scale bare 50μm.

https://doi.org/10.1371/journal.pone.0227817.g002

Human skin harbours macrophage progenitors
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Moreover, MOs extravasation is strictly regulated via protein-protein interaction with

endothelial cells [45]. In this process, several adhesion proteins are involved in the capturing

and rolling phase, namely P-selectin [46,47]. P-selectin is a transmembrane lectin, whose

expression is up-regulated by different cytokines, including TNFα [47].

To test if the endothelial cells are activated and overexpress P-selectin after SP stimulation,

we treated the skin biopsies either with SP (10-10M) or with 2 different concentrations (0.5–50

ng/ml) of TNFα [21]. As reported, P-selectin was strongly up-regulated in CD31+cells in

response to TNFα [47] (Fig 2C) indicating that endothelial cells can be activated ex vivo.

Instead, SP did not promote P-selectin expression on them (Fig 2C).

Of interest, the fact that P-selectin expression is up-regulated in endothelial cells [45,46] of

day 0 skin samples as compared to vehicle samples may well result from the pro-inflammatory

environment triggered in the skin sample during the manipulation of the skin samples, from

the trauma of surgical skin harvesting to the initiation of the culture (day 0) [48]. Thus, the

expression of P-selectin is most likely restored to the baseline level during organ culture, as the

skin gradually adjusts to its new ex vivo environment (Fig 2C).

This renders very unlikely that SP enhances the capacity of the extremely few CD14+MOs

trapped in intracutaneous blood vessel ex vivo to extravasate in a P-selectin-dependent

manner.

Therefore, together with the absence of functional blood flow in our assay system, the

fact that SP did not activate the endothelial cells (Fig 2C) and the extremely rare presence

of CD14+cells in human skin blood vessels (Fig 2A) virtually rules out extravasating MOs

as a credible source of the substantial, SP-induced increase in the number of dermal

CD68+cells.

The SP-induced MAC increase cannot be explained by suppression of MAC

apoptosis or stimulation of MAC proliferation

Next, we checked whether the SP-induced MAC increase resulted from a protective effect of

SP on dermal CD68+MACs apoptosis under ex vivo conditions. On the contrary, the percent-

age of apoptotic (TUNEL+ or active-caspase-3+) CD68+MACs was significantly up-regulated

in SP-treated skin (Fig 3A), suggesting that the SP-induced increase in the intradermal MAC

count was even higher than Fig 1 indicates. This also demonstrates that SP promotes human

dermal MAC apoptosis within their physiological environment.

When the expression of proliferation-associated parameters (Ki-67, M-phase-specific phos-

pho-histone 3 [PH3]), and DNA synthesis using EdU incorporation [49]) by CD68+MACs

were evaluated, no significant differences were seen between vehicle- and SP-treated skin (Fig

3B; S4 Fig).

Moreover, MHCII is a molecule expressed in several mature cell populations in human

skin in the dermis, namely antigen presenting cells (CD14+ and CD14- dendritic cells, and

MACs), and non-antigen presenting cells [50]. We have already essentially excluded that

CD14+cells and CD68+MACs, which also express MHCII, in the dermis as a credible source

for the SP-induced increased in the number of dermal CD68+cells. Therefore, the only other

MHCII+cell subtype we did not investigate that could give rise to MACs, are CD14- dendritic

cells [51].

We have, therefore, determined the number of proliferative MHCII+cells in the papillary

dermis. However, the percentage of proliferative MHCII+cells is significantly down-regulated

either in vehicle or SP treated groups compared to freshly isolated skin (Fig 3C). The decrease

in the proliferative MHCII+ cell number may be explained by the well-documented fact that

MHCII+ dendritic cells, rather than macrophages [52], rapidly migrate out of the skin into the

Human skin harbours macrophage progenitors
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Fig 3. Proliferative and apoptotic MACs. (a) Quantitative analysis and representative images of CD68/TUNEL or CD68/

Caspase3 cells in human skin fragments at day 0 or treated with vehicle, or SP ex vivo. The percentage of double-positive cells was

Human skin harbours macrophage progenitors
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culture medium under tissue stress conditions [24,39]. This explain also the downregulation of

MHCII+CD11c+ in S2B Fig.

This renders highly unlikely that any of the MHCII+cell populations in the dermis is a

source of the increased number of CD68+cells.

Thus, the observed SP-induced increase in the number of CD68+MACs cannot be credibly

explained by apoptosis-protection or the proliferation/self-renewal of CD68+MACs or other

MHCII+cells.

Resident CD34+-progenitor cells in human dermis are the most likely

source of intracutaneously generated CD68+MACs

These results strongly suggested that adult human dermis harbours immature, resident progeni-

tors, from which mature CD68+MACs can rapidly be differentiated in loco, e.g. from previously

deposited mesenchymal and/or hematopoietic stem cells (MSC, HSC). Immunohistology for

classical MSC and/or HSC markers (c-Kit, CD34) [53,54] showed that almost all c-Kit+cells in

the papillary dermis were CD68- and phenotypically represented mast cells [17,31], and that

their number did not differ between vehicle- and SP-treated samples (Fig 4A). Instead, very

rarely, CD68+CD34+cells could be seen in the papillary dermis of vehicle and SP-treated skin

(Fig 4B), many of which expressed NK1R (S5A Fig) and were in direct physical contact with

CD68+CD34-cells; the latter phenomenon notably increased after SP treatment (Fig 4C). Since

endothelial cells can also express CD34 (S5B Fig) it is important to note that almost 40% of der-

mal CD34+cells were CD31- (S5B Fig), and thus likely represented CD34+HSCs (S5B Fig).

SP promotes the proliferation of CD34+ dermal progenitor cells and their

maturation into CD68+MACs

This in turn invited the hypothesis that the SP-induced increase in CD68+MACs (Fig 1) is pri-

marily brought about by impacting on resident progenitor cells, from which these skin MACs

differentiate. In fact, quantitative analysis of CD34/Ki-67 double-immunohistochemistry

revealed that SP significantly upregulated the number of proliferating (i.e. Ki-67+) CD34+cells

(Fig 5A), showing that SP can stimulate the proliferation of human dermal CD34+cells within

their natural tissue niche.

Moreover EdU-incorporating CD34+cells were seen in close contact with EdU-incorporat-

ing CD68+cells (Fig 5B).

Direct activation of NK-1 receptor on CD34+MAC progenitors is involved

in SP-induced MAC de novo generation ex vivo
Given that CD34+cells express NK1R (S5A Fig), and that the increase in MAC numbers occurs

quite rapidly (within 24 hrs) after SP stimulation, our data support the hypothesis that SP

counted in the papillary dermis (200μm from the epidermis). N = 15–16 skin biopsies/group from 4 different donors (CD68/

TUNEL) or N = 7–8 skin biopsies/group from 2 different donors (CD68/Caspase3). Mean ± SEM. One-way ANOVA, post hoc

test Bonferroni (#p<0.05), Kruskal-Wallis-Test, post hoc test Dunn, (#p<0.05). Arrows indicate CD68+TUNEL+cells (green

arrows), CD68+active-caspase3+ (yellow arrows). (b) Quantitative analysis and representative images of CD68/Ki-67 cells in

human skin fragments at day 0 or treated with vehicle, or SP ex vivo. Representative picture of the internal positive control for

Ki-67+proliferative cells. The percentage of double-positive cells was counted in the entire dermis. N = 15–16 skin biopsies/group

from 4 different donors. Mean ± SEM. Kruskal-Wallis-Test, post hoc test Dunn, ns. Arrow indicates CD68+Ki-67+cells (red). (c)

Quantitative analysis, and representative images of MHCII+/Ki-67+cells in immunofluorescence staining in human skin

fragments at day 0 or treated with vehicle, or SP ex vivo. The percentage of double-positive cells was counted in the papillary

dermis (200μm from the epidermis). N = 11–12 skin biopsies/group from 3 different donors. Fold change of Mean ± SEM, One-

way ANOVA, post hoc test Bonferroni (#p<0.05, ##p<0.01). Arrow indicates MHCII+Ki-67+cells (pink). EP: epidermis; PD:

papillary dermis. Scale bare: 50μm.

https://doi.org/10.1371/journal.pone.0227817.g003

Human skin harbours macrophage progenitors
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Fig 4. Identification of c-Kit+ cells and CD34+ progenitors in human skin. (a) Quantitative analysis, and representative images of CD68/c-Kit in immunofluorescence

staining in human skin fragments at day 0 or treated with vehicle, or SP ex vivo. The number of cells in close contact was counted in the papillary dermis (200μm from

the epidermis). N = 15–16 skin biopsies/group from 4 different donors. Fold change of Mean ± SEM. Kruskal-Wallis-Test, ns, post hoc test Dunn, ns. (b) Representative

pictures of CD34+ and CD68+ cells. The double positive cells were visualized in the papillary dermis (200μm from the epidermis). Yellow arrow indicates double positive

CD68+CD34+ cell. (c) Quantitative analysis, and representative images of CD68/CD34. The number of cells in close contact was counted in the papillary dermis (200μm

from the epidermis). N = 15–16 skin biopsies/group from 4 different donors. Fold change of Mean ± SEM. Kruskal-Wallis-Test, post hoc test Dunn (#p<0.05). Arrows

indicate CD68+MACs in close contact with CD34+cells (white). Scale bare: 50μm.

https://doi.org/10.1371/journal.pone.0227817.g004

Fig 5. Proliferative CD34+progenitor cells. (a) Quantitative analysis, and representative images of CD34/Ki-67. The number of double positive cells was counted in the

papillary dermis (200μm from the epidermis). N = 15–16 skin biopsies/group from 4 different donors. Mean ± SEM. Kruskal-Wallis Test, post hoc test Dunn (#p<0.5).

Black arrows indicate CD34+Ki-67+cells. (b) Representative pictures of CD68+CD34+EdU+cells. The double positive cells (CD68+EdU+ or CD34+EdU+) were visualized

in the papillary dermis. N = 12 skin biopsies/group from 3 different donors. Scale bare: 50μm.

https://doi.org/10.1371/journal.pone.0227817.g005

Human skin harbours macrophage progenitors
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Fig 6. Aprepitant antagonizes the SP effect on CD34+cells and CD68+MAC. (a) Quantitative analysis, and representative images of CD68 immunostainings in human

skin fragments at day 0 or treated with vehicle, or SP, or aprepitant, or aprepitant and SP ex vivo. The number of single positive cells was counted in the papillary dermis.

N = 11–12 skin biopsies/group from 3 donors. Fold change of Mean ± SEM, One-way ANOVA, post hoc test Bonferroni (#p<0.05). Scale bare 50μm (b) Quantitative

analysis, and representative images of CD34/Ki-67 immunostainings in human skin fragments at day 0 or treated with vehicle, or SP, or aprepitant, or aprepitant and SP

ex vivo. The number of double positive cells was counted in the entire dermis. N = 11–12 skin biopsies/group from 3 donors. Fold change of Mean ± SEM, One-way

ANOVA, post hoc test Bonferroni (#p<0.05; ##p<0.01). Scale bare 10μm. (c) Quantitative analysis, and representative images of CD34/CD68 immunostainings in

human skin fragments at day 0 or treated with vehicle, or SP, or aprepitant, or aprepitant and SP ex vivo. The number of cells in close contact was counted in the in the

papillary dermis. N = 11–12 skin biopsies/group from 3 donors. Fold change of Mean ± SEM, Kruskal-Wallis Test, post hoc test Dunn (#p<0.5). Scale bare 10μm.

https://doi.org/10.1371/journal.pone.0227817.g006

Human skin harbours macrophage progenitors

PLOS ONE | https://doi.org/10.1371/journal.pone.0227817 January 23, 2020 10 / 16

https://doi.org/10.1371/journal.pone.0227817.g006
https://doi.org/10.1371/journal.pone.0227817


induces MAC de novo generation via a direct effect on resident CD34+MAC progenitors in

human skin. However, alternative indirect mechanisms may also be involved, such as mast cell

activation and subsequent histamine release. In fact, SP does not activate mast cells only via

NK1R, but also via Mas-related G Protein coupled receptor X2 (MRGPRX2), a receptor that is

selectively expressed on mast cells and dorsal root ganglions [34,55]. Once activated by SP,

mast cells secrete histamine, and several other cytokines, namely TNFα and IL-33, known to

activate and promote MAC maturation [56–58].

Therefore, in this initial pilot study, we have begun to clarify whether SP-induced MAC de

novo generation ex vivo results from a direct effect on the putative CD34+MAC progenitors,

or indirect activation of mast cells by administering the selective NK1R antagonist, aprepitant

[32–34], so that mast cell activation could be still possible via MRGPRX2.

These additional experiments confirm, once again, that SP stimulation increases signifi-

cantly MAC number, CD34+cell proliferation, and enhanced the co-localization of CD68+cells

with CD34 cells.

Most importantly, our new results show that the administration of aprepitant 2h before SP

stimulation prevented 1) the up-regulation of CD68+cells, which number remained comparable

to vehicle sample (Fig 6A), 2) the increase in CD34+cell proliferation (Fig 6B) and, 3) the stimu-

lation of co-localizations between CD68+cells with CD34+cells, induced by SP administration

(Fig 6C). Thus, our new results demonstrate that NK-1R-mediated signalling is exclusive

involved in the SP-induced up-regulation of intradermal macrophage number ex vivo, and sug-

gests a direct effect of SP on resident CD34+MAC progenitors in human skin: if mast cells were

involved in the observed SP effects, they should have been activated by SP via MRGPRX2

[34,55] in the presence of aprepitant, which does not block MRGPRX2 signaling [34].

Conclusions

Although our immunohistomorphometry-based in situ findings should be systematically fol-

lowed up by FACS analysis and single cell RNAseq so as to obtain further insights into how SP

stimulation impacts on the tissue-resident immunocyte progenitor cells in human skin and their

differentiation into CD68+ macrophages, these intriguing results suggest that CD68+MACs can

indeed mature from resident intracutaneous CD31-CD34+mesenchymal stem cells in human

skin, which lose CD34 expression upon differentiation. Together with the clinical observation

that monocytopenia patient skin has normal MAC numbers and almost no proliferative

CD68+cells, yet many CD34+cells [15], our ex vivo-data further support that human dermal

CD68+trMACs arise from an expanding pool of CD34+MAC progenitors after SP stimulation.

Therefore, human skin can generate MACs de novo from pre-existing progenitors such as

CD34+cells, at least under conditions of neurogenic inflammation, rather than from extrava-

sated MOs. This designates dermal MACs as yet another key innate immunity protagonist

besides mast cells [17,18], which can be expanded from resident progenitor cells present

within human skin. This also raises the question whether the massive dermal MAC increase

seen e.g. in lepromatous leprosy, leishmaniasis, granuloma annulare, and tattoo-associated

granulomata [59,60] results not only from extravasating MOs, but also from the excessive local

MAC maturation from resident, intracutaneous (CD34+)progenitor cells. If confirmed, this

pathological intradermal MAC differentiation process in human skin would deserve to be tar-

geted therapeutically.

Supporting information
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S1 Fig. Reference area. Representative pictures of the defined reference areas in the dermis

(200μm from the epidermis) used for our analysis. Scale bare 100 μm. D0: day 0.

(TIF)

S2 Fig. Effect of SP on MHCII+cells. (a) Quantitative analysis, and representative images of

MHCII+cells in immunofluorescence staining in human skin fragments at day 0 or treated

with vehicle, or SP ex vivo. The number of cells was counted in the papillary dermis (200μm

from the epidermis). N = 11–12 skin biopsies/group from 3 different donors. Fold change of

Mean ± SEM, One-way ANOVA, post hoc test Bonferroni (#p<0.05).

(a) Quantitative analysis, and representative images of MHCII+CD11c+cells in immunofluo-

rescence staining in human skin fragments at day 0 or treated with vehicle, or SP ex vivo. The

number of double positive cells was counted in the papillary dermis (200μm from the epider-

mis). N = 11–12 skin biopsies/group from 3 different donors. Fold change of Mean ± SEM,

One-way ANOVA, post hoc test Bonferroni (#p<0.05; ##p<0.01). Orange arrows indicate

double positive cells.

Scale bare: 50μm.

(TIF)

S3 Fig. H&E representation of skin capillaries. Representative pictures showing skin capillar-

ies and blood smear control. Erythrocytes (red arrows) were visualized in few capillaries only

at day 0. Intraluminal MO (blue arrow) was detected in a single lumen at day 0. Perivascular

MACs (green arrows) were identify at day 0 and Vehicle control. Blood smear control showing

erythrocytes and circulating T-cells (black arrows).

(TIF)

S4 Fig. Proliferative CD68+cells. (a) Representative pictures of the internal positive control

showing PH3+ cells in the epidermis. Very few PH3+CD68+MACs were visualized in D0 (day

0). This staining was qualitatively evaluated in 96 sections derived from 4 punches per condi-

tions from 2 different donors. White arrow indicates a double positive CD68+PH3+cell

(white).

(b) Representative pictures of the internal positive control showing EdU+ proliferative cells in

the epidermis. Very few EdU+CD68+ MACs were visualized in vehicle and SP 10-10M treated

human scalp skin. EdU+CD68+ cells were detected out of 32 sections derived from 4 punches

per conditions from 1 donor. Pink arrow indicates a double positive CD68+EdU+ cells. EP:

epidermis; PD: papillary dermis.

Scale bare 50μm.

(TIF)

S5 Fig. Characterization of CD34+progenitor cells. (a) Representative picture showing

CD34/NK1R cells. Black Arrows indicate double positive CD34+NK1R+ cells.

(b) Quantitative analysis, and representative images of CD34/CD31 in immunofluorescence

staining in human skin fragments at day 0 or treated with vehicle, or SP ex vivo. The percent-

age of double-positive cells was counted in the papillary dermis (200μm from the epidermis).

N = 7–8 skin biopsies/group from 2 different donors. Mean ± Men. Green arrows indicate

CD34+CD31-cells. Scale bare: 50μm.

(TIF)

S1 Table. Primary antibodies employed. Antibodies used for immunofluorescence stainings

are listed and described in detail.

(DOCX)
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S2 Table. List of all the immunostainings. Immunostaining performed and relevant details.

Tris-buffered saline (TBS), phosphate buffered saline (PBS), 4’,6-diamidin-2’-phenylindoldi-

hydrochlorid (DAPI).

(DOCX)

S3 Table. List of the secondary antibodies. Fluorescein isothiocynate (FITC).

(DOCX)
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9. Jäppinen N, Félix I, Lokka E, Tyystjärvi S, Pynttäri A, Lahtela T, et al. Fetal-derived macrophages domi-

nate in adult mammary glands. Nat Commun. 2019 17; 10(1):281. https://doi.org/10.1038/s41467-018-

08065-1 PMID: 30655530

10. Tamoutounour S, Guilliams M, Montanana Sanchis F, Liu H, Terhorst D, Malosse C, et al. Origins and

functional specialization of macrophages and of conventional and monocyte-derived dendritic cells in

mouse skin. Immunity. 2013 Nov 14; 39(5):925–38. https://doi.org/10.1016/j.immuni.2013.10.004

PMID: 24184057

11. Ginhoux F, Greter M, Leboeuf M, Nandi S, See P, Gokhan S, et al. Fate mapping analysis reveals that

adult microglia derive from primitive macrophages. Science. 2010 Nov 5; 330(6005):841–5. https://doi.

org/10.1126/science.1194637 PMID: 20966214

12. Jenkins SJ, Ruckerl D, Cook PC, Jones LH, Finkelman FD, van Rooijen N, et al. Local macrophage pro-

liferation, rather than recruitment from the blood, is a signature of TH2 inflammation. Science. 2011 Jun

10; 332(6035):1284–8. https://doi.org/10.1126/science.1204351 PMID: 21566158

13. Sieweke MH, Allen JE. Beyond stem cells: self-renewal of differentiated macrophages. Science. 2013

Nov 22; 342(6161):1242974. https://doi.org/10.1126/science.1242974 PMID: 24264994

14. Robbins CS, Hilgendorf I, Weber GF, Theurl I, Iwamoto Y, Figueiredo J-L, et al. Local proliferation domi-

nates lesional macrophage accumulation in atherosclerosis. Nat Med. 2013 Sep; 19(9):1166–72.

https://doi.org/10.1038/nm.3258 PMID: 23933982

15. Bigley V, Haniffa M, Doulatov S, Wang X-N, Dickinson R, McGovern N, et al. The human syndrome of

dendritic cell, monocyte, B and NK lymphoid deficiency. J Exp Med. 2011 Feb 14; 208(2):227–34.

https://doi.org/10.1084/jem.20101459 PMID: 21242295

16. Emile JF, Geissmann F, Martin OC, Radford-Weiss I, Lepelletier Y, Heymer B, et al. Langerhans cell

deficiency in reticular dysgenesis. Blood. 2000 Jul 1; 96(1):58–62. PMID: 10891430
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nize “stressed” HFs and may induce alopecia areata. J Dermatol Sci. 2017 May 1; 86(2):e59.

49. Purba TS, Brunken L, Hawkshaw NJ, Peake M, Hardman J, Paus R. A primer for studying cell cycle

dynamics of the human hair follicle. Exp Dermatol. 2016 Sep; 25(9):663–8. https://doi.org/10.1111/exd.

13046 PMID: 27094702

50. Angel CE, George E, Ostrovsky LL, Dunbar PR. Comprehensive analysis of MHC-II expression in

healthy human skin. Immunol Cell Biol. 2007 Jul; 85(5):363–9. https://doi.org/10.1038/sj.icb.7100047

PMID: 17342064

51. Bain CC, Hawley CA, Garner H, Scott CL, Schridde A, Steers NJ, et al. Long-lived self-renewing bone

marrow-derived macrophages displace embryo-derived cells to inhabit adult serous cavities. Nat Com-

mun. 2016 Jun 13; 7:ncomms11852.

52. Toebak MJ, Gibbs S, Bruynzeel DP, Scheper RJ, Rustemeyer T. Dendritic cells: biology of the skin.

Contact Dermatitis. 2009; 60(1):2–20. https://doi.org/10.1111/j.1600-0536.2008.01443.x PMID:

19125717

53. Hoeffel G, Chen J, Lavin Y, Low D, Almeida FF, See P, et al. C-Myb+ Erythro-Myeloid Progenitor-

Derived Fetal Monocytes Give Rise to Adult Tissue-Resident Macrophages. Immunity. 2015 Apr 21; 42

(4):665–78. https://doi.org/10.1016/j.immuni.2015.03.011 PMID: 25902481

54. Xiao Y, Zijl S, Wang L, de Groot DC, van Tol MJ, Lankester AC, et al. Identification of the Common Ori-

gins of Osteoclasts, Macrophages, and Dendritic Cells in Human Hematopoiesis. Stem Cell Rep. 2015

Jun 9; 4(6):984–94.

55. Green DP, Limjunyawong N, Gour N, Pundir P, Dong X. A Mast-Cell-Specific Receptor Mediates Neu-

rogenic Inflammation and Pain. Neuron. 2019 06; 101(3):412–420.e3. https://doi.org/10.1016/j.neuron.

2019.01.012 PMID: 30686732

56. Varricchi G, Rossi FW, Galdiero MR, Granata F, Criscuolo G, Spadaro G, et al. Physiological Roles of

Mast Cells: Collegium Internationale Allergologicum Update 2019. Int Arch Allergy Immunol. 2019; 179

(4):247–61. https://doi.org/10.1159/000500088 PMID: 31137021

57. Murray PJ, Allen JE, Biswas SK, Fisher EA, Gilroy DW, Goerdt S, et al. Macrophage Activation and

Polarization: Nomenclature and Experimental Guidelines. Immunity. 2014 Jul 17; 41(1):14–20. https://

doi.org/10.1016/j.immuni.2014.06.008 PMID: 25035950
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